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Abstract. Reconfigurable systolic arrays can be adapted for efficiently resolving a 
wide spectrum of computational problems: parallelism is naturally explored over 
systolic arrays and reconfigurability allows for redefinition of the interconnections 
and operations even at run time (dynamically). We present a reconfigurable systolic 
architecture which is applied to the efficient treatment of several dynamic program-
ming methods for resolving well-known problems such as global and local sequence 
alignment, approximate string matching and longest common subsequence. Dy-
namicity of the reconfigurability is showed of relevance for practical applications to 
construction of sequence alignments. A VHDL description of the conceived archi-
tecture is implemented synthesized over an FPGA of the APEX family. 

1   Introduction 
A lot of effort have been done in recent years by the scientific community in order to bet-
ter understand the Human Genoma. This effort was aided by the advances in computer 
algorithms and hardware, which allowed the identification of the almost 40 thousand hu-
man genes. The first results were published by Nature [11] and Science [20] in February, 
2001. After the first results, a huge amount of biological data was generated and stored in 
databases. For instance, GenBank, one of the main public genome databases has been feed 
at an exponential rate in time last years. 
Due to the huge size of DNA sequences, purely software based implementations of the 
Smith-Waterman algorithm [18], whose space and running time complexity belong to 
O(mn) for sequences of size m and n, do not compete with high sensitive linear approxi-
mate solutions as the ones implemented in the well-known systems FASTA and BLAST. 
On the other side, using dedicated hardware,  matching can be processed in parallel reduc-
ing the order to O(m+n). But most of the dedicated hardware solutions are in first place 
expensive and in second place lacks of flexibility to be adapted to different problems. 
Solutions based on reconfigurable devices such as Field Programmable Gate Arrays 
(FPGAs) may provide for those needs. The former solutions can be classified as purely 
software approaches oriented to the exploration of parallel hardware architectures as in 
Single Instruction Multiple-Data (SIMD) and MultiMedia eXtensions (MMX) available in 
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Intel microprocessors [17]. The latter solutions can be classified as dedicated or config-
ware/morphware approaches where the threshold between what is hard and what is soft is 
flexible allowing for sophisticated "algorithmic" solutions embedding reconfiguration and 
execution instructions [4].  
This work presents a prototype of a reconfigurable systolic architecture adequate for treat-
ing problems which are solvable by general dynamic programming algorithms. The archi-
tecture was modeled by a rewriting-logic based methodology using ELAN in [3] following 
the original lines of design also applied for a space/time efficient implementation of the 
Fast Fourier Transform in [2]. Its hardware design and prototyping is presented here, 
which includes the architectural description, the specification with VHDL and simulation 
and synthesis using the Altera - Quartus II system [1]. While most hardware solutions 
limits to sequence comparison, which gives an estimation of the sequence similarity, our 
work target sequence alignment, producing effectively the sequence matchings. 
The paper is organized as follows: section 2 introduce basic concepts on systolic arrays 
and reconfigurable systems; section 3 overviews previous work in the area; section 4 pre-
sents the systolic architecture and explains why reconfiguration is relevant; section 5 de-
scribes the VHDL specification, synthesis and results and section 6 presents conclusions 
and future work. 

2 Systolic arrays and Reconfigurable Systems 

The term systolic array has been coined probably by H. T. Kung around 1979 [10]. A 
systolic array is a mesh-connected pipe network of DPUs (datapath units), using only 
nearest neighbor (NN) interconnect. DPU functional units usually operate synchronously, 
processing streams of data that traverse the network (also asynchronous mode of operation 
is possible, where sometimes also the term wavefront array is used instead of systolic 
array). Systolic arrays provide a large amount of parallelism and are well adapted to a 
restrict set of computational problems: those which present strictly regular data dependen-
cies. Some typical structures are shown in figure 1.  

 
Figure 1. Some systolic structures. 

Systolic array restrictions may be circumvented by using reconfigurable circuits: the same 
system may be reconfigured  in order to deal with different tasks. 

3 Related Work 
In 1985, Lipton and Lopresti [13] had shown that the parallelism in Smith-Waterman 
algorithm can be mapped into a linear bidirectional systolic architecture. Each processing 
element (PE) in that structure computes one of the diagonals of the similarity matrix (fig-
ure 2).  



