
Formal Methods in PVS - KIT/ITIV 2010

Formal Methods Applied to the Implementation
of Secure Software/Hardware using PVS

Mauricio Ayala-Rinc�on

Grupo de Teoria da Computa�c~ao, Universidade de Bras��lia (UnB)

Short Course at ITIV - KIT

10-12 May 2010, Karlsruhe

Formal Methods in PVS - KIT/ITIV 2010

Talk's Plan

Motivation: generation of simple pieces of secure software/hardware
PVS
Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c
Conicts
Case study: Formalisation of the Security of Cryptographic Protocols

Formal proofs
Type Inference and Deductions
Curry-Howard isomorphism - programs as proofs
Proofs in the Prototype Veri�cation System - PVS
Programs versus demonstrations in PVS
Formalisation of recon�gurable hardware - a simple example

Conclusions and Future Work

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

PVS

What is PVS?

The Prototype Veri�cation System (PVS), developed by SRI
International Computer Science Laboratory, is a interactive
theorem prover which consists of

1 a speci�cation language:

based on higher-order logic;
a type system based on Church's simple theory of types
augmented with subtypes and dependent types.

2 an interactive theorem prover:

based on sequent calculus; that is, goals in PVS are sequents
of the form � ` �, where � and � are �nite sequences of
formulae, with the usual Gentzen semantics.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

182 A.L. Galdino, C. Muñoz, and M. Ayala-Rincón

Listing 1.1. The functions kb2d and recovery

kb2d(sx,sy,vox,voy,vix,viy ,e) : [real,real] =
let (vx, vy) = (vox − vix, voy − viy) in
let (q′

x, q′
y) = (Q(sx,sy ,e),Q(sy ,sx,−e)) in

let t′q = contact time(sx,sy ,q′
x,q′

y ,vx,vy ,e) in
if t′q > 0 then ((q′

x − sx)/t′q + vix , (q′
y − sy)/t′q + viy)

elsif t′q = 0 then(vix,viy)
else (0,0)
endif

recovery(sx,sy,vox,voy ,vix,viy ,t′′,e) : [real,real,real] =
let (vx, vy) = (vox − vix, voy − viy) in
let (s′′

x, s′′
y) = (sx + t′′vx, sy + t′′vy) in

let (v′
ox,v′

oy) = kb2d(sx,sy,vox,voy,vix,viy ,e) in
let (v′

x, v′
y) = (v′

ox − vix, v′
oy − viy) in

let t′ = switching time(sx,sy,s′′
x,s′′

y ,v′
x,v′

y ,e) in
if t′ > 0 AND t′′ − t′ > 0 then

(t′, (t′′vx − t′v′
x)/(t′′ − t′) + vix,(t′′vy − t′v′

y)/(t′′ − t′) + viy)
else (0,0,0)
endif

alpha(sx,sy) : real = D2/(sx
2 + sy

2)

beta(sx,sy) : real = D
√

sx
2 + sy

2 −D2/(sx
2 + sy

2)

Q(sx,sy,e):real = alpha(sx,sy)sx + e beta(sx,sy)sy

contact time(sx,sy,qx,qy ,vx,vy ,e) : real =
let d = vx(qx − sx) + vy(qy − sy) in

if d 6= 0 then ((qx − sx)2 + (qy − sy)2)/d
else 0
endif

switching time(sx,sy,s′′
x,s′′

y ,v′
x,v′

y ,e) : real =

if s′′
x
2

+ s′′
y
2

> D2 then
let (q′′

x , q′′
y) = (Q(s′′

x,s′′
y ,−e),Q(s′′

y ,s′′
x,e)) in

let (ux, uy) = (q′′
x − s′′

x, q′′
y − s′′

y) in
let d = v′

yux − v′
xuy in

if d 6= 0 then ((sx − s′′
x)uy + (s′′

y − sy)ux)/d
else 0
endif

else 0
endif

KB2D [GnAR07] improves
NIA/NASA's KB3D

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

The Problem: Basic De�nition and concepts

5 mn

aircraft

Avoidance Region: circle centered in the aircraft.

Conict: two aircraft are said to be in conict when their
avoidance regions overlap.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

The Problem: Basic de�nitions and concepts

2.5

5 mn

Protected Zone

2.5
ownship intruder

Protected Zone: circle twice as big as the avoidance region.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

The Problem: Basic de�nitions and concepts
tp

Original Course

Protected Zone

tpp

Intruder
vi

Ownship
t=0 vo

s

Recovery Course

vppo

Resolution Course

vpo

Switch Point

sp

A conict is the incursion of the ownship in the intruder's
protected zone.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Conict Detection and Resolution Algorithm

KB3D (Gilles Dowek, C�esar Mu~noz, and Alfons Geser)

3-Dimensional conict detection and resolution algorithm
(CD&R) which allows either changes of

- vertical speed only

- horizontal speed only

- heading only

of horizontal speed
- KB2D combines changes and

of heading

KB2D is a 2-Dimensional CD&R.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Conict Detection and Resolution Algorithm

KB3D (Gilles Dowek, C�esar Mu~noz, and Alfons Geser)

3-Dimensional conict detection and resolution algorithm
(CD&R) which allows either changes of

