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Call-by-value

Plotkin’s call-by-value λ-calculus:

t ::= V | t t

V ::= x | λx .t

βv rule: (λx .t) V →βv
t{x/V }

Most functional programming languages are CBV .

Most works on λ-calculus are call-by-name (CBN).
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Call-by-value

Plotkin’s calculus is not satisfactory for various reasons.

Semantic models do not faithful reflect
bueibdivergence.
Let ∆ = λx .xx . Now consider:

M = (λx .∆) (y z) ∆

Semantically M should be divergent , but it is a βv -normal form!

Problem studied by Luca Paolini and Simona Ronchi della
Rocca ("call-by-value solvability").

Another problem: the completeness of CPS-translations.
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λ-calculus and Linear Logic

λ-calculus can be represented in various ways inside Linear Logic.

Two main translations:

1 Call-by-name: (A ⇒ B)n := (!An) ( Bn.

2 Call-by-value: (A ⇒ B)v := !(Av ( Bv ).

Both appear in Girard’s seminal paper (1987)

Girard calls the second boring.

Sad consequence: the CBV-translation is less known and
understood .
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Call-by-value and Linear Logic

The translations are typed but both can be extended to pure CBN
and CBV λ-calculus by means of recursive types.

Curious fact :
M = (λx .∆) (y z) ∆

diverges when represented in LL Proof-Nets via the CBV
translation (which is good).

Idea: to extract the calculus corresponding to CBV Proof-Nets.

Relation with Proof-Nets requires explicit substitutions.

But here ES are evaluated in just one shot .
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The value-substitution calculus λvsub

Let L be a possibly empty list [x1/u1] . . . [xn/un].

Define λvsub as:
t ::= V | t t | t [x/u]

V ::= x | λx .t

Rules:
(λx .t)L s →dB t [x/s]L
t [x/VL] →sv t{x/V }L

Note that s needs not to be a value.

Note that explicit substitutions can be reduced only if the content
is a value.
Note the use of distance (i.e. L).

λvsub is confluent .
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Solvability and explicit substitution

Re-consider the problematic term:

M = (λw .∆) (y z) ∆

Now let’s look at it in our new framework:

(λw .∆) (y z) ∆ →dB ∆[w/y z]∆ →dB

(x x)[x/∆][w/y z] →sv

(∆ ∆)[w/y z] → . . .

M has no nf! (which is good)
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Herbelin-Zimmerman’s λCBV

There is a similar calculus by Herbelin and Zimmerman, but
without distance.
The syntax is the same, but not the rules:

t ::= V | t t | t [x/u]

V ::= x | λx .t

Operational rules Structural rules

(λx .t) s ⇒ t [x/s]

t [x/V ] →letv t{x/V }

t [x/u[y/w ]] →letlet t [x/u][y/w ]

t [x/u] w →letapp (t w)[x/u]

Note that s needs not to be a value, but:

(λx .t)[y/w ] s is not a ⇒ redex.

t [y/V [x/u]] is not a →letv redex.

The structural rules become identities on Proof-Nets.
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Simulation

λvsub is an equational sub-calculus of λCBV :

(λx .t)L s →dB t [x/s]L

(λx .t)L s →∗letapp
((λx .t) s)L ⇒ t [x/s]L

t [x/VL] →sv t{x/V }L

t [x/VL] →∗letlet
t [x/V ]L →letv t{V/x}L

Thus →λvsub⊆→∗λCBV
.
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Inverse simulation

Apparently, λvsub is strictly contained in λCBV .

These rules cannot be simulated :

t [x/u[y/w ]] →letlet t [x/u][y/w ]

t [x/u] w →letapp (t w)[x/u]

But this is not quite true...
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Structural congruence

Let ≡o be the equivalence relation generated by:

t [x/s][y/u] ∼o1 t [y/u][x/s] if x /∈ fv(u)&y /∈ fv(s)

t u[x/s] ∼o2 (t u)[x/s] if x /∈ fv(t)
t [x/s] u ∼o3 (t u)[x/s] if x /∈ fv(u)

t [x/s[y/u]] ∼o4 t [x/s][y/u] if y /∈ fv(t)

≡o contains λCBV structural rules:

t [x/u[y/w ]] →letlet t [x/u][y/w ]

t [x/u] w →letapp (t w)[x/u]

Operational rules: t →λCBV u implies t →λvsub u.

Structural rules: t →λCBV u implies t ≡o u.

Hence →λCBV⊆ (→λvsub / ≡o).
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Strong bisimulations

≡o is a strong bisimulation, i.e.:

t t →λvsub t ′

≡o ⇒ ∃ t ′ s.t. ≡o ≡o
u →λvsub u ′ t →λvsub u ′

Rewriting modulo a strong bisimulation preserves confluence
and strong normalisation.

If t ≡o u then t and u map to the same Proof-Net .

Then they can really be considered as the same object .

Accattoli (INRIA Parsifal) Variations on a theme: call-by-value and factorization 14 / 31



Concluding

In λvsub there is a good match between semantics and
divergence.

Recent work in collaboration with Luca Paolini (FLOPS 2012).

This work gives an operational characterization of
CBV-solvablity (a semantic notion).