Sequences to be compared should 
be input to the vector from opposite 
sides and were shifted at each clock 
cycle to cross the vector. If the two 
sequences had sizes m and n then 
the vector should have n+m–1 
elements. The result provided by 
this architecture is a value that 
indicates the degree of similarity 
between the sequences. 
In 1992, Hoang [8] proposes a 

similar solution based on SPLASH [5] architecture, which is a matrix of programmable 
logic devices developed by the Supercomputer Research Center (SRC), using 32 XC30990 
FPGAs from Xilinx [22]. They allowed the user to recover at least one alignment, using 
Lipton and Lopresti grading scheme. An improvement was later proposed based on a new 
version of SPLASH. Lavenier, in 1998, develop SAMBA [12] (Systolic Accelerator for 
Molecular Biological Applications) another systolic alternative to compute sequence com-
parison. Later, in 2002, a new version of Hoang approach was presented based on Virtex 
FPGAs from Xilinx [6]. Hoang solution also inspired HokieGene [16], a reconfigurable 
system implemented with Osiris [9] card, developed by the Information Sciences Institute. 
An architecture which is similar to this work was presented by Yamaguchi, Maruyama and 
Konagaya [24] in 2002. It uses a PCI card with a XCV2000E FPGA from Xilinx, which 
contains 43200 logic cells that can hold 144 processor nodes, but each processor takes 
four clock cycles to compare two bases. Another solution still based on Hoang was pro-
posed in 2003 by Yu, Kwong, Lee and Leong [25]. It uses Xilinx XCV1000E FPGAs, 
with 27648 logic cells. Some ASICs were also developed, as BioScan [21] in 1991, 
KESTREL [7] in 1996 and the Proclets of Yang [23] in 2002. Commercial products in this 
area are DeCypher [19] from TimeLogic, based on FPGAs and GeneMatcher2  [15] from 
Paracel, which employs a dedicated ASIC. 
There are some interesting remarks concerning these works. First, almost all of them only 
computes the comparison and do not produce the alignments between sequences and sub-
sequences. Moreover, the cost function adopted was modified in order to simplify the 
hardware. This may produce inaccurate results according to researchers from biology 
field. In this work the cost function adopted  follows the biological grading system. 

4     The Reconfigurable Systolic Array 
4.1  Conception of the Systolic Array 
The conceived architecture is reconfigured for the treatment of  problems such as: local 
and global sequence alignment (LSA and GSA) between two sequences: s, t; longest 
common subsequence (LCS) between two strings: s, t; k-approximate string matching 
(ASM) of a pattern in a string: s, t. 
All these problems are similarly solved by dynamic programming algorithms that build a 
table V of size m+1 × n+1, where m and n are the length of the two input sequences or 
strings (|s| = m, |t| = n).  The computation of the i, j-th components of all these tables are 
based on the values of the previous components in the same row (i,j-1), column  (i-1,j) and 



diagonal (i-1,j-1). Components of these tables are denoted by V[i, j] and symbols of the 
sequences by s[i], t[j]. These computations are respectively given for these problems by 
the following recurrence relations: 

• LSA: V[i,j] = max(V[i,j-1]-2, V[i-1,j]-2, V[i-1,j-1]+p, 0), where if  s[i]=t[j] 
then p=1 else p = -1 and V[i,0] = 0, for i=0..m and V[0,j]=0, for j=0..n. 

• GSA: V[i,j] = max(V[i,j-1]-2, V[i-1,j]-2, V[i-1,j-1]+p), where if  s[i]=t[j] then 
p=1 else p=-1 and V[i,0]=-2× i, for i=0..m and V[0,j]=-2× j, for j=0..n. 

• LCS: V[i,j] = max(V[i,j-1],  V[i-1,j],  V[i-1,j-1]+p), where if  s[i]=t[j] then p=1 
else p = 0 and V[i,0] = 0, for i=0..m and V[0,j] = 0, for j=0..n. 

• ASM: V[i,j] = min(V[i,j-1]+1, V[i-1,j]+1, V[i-1,j-1]+p), where if  s[i]=t[j] then 
p=0 else p = 1 and V[i,0] = i, for i=0..m and V[0,j] = j, for j=0..n. 

Components of these dynamic programming tables are sequentially computed from left to 
right and top to down, but parallelization is possible by computing all components in one 
(minor) diagonal in a sole step, starting from the first diagonal (i+j=2) and finishing in the 
last diagonal (i+j=n+m). Notice that for computing values in the diagonal k (i+j=k) it is 
necessary to maintain values of the previous two diagonals k-1 (since, i-1+j=i+j-1=k-1) 
and k-2 (since, i-1+j-1=k-2) as shown in figure 3.  