- vertical speed only

- horizontal speed only

- heading only

of horizontal speed
- KB2D combines changes and

of heading

KB2D is a 2-Dimensional CD&R.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

KB2D: Inputs
tp

Original Course

Protected Zone

tpp

Intruder
vi

Ownship
t=0 vo

s

Recovery Course

vppo

Resolution Course

vpo

Switch Point

sp

s −→
vo −→
vi −→
tpp−→

KB2D

s: ownship's relative position

vo: ownship's velocity

vi: intruder's velocity

tpp: Required Time of Arrival

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

KB2D: Outputs
tp

Original Course

Protected Zone

sp

tpp

Intruder
vi

Ownship
t=0 vo

s

Recovery Course

vppo

Resolution Course

vpo

Switch Point

s −→
vo −→
vi −→
tpp−→

KB2D
−→vpo−→vppo
−→tp

vpo: Resolution velocity

vppo: Recovery velocity

tp: Time of switch

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

The Algorithm (Geometric Solution)

Ownship's relative velocity

Tangent points

Relative resolution velocities

Absolute resolution velocities

D

D

−vi

vp

vo

v

vi

Q

Q

s

vp
v − vp

v − vp

O=(0,0)

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

The Algorithm (Geometric Solution)

1. Ownship's relative velocity: v

Tangent points

Relative resolution velocities

Absolute resolution velocities

D

D

−vi

vp

vo

v

vi

Q

Q

s

vp
v − vp

v − vp

O=(0,0)

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

The Algorithm (Geometric Solution)

1. Ownship's relative velocity: v

2. Tangent points: Q1 and Q−1
Relative resolution velocities

Absolute resolution velocities
Q1

−vi

D

O=(0,0)

vp

vo

v

vi
s

vp
v − vp

v − vp

D

Q−1

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

The Algorithm (Geometric Solution)

1. Ownship's relative velocity: v

2. Tangent points: Q1 and Q−1
3. Relative resolution velocities: vp1 and vp−1

Absolute resolution velocities

vp−1

1vp

Q−1Q−1

vp−1

1vp

Q1

−vi

D

O=(0,0)
vo

v

vi
s

v − vp

v − vp

D

−vi

D

O=(0,0)
vo

v

vi
s

v − vp

v − vp

D

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

The Algorithm (Geometric Solution)

1. Ownship's relative velocity: v

2. Tangent points: Q1 and Q−1
3. Relative resolution velocities: vp1 and vp−1
4. Absolute resolution velocities: vpo1 and vpo−1

Q−1

vp−1

1vp

1vpo

Q1

−1vpo

−vi

D

O=(0,0)
vo

v

vi
s

v − vp

v − vp

D

−vi

−vi

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

The Algorithm (Geometric Solution)

1. Ownship's relative velocity: v

2. Tangent points: Q1 and Q−1
3. Relative resolution velocities: vp1 and vp−1
4. Absolute resolution velocities: vpo1 and vpo−1

vp−1

1vp

Q−1Q−1

vp−1

1vp

Q1

B1

B−1

D

O=(0,0)
v

vi
s

D

D

O=(0,0)
v

vi
s

D

A

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Computing the tangent points

O=(0,0)

D

s=(sx,sy)

Q=(Qx,Qy)

{
sx .Qx + sy .Qy = D2

Qx2 + Qy2 = D2

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Computing the relative resolution velocities

D

−vi

D

O=(0,0)

vp

vo

v

vi

Q

Q

s

vp
vp − v

v − vp

{
vp = k · (Q − s)

vp · (vp − v) = 0

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Geometric and Analytic Solution (Recovery)

vp−1

1vp

−1vppQ1

Q−1 Qp
1

v

sp

tp

tpp

t=0

vi

s

Qp

1vpp

−1

−1tp

1

s + tp vp + (tpp − tp)vpp = sp = s + tpp v

=⇒ vpp = 1
tpp−tp (tpp v − tp vp)

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Optimality (2D)

D

O=(0,0)−vi

D

vp

vo

v

vi

Q

Q

v − vp

v − vp

s

vp
vq B

A

C

E

Theorem
The relative resolution velocity is optimal; i.e., it requires the least

e�ort, among all vectors on the whole universe of possible solutions

on the same side of the circle.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Coordination

vpb

s

D

D

Protected zone

Protected zone

aircraft B
va

vb
vpa

aircraft A −s

BUMM!!!!!

Let A and B be two conicting aircrafts.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Coordination

vpb

D

D

Protected zone

Protected zone

aircraft B
va

vb
vpa

aircraft A

BUMM!!!!!

The relative positions computed by each aircraft are opposite.

The time of loss of separation is the same for both aircrafts.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Coordination

vpb

D

D

Protected zone

Protected zone

aircraft B
va

vb
vpa

aircraft A

BUMM!!!!!

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Coordination

D

D

Protected zone

Protected zone

aircraft A aircraft B
va

vb
vpa

vpb
BUMM!!!!!

Lemma
For all eps = ± 1, vpa and vpb are parallel.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Coordination

D

D

Protected zone

Protected zone

aircraft A aircraft B
va

vb
vpa

vpb
BUMM!!!!!