The operational characterization uses crucially two factorization
theorems.
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Confluence

A system S if confluent when:

t →∗ u1 t →∗ u1↓∗ implies ∃v s.t. ↓∗ ↓∗
u2 u2 →∗ v

A system S if locally confluent when:

t → u1 t → u1↓ implies ∃v s.t. ↓ ↓∗
u2 u2 →∗ v

Termination ⇒ Confluence = Local Confluence
(Newman’s Lemma).
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General Idea

λ-calculus has just one rule:

(λx .t) u →β t{x/u}

which does not terminate.
Explicit substitutions, abstractly :

1 Creation of substitutions: (λx .t)L u →dB t [x/u].

2 Set of rules executing substitutions: t [x/u] →∗ t{x/u}.

Key property : each rule of an ES-calculus terminates.

So ES-calculi are sort of locally terminating systems, which are
globally non-terminating.
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Local termination and confluence

New proof technique for confluence.

Prove local confluence of each rule alone.

Termination gives confluence of each rule.

Hindley-Rosen Lemma: if two reductions →1 and →2 commute:

t →∗1 u1 t →∗1 u1↓∗2 implies ∃v s.t. ↓∗2 ↓∗2
u2 u2 →∗1 v

and are confluent then →1 ∪→2 is confluent .

Prove commutation of each pair of rule.

Termination often reduces commutation to local commutation.
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Local termination

So in ES-calculi a global property as confluence can be reduced
to local confluence and local commutation.

Surprising: in λ-calculus confluence do not reduce to local
confluence.

ES-calculi are more complex than λ-calculus, but local
termination provides new proof techniques.

Another notion which can be localized is factorization.
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Standardization

Termination is about the existence of results.

Confluence is about the unicity of results.
Standardization instead is about how to compute.

It identifies a specific class of reductions to which any other
reduction can be transformed by permuting its steps.

It has many important corollaries, in particular it gives a
normalizing strategy for evaluation.

Many applications require a simpler form, called factorization.
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Factorization

Factorization is a simple form of standardization.

Head contexts in λ-calculus:

H ::= [·] | λx .H | H t

Head reduction →h in λ-calculus is the closure by head contexts
H of:

(λx .t) u 7→β t{x/u}

Internal reduction is the complement of head reduction,
i.e.→i :=→β \ →h.

Factorization theorem:

Every reduction t →∗β u can be re-organized as t →∗h→∗i u
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Factorization theorem in λ-calculus

At first sight factorization is easy .

Local diagram permutation diagram:

t −→i u99K

h+

⇒ −→
h

v 99K∗i w

Two abstract lemmas, similar to Newman’s, imply the
factorization theorem when:

1 →+
h is composed of at most one step, or

2 →h is strongly normalizing.
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Factorization is non-trivial

Unfortunately, →β lacks both properties.

The sequence →+
h can have length > 1:

(λx .x x) (I I) −→i (λx .x x) I99K

h

⇒ −→
h

(I I) (I I) 99Kh I (I I) 99Ki I I

→h is not strongly normalising:

(λx .x x) λx .x x →h (λx .x x) λx .x x →h . . .
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Factorization and explicit substitutions

The basic ES-calculus λsub:

(λx .t)L s 7→dB t [x/s]L
t [x/u] 7→s t{x/u}

Define head contexts as:

H ::= [·] | λx .H | H t | H[x/t ]

We get four reductions:

→i →h→dB →dBi →dBh→s →si →sh

Remember: they all terminates.
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Factorization for λsub

We get four diagrams:

t −→dBi u99K

∗dBh

⇒ −→

dBh
v 99K∗dBi w

t −→si u99K

∗sh

⇒ −→
sh

v 99K∗si w

t −→si u99K

dBh

⇒ −→

dBh
v 99K∗s w

t −→dBi u99K
sh

⇒ −→

sh
v 99K∗dB w

The abstract lemmas get factorization of each single diagram
(a new abstract lemma is required).

Glueing the obtained local factorizations (easy to do) we get the
factorization theorem for λsub.
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Back to call-by-value

Call-by-value factors with respect to weak reductions.

Weak contexts:

W ::= [·] | W t | t W | W [x/t ] | t [x/W ]

Weak reduction →w: closure of the rules by weak contexts.

Same technique gives factorization: if t →∗λvsub u then
t →∗w→∗¬w u.

Factorization also with respect to stratified weak reduction,
defined from head-weak contexts H[W ].
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Linear substitution calculus

The linear substitution calculus λls:

(λx .t)L u →dB t [x/u]L

C[x ][x/u] →ls C[u][x/u]

t [x/u] →w t x /∈ fv(t)

Head factorization does not hold:

x [x/y [y/z]][z/u] →lsi x [x/z[y/z]][z/u] →lsh x [x/u[y/z]][z/u]

The two steps cannot be permuted .
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Linear substitution calculus

New notion of head reduction.
We need to refine the notion of head substitution.
Set:

H[x ][x/u] ( hls H[u][x/u]

Then define linear head reduction as H[(dB] ∪ H[( hls].
The linear substitution calculus enjoys factorization with respect to
linear head reduction.

Linear head reduction can be seen as an abstraction of Krivine
Abstract Machine (Danos and Regnier).
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Linear Head reduction

Linear head reduction arises naturally and repeatedly in the LL
literature.

First studied in connection with Proof-Nets (Mascari, Pedicini).

Then in semantics: geometry of interaction and game semantics.

Then in connection with the π-calculus (Mazza) and differential
λ-calculus (Ehrhard, Regnier).

Recently it has been shown to induce a measure for complexity
(Accattoli, Dal Lago).
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THANKS!
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