Lemma
For all eps = ± 1, vpa and vpb are parallel.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: KB2D an algorithm for Detection and Resolution of Air Tra�c Conicts

Formal Veri�cation (An Example)

Theorem (kb2d correct)

For all s, v = vo − vi , T > 0, D > 0, vp, vpo, eps = ±1,
conict?(s, v , T) and

s2x + s2y > D2 and

vpo = kb2d(sx,sy ,vox,voy,vix,viy ,eps) and

vp = vpo - vi and vpo 6= 0
implies

separation?(s,vp).

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Formal methods in cryptography

Why proving mathematically security requirements?

Authentication protocol of Needham-Schroeder

was considered during 17 years to be secure.
but Lowe detected a \man-in-the-middle" vulnerability in this
protocol [Low95,Low96].

Example: formalisation of the security of the Dolev-Yao
two-party cascade protocol [DY83].

To be published 6th Computability in Europe [NNdMAR10].

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Cryptographic operations over monoids

Any user u ∈ U owns Eu and Du.

E = {Eu | u ∈ U}
D = {Du | u ∈ U}

� = E ∪ D
�∗ set of words over �.

Monoid freely generated by � and congruences:

EuDu = λ DuEu = λ, ∀u ∈ U (1)

Eu(Du(M)) = Du(Eu(M)) = M,∀M plain text.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Formalisation: normalisation property

Rewriting rules:

EuDu → λ DuEu → λ, ∀u ∈ U (2)

Canonical form: ∀δ ∈ �∗, δ is such that

δ →∗ δ

and δ is irreducible.

∀u ∈ U, E c
u = Du e Dc

u = Eu.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Speci�cation of the Protocol Step

De�nition (Protocol Step: αβ : U × U → �∗)

∀x , y ∈ U | x 6= y :

1. αβ(x , y) 6= λ

2. αβ(x , y) = αβ(x , y)

3. αβ(x , y) ∈ �(x , y)∗ �(x , y) = {Dx ,Ex ,Ey}
4. ∀u, v ∈ U :
4.1. |αβ(x , y)| = |αβ(u, v)|
4.2. ∀0 ≤ j < |αβ(x , y)| :
4.2.1. αβ(x , y)[j] = Ex i� αβ(u, v)[j] = Eu

4.2.2. αβ(x , y)[j] = Ey i� αβ(u, v)[j] = Ev

4.2.3. αβ(x , y)[j] = Dx i� αβ(u, v)[j] = Du

4.2.4. αβ(x , y)[j] = Dy i� αβ(u, v)[j] = Dv

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

PVS speci�cation of the Protocol Step

PVS Protocol Step
alphabeta welldef?(ab : alphabeta, x, y : U) : bool =

ab(x,y)'length > 0 AND
normalseq?(ab(x,y)) AND
(FORALL(j : nat | j < ab(x,y)'length) :
member(ab(x,y)(j),validSetxy(x,y))) AND
abUsers?(ab, x, y)

Protocol Step is the same for each pair of users
abUsers?(ab : alphabeta, x, y : U) : bool =

FORALL(u, v : U) :
ab(x,y)`length = ab(u,v)`length AND
FORALL(i : nat | i < ab(x,y)`length) :
(user(ab(x,y)(i)) = x OR user(ab(x,y)(i)) = y) AND
(crTyp(ab(x,y)(i)) = crTyp(ab(u,v)(i))) AND
(user(ab(x,y)(i)) = x IFF user(ab(u,v)(i)) = u) AND
(user(ab(x,y)(i)) = y IFF user(ab(u,v)(i)) = v)

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Speci�cation of Cascade Protocols

Nonempty sequence of protocol steps, ∀x , y ∈ U.

Protocol steps alternate between x and y .

De�nition (Cascade Protocol)

∀0 ≤ i < |P| e ∀x , y ∈ U:

1. Pi (x , y), for i even
2. Pi (y , x), for i odd

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Functionality - Cascade Protocol

x → y represents submission of message from x to y x , y ∈ U.

Communication between users x , y ∈ U

x → y : P0M = αβ0(x , y)M
y → x : P1P0M = αβ1(y , x)αβ0(x , y)M

...
x → y : P|P|−1...P0M = αβ|P|−1(x , y)...αβ0(x , y)M, if |P| > 2 odd

or

y → x : P|P|−1...P0M = αβ|P|−1(y , x)...αβ0(x , y)M, if |P| > 2 even

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Speci�cation of the adversary Admissible Language

De�nition (Adversary Admissible Language)

(�∗1(z) ∪ �2)
∗, where:

�1(z) = E ∪ {Dz}, and
�2 = {Pi (x , y) | 1 ≤ i < |P| and x , y ∈ U, x 6= y}

An adversary z can:

Observe all the tra�c in the communication net;
Do all things an honest user can do;
Create, intercept, destroy and modify messages.
Supplant other users.

But z is limited by cryptographic primitives.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

De�nition secure cascade protocol

De�nition (Secure Cascade Protocol)

P is secure whenever for all x , y , z ∈ U, ∀γ ∈ (�∗1(z) ∪ �2)
∗ and

0 ≤ i < |P|, it holds:

γPi ...P0 6= λ

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Security characterisation: Initial Condition of Security

De�nition (Initial Condition of Security)

∀x , y ∈ U:

P0(x , y) ∩ {Ex ,Ey} 6= φ

Without this condition, P0(x , y) = Dk
x (k ∈ N∗).

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Security characterisation: Balancing Property

De�nition (Balancing Property (BP))

Let δ ∈ �∗. δ satis�es BP w.r.t. z ∈ U, whenever:

∃0 ≤ i < |δ| : δi = Dz =⇒ ∃0 ≤ j < |δ| : δj = Ez

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Balancing Property for a cascade protocol P

De�nition (BP Cascade Protocol)

A cascade protocol P is balanced whenever:

∀x , y ∈ U and ∀0 < i < |P|:

Pi (x , y) satis�es BP w.r.t. x, if i even

Pi (y , x) satis�es BP w.r.t. y , if i odd

Example:

Let P2 the third step of a cascade protocol P, such that

P2(x , y) = EyDxEy , then, P is not balanced.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Formalisation of security for cascade protocols

Theorem (Characterisation of security)

A cascade protocol P is secure i�,

(i) it satis�es the initial security property and

(ii) it is balanced.

Formalisation in PVS
theorem1 : THEOREM FORALL (prot : welldefined protocol,

x : U, y : U | x /= y, z : U | z /= x AND z /= y) :
secure protocol?(prot, x, y, z) IFF
(alpha0ContainsE?(prot, x, y) AND balanced cascade protocol?(prot))

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Sketch of the formalisation

Let P be a cascade protocol.

Necessity, by contraposition:
¬(i) ∨ ¬(ii) =⇒ P insecure.

Su�ciency, by contradiction:
(i) ∧ (ii) ∧ P insecure =⇒
P secure.

Theorem of Security
A cascade protocol P is secure i�

(i) it satis�es the security initial
condition
(ii) it is balanced.

Su�ciency : one assumes, by contradiction, that P is insecure.

PVS formalisation divided in 9 sub-theories.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Structure of the PVS formalisation

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Necessity

A) ¬(i) =⇒ P insecure

P0(x , y) = Dk
x (k ∈ N∗).

γ = E k
x , so that γP0 = λ

B) ¬(ii) =⇒ P insecure
By lemma of extraction of private operator :

u, v ∈ U | u 6= v

Step protocol αβ(u, v) unbalanced.

∃τ1, τ2 ∈ �∗1 (v), such that τ1αβ(u, v)τ2 = Du.

By induction in the length of
P0(x , y) = {Dx ,Ex ,Ey}P0(x , y)[1,|P0|−1]

Induction step: eliminate Dx applying Ex ∈ �∗1 (z) and
eliminate {Ex ,Ey} applying lemma above.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Su�ciency

(i) ∧ (ii) ∧ P insecure =⇒ P secure

Lemma (Admissible language is balanced)

Let P be a balanced cascade protocol. For any z ∈ U,

∀γ ∈ (�∗1(z) ∪ �2)
∗ and ∀a ∈ U | a 6= z, it holds: γ satis�es BP

w.r.t. a.

Formal Methods in PVS - KIT/ITIV 2010

Motivation: generation of simple pieces of secure software/hardware

Case study: Formalisation of the Security of Cryptographic Protocols

Su�ciency

Since P is insecure, ∃γ ∈ (�∗1(z) ∪ �2)
∗ such that

γc = P0(x , y).

Contradiction is obtained considering γc = P0(x , y) .

Ey ∈ P0(x , y):

Since γc = P0(x , y), then Dy ∈ γ.
γ is balanced: Ey ∈ γ
Thus, Dy ∈ P0(x , y). CONTRADICTION.

Ey /∈ P0(x , y):

Since P0(x , y) balanced, then Dy /∈ P0(x , y).
P0(x , y) = E k

x (k ∈ N∗)
Thus, γ = Dk

x . CONTRADICTION, since γ satis�es BP
w.r.t. x .

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Types

Discrimination of classes of objects

Implicitly used in intuitive systems

- Euclid Elements

Neccesity of an explicit de�nition for abstract systems

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Types

Discrimination of classes of objects

Implicitly used in intuitive systems

- Euclid Elements

Neccesity of an explicit de�nition for abstract systems

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Types

Discrimination of classes of objects

Implicitly used in intuitive systems

- Euclid Elements

Neccesity of an explicit de�nition for abstract systems

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

History of types

Treatment of paradoxes an inconsistencies in the formalization
of mathematics:

- Auto-reference, auto-reproduction

Simple Types in the λ-calculus [Alonzo Church 1940]

Implicit Types [Haskell Curry 1958]

Type-free languages: LISP [John McCarthy 1956-9]

Typed languages: Fortran, Algol,...

Languages with types �a la Curry: ML [Robin Milner 1980]

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Simple Types

SYNTAX

TYPES A ::= K |A→ B
TERMS a ::= x | (a a) |λx :B.a

- A λ-term a has type B, denoted a : B

- Context � = {x1:A1, x2:A2, . . . , xn:An}

- A λ-term a has type B under context �

� ` a : B︸ ︷︷ ︸
Type Judgment

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Simple Types

SYNTAX

TYPES A ::= K |A→ B
TERMS a ::= x | (a a) |λx :B.a

- A λ-term a has type B, denoted a : B

- Context � = {x1:A1, x2:A2, . . . , xn:An}

- A λ-term a has type B under context �

� ` a : B︸ ︷︷ ︸
Type Judgment

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Simple Types

SYNTAX

TYPES A ::= K |A→ B
TERMS a ::= x | (a a) |λx :B.a

- A λ-term a has type B, denoted a : B

- Context � = {x1:A1, x2:A2, . . . , xn:An}

- A λ-term a has type B under context �

� ` a : B︸ ︷︷ ︸
Type Judgment

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Simple Types

SYNTAX

TYPES A ::= K |A→ B
TERMS a ::= x | (a a) |λx :B.a

- A λ-term a has type B, denoted a : B

- Context � = {x1:A1, x2:A2, . . . , xn:An}

- A λ-term a has type B under context �

� ` a : B︸ ︷︷ ︸
Type Judgment

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Simple Types

Examples

(
(λx .x λx .x)→β λx .x auto-aplication

(λx .(x x) λx .(x x)) →β (λx .(x x) λx .(x x)) auto-reproduction| {z }
Paradoxal Argumentation

Auto-aplication makes sense:

(

(A→A)→A→Az }| {
λx :A→A.x

A→Az }| {
λx :A.x)→β

A→Az }| {
λx :A.x

Polymorphism!

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Simple Types

Examples

(
(λx .x λx .x)→β λx .x auto-aplication

(λx .(x x) λx .(x x)) →β (λx .(x x) λx .(x x)) auto-reproduction| {z }
Paradoxal Argumentation

Auto-reproduction doesn't make sense:

(λx :τ1 .(x x) λx :τ2 .(x x))→β (λx :τ3 .(x x) λx :τ4 .(x x))

Acceptable term, but non typable!

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

TAλ: the simply typed λ-calculus

x /∈ �
x : A, � ` x : A

(Start)
x /∈ � � ` a : B
x : A, � ` a : B (Weak)

x : A, � ` a : B
� ` λx :A.a : A→ B

(Abs)
� ` a : B → A � ` b : B

� ` (a b) : A
(App)

Table: TAλ

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Example: type inference (auto-aplication)

Example (Type inference (auto-aplication))

x : A ` x : A
(Start)

` λx :A.x : A→ A
(Abs)

x : A→ A ` x : A→ A
(Start)

` λx :A→A.x : (A→ A)→ (A→ A)
(Abs)

� ` (λx :A→A.x λx :A.x) : A→ A
(App)

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Relevant problems in type theory

Veri�cation: given M and A determine whether there exists �
s.t. � ` M : A.

Inference: given M determine � and A s.t. � ` M : A.

Inhabitation: given a type A. There exist inhabitants inside
the context � i� there exists a λ-term M s.t. � ` M : A.

Subject reduction: do preserve types all computations?

Pincipal Typing: for all term M there exists a more general

typing (�,A), s.t. � ` M : A.

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Type Inference and Deductions

Revisiting relevant problems in type theory

�︸︷︷︸
variable declarations

` M︸︷︷︸
λ-term or program

: A︸︷︷︸
type

Type veri�cation: are correct the designed types for the
program?

Type inference: Is the program correct?

Existence of inhabitants: extraction of a program from a
proof.

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

Relation between proofs and programs was detected by Haskell
Curry [1934-1942], but was only applied until the 1960s by N.G. de
Bruijn and William Howard.

Type Theory versus Intiutionistic Logic︸ ︷︷ ︸
Luitzen Egbertus Jan Brouwer [1920]

Typing rules from the simple typed λ-calculus correspond 1-1 to
the deductive rules of the minimal intuitionistic logic: typing rules
are logical rules decorated with typed λ-terms.

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

Implicational intuitionistic logic
Implicational formulas are built from propositional variables

(denoted by A,B,C , . . .) using only implication →:
Thus, if σ and τ are implicational formulas, then (σ → τ) is also
an implicational formula.

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

A judgment in the intuitionistic logic, written as
 `I A , means
that \A is a logic consequence of
".

,A `I A
(Axiom)

,A `I B

 `I A→ B

(Intro)

 `I A→ B
 `I A

 `I B
(Elim)

Deduction rules of the minimal intuitionistic logic

A formel A is a tautology if, and only if the judgment `I A is
provable.

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

Example (A→ ((A→ B)→ B) is a tautology)

A,A→ B `I A→ B
(Axiom)

A,A→ B `I A
(Axiom)

A,A→ B `I B
(Elim)

A `I (A→ B)→ B
(Intro)

`I A→ ((A→ B)→ B)
(Intro)

In the context of λ-calculos it holds:

` λx :A.λy :A→B .(y x) : A→ ((A→ B)→ B)

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

Example. Peirce's Law: (PL) ((A→ B)→ A)→ A

Holds in the classical logic, but not in the intuitionistic logic!

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

proofs as programs - Curry-Howard isomorphism

Isomorphism (Curry-Howard)

 `I A is provable in the minimal intuitionistic logic if, and only if

� ` M : A is a valid type judgment in the simple typed λ-calculus,
where � is a list of declarations for propositional variables, s in
.
The term M is a λ-term that represents the derivation of the proof.

References: [Hin97], , [Sim00], ...

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

Natural deduction

Table: Natural deduction: inference rules

introduction elimination

ϕ ψ

ϕ ∧ ψ (∧i) ϕ ∧ ψ
ϕ (∧er)

ϕ ∧ ψ
ψ

(∧el)

ϕ

ϕ ∨ ψ (∨ir) ψ

ϕ ∨ ψ (∨il) ϕ ∨ ψ

[ϕ]u

...
χ

[ψ]v

...
χ

χ (∨e), u, v

[ϕ]u

...
ψ

ϕ→ ψ
(→ i), u

ϕ ϕ→ ψ

ψ
(→ e)

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

Natural deduction

Table: Natural deduction: inference rules

introduction elimination

[ϕ]u

...
⊥
¬ϕ (¬i), u

ϕ ¬ϕ
⊥ (¬e)

⊥
ϕ (⊥e)
¬¬ϕ
ϕ (¬¬)

t = t
(= i)

t1 = t2 ϕ[x/t1]

ϕ[x/t2]
(= e)

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

Natural deduction

Table: Natural deduction: inference rules

introduction elimination

y independente

...
ϕ[x/y]

∀x ϕ (∀i) ∀x ϕ
ϕ[x/t]

(∀e)

ϕ[x/t]

∃x ϕ (∃i) ∃x ϕ

[ϕ[x/y]]u

y indep.

...
χ

χ (∃e), u

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

An example of natural deduction

1 �1:
[¬ϕ[x/y]]v
∃x¬ϕ (∃i)

[¬∃x¬ϕ]u
⊥ (¬e)

ϕ[x/y]
(PBC), v

∀x ϕ (∀i)
[¬∀x ϕ]w

⊥ (¬e)
∃x ¬ϕ (PBC), u

¬∀x ϕ→ ∃x ¬ϕ (→ i),w

2 �2:
[∀x ϕ]v
ϕ[x/y]

(∀e)
[¬ϕ[x/y]]w
⊥ (¬e)

[∃x ¬ϕ]u
⊥ (∃e),w
¬∀x ϕ (¬i), v

∃x ¬ϕ→ ¬∀x ϕ (→ i), u

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

Gentzen Systems

Table: Gentzen Systems: inference rules

Left rules Right rules
Axioms

A ` A (Ax) ⊥ ` (L⊥)

Structural rules

� ` �
A, � ` �

(LW)
� ` �

� ` �,A
(RW)

A,A, � ` �

A, � ` �
(LC)

� ` �,A,A

� ` �,A
(RC)

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

Gentzen Systems

Table: Gentzen Systems: inference rules

Left rules Right rules
Logical rules

Ai , � ` �

A0 ∧ A1, � ` �
(L∧), (i = 0, 1)

� ` �,A � ` �,B

� ` �,A ∧ B (R∧)

A, � ` � B, � ` �

A ∨ B, � ` �
(L∨) � ` �,Ai

� ` �,A0 ∨ A1
(R∨), (i = 0, 1)

� ` �,A B, � ` �

A→ B, � ` �
(L→)

A, � ` �,B

� ` �,A→ B
(R →)

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

Gentzen Systems

Table: Gentzen Systems: inference rules

Left rules Right rules
Logical rules

A[x/t], � ` �

∀xA, � ` �
(L∀) � ` �,A[x/y]

� ` �, ∀xA (R∀), y 6∈ FV (�,�)

A[x/y], � ` �

∃xA, � ` �
(L∃), y 6∈ FV (�,�)

� ` �,A[x/t]

� ` �,∃xA (R∃)

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Curry-Howard isomorphism - programs as proofs

An example of deduction �a la Gentzen

¬ϕ[x/y] ` ¬ϕ[x/y] (Ax)

¬ϕ[x/y] ` ∃x ¬ϕ (R∃)

¬∃x ¬ϕ, ¬ϕ[x/y] ` ∃x ¬ϕ LW
¬∃x ¬ϕ ` ¬∃x ¬ϕ (Ax)

¬∃x ¬ϕ, ¬ϕ[x/y] ` ¬∃x ¬ϕ (LW)

¬∃x ¬ϕ, ¬ϕ[x/y] ` ∃x ¬ϕ ∧ ¬∃x ¬ϕ (R∧)

¬∃x ¬ϕ ` ¬ϕ[x/y]→ ⊥ (R →)

¬∃x ¬ϕ ` ∀x ϕ (R∀)

¬∀x ϕ, ¬∃x ¬ϕ ` ∀x ϕ (LW)
¬∀x ϕ ` ¬∀x ϕ (Ax)

¬∀x ϕ, ¬∃x ¬ϕ ` ¬∀x ϕ (LW)

¬∀x ϕ, ¬∃x ¬ϕ ` ∀x ϕ ∧ ¬∀x ϕ (R∧)

¬∀x ϕ ` ¬∃x ¬ϕ→ ⊥ (R →)

` ¬∀x ϕ→ ∃x ¬ϕ (R →)

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Proofs in the Prototype Veri�cation System - PVS

The Prototype Veri�cation System - PVS

PVS is a veri�cation system, developed by the SRI International
Computer Science Laboratory, which consists of

1 a speci�cation language:

based on higher-order logic;
a type system based on Church's simple theory of types
augmented with subtypes and dependent types.

2 an interactive theorem prover:

based on sequent calculus; that is, goals in PVS are sequents
of the form � ` �, where � and � are �nite sequences of
formulae, with the usual Gentzen semantics.

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Proofs in the Prototype Veri�cation System - PVS

Sequent calculus

Sequents of the form: � ` �.

Assuming � and � derivable.
A1,A2, ...,An ` B1,B2, ...,Bm interpreted as
A1 ∧ A2 ∧ ... ∧ An ` B1 ∨ B2 ∨ ... ∨ Bm.

Inference rules

Premises and conclusions are simultaneously constructed.

Example:
� ` �
�1 ` �1

Goal: ` �.

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Proofs in the Prototype Veri�cation System - PVS

Sequent calculus in PVS

Representation of A1,A2, ...,An ` B1,B2, ...,Bm:
[-1] A1

.

.

.
[-n] An

|----------
[1] B1

.

.

.
[n] Bn

Proof tree: each node is labelled by a sequent.

A PVS proof command corresponds to the application of an
inference rule.

In general:
�1 ` �1...�n ` �n

� ` �
R

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Proofs in the Prototype Veri�cation System - PVS

Some inference rules in PVS

Structural:

�1 ` �1

�2 ` �2
W, if �1 ⊆ �2 e �1 ⊆ �2

Propositional:

�,A ` A,�
Ax

�,FALSE ` �
FALSE`

� ` TRUE ,�
`TRUE

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Proofs in the Prototype Veri�cation System - PVS

Some inference rules in PVS

Cut:

Corresponds to the case proof command.

�,A ` � � ` A,�
� ` �

Cut

Conditional: IF-THEN-ELSE.

�,A,B ` � �,C ` A,�
�, IF(A,B,C) ` �

IF `

�,A ` B,� � ` A,C ,�
� ` IF(A,B,C)�

` IF

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Programs versus demonstrations in PVS

Programs versus demonstrations

Example: greatest common divisor gcd

Theorem [Euclid 320-275 BC]∀n ≥ 0,m > 0, gcd(n,m) = gcd(m, n MOD m)︸ ︷︷ ︸
idea

(Detail: \n MOD m" is computed as \(n −m) MOD m)

procedure gcd(m, n)
if m < n then gcd(n,m)
else (m ≥ n)

gcd(m − n, n)
End procedure︸ ︷︷ ︸

algorithm

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Programs versus demonstrations in PVS

Programs versus demonstrations

gcd(6, 4)→ gcd(2, 4)→ gcd(4, 2)→ gcd(2, 2)→ gcd(0, 2)→ gcd(2, 0)→ · · ·| {z }
problem: in�nite loop

Proof of totality: Domain N (Type of the objects)
BI: gcd(0, n) unde�ned! De�ne gcd(0, n) = n.
PI: Suppose gcd(k, n) well-de�ned for all n and k < m, with m > 0.

⇒ gcd(m, n) well-de�ned:
Case 1: m > n. gcd(m, n) = gcd(m − n, n) Apply IH only if n > 0! De�ne
gcd(m, 0) = m.
Case 2: m ≤ n. gcd(m, n) = gcd(n,m) that is well-de�ned by IH.

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Programs versus demonstrations in PVS

Programs versus demonstrations

procedure gcd(m, n)
if m = 0 then n
else (∗ ∗m > 0 ∗ ∗)

if m < n then gcd(n,m)
else (∗ ∗m > 0 & m ≥ n ∗ ∗)

if n = 0 then m
else (∗ ∗m > 0 & n > 0 & m ≥ n ∗ ∗)

gcd(m − n, n)
End procedure︸ ︷︷ ︸
Program extracted from the proved correct speci�cation

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Programs versus demonstrations in PVS

Example in PVS: gcd extended to Z× Z

Theorem [Euclid 320-275 BC]∀n ≥ 0,m > 0, gcd(n,m) = gcd(m, n MOD m)︸ ︷︷ ︸
idea

Theorem [Euclid Z2]∀m, n 6= 0 ∈ Z, gcd(m, n) = gcd(m,m MOD n)︸ ︷︷ ︸
extension' idea

(Detail: \n MOD m" is computed as \(n −m) MOD m)

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Programs versus demonstrations in PVS

Example in PVS: gcd extended to Z× Z

procedure gcd(m, n)
if |m| = |n| then |m|
else, if (m = 0 or n = 0) then |m + n|

else, if |n| > |m| then gcd(|n| − |m|, |m|)
else gcd(|m| − |n|, |n|)

End procedure︸ ︷︷ ︸
algorithm extended to Z2

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Programs versus demonstrations in PVS

Example in PVS: gcd : Z× Z→ N Executable code

Speci�cation & veri�cation in PVS

Executable code extracted from the proved correct
speci�cation - Mu~noz's system PVSWhy

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Programs versus demonstrations in PVS

Formalisation of the correctness of gcd

Quantitative Information

Theory L. Speci�cation L. Proof Theorems TCCs S. Speci�cation S. Proof

gcd 94 1665 21 6 3.2K 74k

94 1665 21 6 3.2K 74K

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Programs versus demonstrations in PVS

Executable code for gcd in Z× Z extracted with PVSWhy

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Formalisation of recon�gurable hardware - a simple example

Formalisation of the logical correctness of a simple 2D
convolution

Figure: Wong, Jasiunas & Kearney 2D convolution [WJK05]

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Formalisation of recon�gurable hardware - a simple example

Formalisation of the logical correctness of a simple 2D
convolution

Implementation of WJK-Convolution in FPGAs
Departamento Engenharia Mecatrônica/UnB

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Formalisation of recon�gurable hardware - a simple example

Formalisation of the logical correctness of an improved 2D
convolution

Implementation Y-Convolution in FPGAs
(J.Yudi) Departamento Engenharia Mecatrônica/UnB

Formal Methods in PVS - KIT/ITIV 2010

Formal proofs

Formalisation of recon�gurable hardware - a simple example

Formalisation of the logical correctness of a simple 2D
convolution

Quantitative Information

Theory L. Speci�cation L. Proof Theorems TCCs T. Speci�cation T. Proof

image masks 194 3788 75 64 7.8K 78K
fin seq extra 162 1612 62 29 7K 179k

356 5400 137 93 14.8K 257K

Formal Methods in PVS - KIT/ITIV 2010

Conclusions and Future Work

Conclusions and Future Work

Nowadays formalising computational objects is essential in
order to produce certi�ed and robust products.

Each piece of software/hardware deserves a formal
mathematical treatment.

Advances in formal methods includes:

speci�cation and formalisation of mathematical theories and
proof technologies that can be applied to a particular style of
design (e.g. trs theory [GAR10]);
aplication of particular formalisation styles to the design and
production of speci�c technological tools: such as
cryptographic protocols (e.g. [SAR10]) and recon�gurable
hardware implementations (e.g. [ARLJH06]).

Formal Methods in PVS - KIT/ITIV 2010

Conclusions and Future Work

References

M. Ayala-Rinc�on, C. H. Llanos, R. P. Jacobi, and R. W. Hartenstein.

Prototyping time- and space-e�cient computations of algebraic operations over dynamically recon�gurable
systems modeled by rewriting-logic.
ACM Trans. Design Autom. Electr. Syst., 11(2):251{281, 2006.

D. Dolev and A. C. Yao.

On the Security of Public Key Protocols.
IEEE. T. on Information Theory, 29(2):198{208, 1983.

A. L. Galdino and M. Ayala-Rinc�on.

A Formalization of the Knuth-Bendix(-Huet) Critical Pair Theorem.
J. of Automated Reasoning, 2010.
Springer Online First doi 10.1007/s10817-010-9165-2.

A.L. Galdino, C. Mu noz, and M. Ayala-Rinc�on.

Formal Veri�cation of an Optimal Air Tra�c Conict Detection and Recovery Algorithm.
In Proc. WoLLIC 2007, volume 4576 of Lecture Notes in Computer Science, pages 177{188, 2007.

J.R. Hindley.

Basic Simple Type Theory.
Number 42 in Cambridge Tracts in Theoretical Computer Science. Cambridge, 1997.

G. Lowe.

An Attack on the Needham-Schroeder Public-Key Authentication Protocol.
Information Processing Letters, 56(3):131{133, 1995.

Formal Methods in PVS - KIT/ITIV 2010

Conclusions and Future Work

References

G. Lowe.

Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR.
Software - Concepts and Tools, 17(3):93{102, 1996.

R.B. Nogueira, A. Nascimento, F. L.C. de Moura, and M. Ayala-Rinc�on.

Formalization of Security Proofs Using PVS in the Dolev-Yao Model.
In Proc. 6th Computability in Europe - Algorithms, Proofs and Processes, 2010.

D.N. Sobrinho and M. Ayala-Rinc�on.

Reduction of the Intruder Deduction Problem into Equational Elementary Deduction for Electronic Purse
Protocols with Blind Signatures.
In Proc. WoLLIC 2010, volume 6188 of Lecture Notes in Computer Science, pages 218{231, 2010.

H. Simmons.

Derivation and Computation: taking the Curry-Howard correspondence seriously.
Number 51 in Cambridge Tracts in Theoretical Computer Science. Cambridge, 2000.

S.C. Wong, M. Jasiunas, and D. Kearney.

Fast 2D Convolution Using Recon�gurable Computing.
In Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, pages
791{794, 2005.

	Motivation: generation of simple pieces of secure software/hardware
	PVS
	Case study: KB2D an algorithm for Detection and Resolution of Air Traffic Conflicts
	Case study: Formalisation of the Security of Cryptographic Protocols

	Formal proofs
	Type Inference and Deductions
	Curry-Howard isomorphism - programs as proofs
	Proofs in the Prototype Verification System - PVS
	Programs versus demonstrations in PVS
	Formalisation of reconfigurable hardware - a simple example

	Conclusions and Future Work