The basic processing element is 
depicted in figure 4 (a). The 
relative position of the neighbor 
values is indicated for the 
computation of value w. Note 
that y is the previous outcome of 

the same cell and is stored as the upper value. z was computed by the left neighbor in the 
previous step and is stored in an internal register for computing w. x was stored in the left 
neighbor as the upper value in the previous step, and is transferred at the same time than z 
to the cell computing w. Figure 4 (b) gives an idea of the processing steps. The three proc-
essing elements store “G C T” subsequence. At time t they are computing the values of the 
first dashed diagonal and at time t+1 they are computing the values of the second dashed 
diagonal. For simplicity of representation, the left value was stored with the base being 
processed (as 5 in C5). This illustrates the data flow in the systolic array. Each cell pro-
duces, beyond the comparison value, a 3 bit relative pointer that indicates from where the 
alignment that produced that result came from. This information is used by the host where 
the FPGA is connected to recover the alignments for the similarity matrix. 

4.2  Application of Dynamic Reconfiguration 
Dynamic reconfiguration is useful for practical applications over molecular data. Once the 
systolic array proposed in the previous section is reconfigured for LSA, detection of the 
end positions of high scored alignments between two sequences is possible without writing 
out all the components of the dynamic matrix. For real molecular data this is necessary 
because the huge length of the usually treated sequences and the space complexity of the 
algorithm, which is in O(mn) for sequences of length m and n. For example, a practical 
solution for constructing the alignments of interest between two sequences s and t, consists 
in alternating the execution of the following two phases of reconfiguration and execution: 



• Reconfigure the systolic array for executing LSA moving the sequence t from left to 
right, without constructing the dynamic matrix, and maintain only the current scores in 
each diagonal of the table and selecting the good ones. 

• Once a good score is selected, say finishing at positions i and j of the sequences s and 
t respectively, the systolic array is reconfigured to execute the GSA operation in re-
verse order.  

 
Figure 4. The processing element  (a) and two steps of the flow of computation  (b). 

5   Implementation 
The hardware implementation has limited size. Since biological sequences may have thou-
sands of elements, often it will not match the size of the array. In this case, sequence parti-
tioning is done by software. The architecture modeled in ELAN was refined to a structural 
VHDL description and synthesized and simulated in Altera Quartus II design environment.  

5.1 Design in VHDL 
The basic architecture of a systolic node to compute the dynamic algorithms includes 
registers to hold the neighbor values and a reference sequence character, adders to com-
pute the cost and comparators to check for equality. It runs synchronously, performing one 
comparison for each clock cycle. The node netlist is presented in the Figure 5. It 
should be noted that the accumulated sequence matching cost grows from left to right, 
such that the number of bits needed to store the cost can be different for each node. The 
VHDL description of the nodes keep these values generic, such that they are defined when 
instantiating the cells. 
The circuit for one node is simple. It compares the running base got from a data base with 
the base stored in the cell and produces this way the diagonal cost, which is the accumu-
lated cost coming from column j-1 and line i-1 added to +1 or –1, as described in the pre-
vious section.  

5.2   Simulation and Results 
To verify the systolic array implementation simulations were performed in Quartus II 
environment. We show next an small example for illustration purposes. Figure 6 presents 
the similarity matrix obtained for the comparison of two pair of sequences, CATAG and 
ATAGC and CATAG and CATGA, using the LSA algorithm. This algorithm looks for the 
best matching between subsequences of the strings. The main difference with respect to 
the global matching is that it does not accumulate negative values, allowing local matches 
along the sequences. The arrows in the figure indicate several alternative matches and the 



encircled elements are those that need to be stored in a sparse matrix to recover the se-
quences, which is done by software. 

 
Figure 5. Systolic node structure. 

The simulation of the comparison between CATAG and ATAGC sequences is shown in 
the Figure 7. The symbols are coded as follows: A = 00, T = 01, C = 10 and G = 11. Sig-
nal VAL shows the best score obtained in the comparison, which was 4 in this example. 
Signals MEM2, MEM3, MEM4 and MEM5 are the data outputs of the systolic array. 
CONTA is an auxiliary signal provided to help building the similarity matrix from the data 
produced by the array. To draw a profile of synthesis results, several arrays were generated 
and synthesized. The results are summarized in figure 8. The increasing curve (y-axis to 
the left) shows the number of logic elements required to implement arrays of varying sizes, 
indicated on the x-axis. For a systolic array of 50 nodes it was required around 4500 logic 
elements on an APEX device. Since the circuit size grows almost linearly, we can estimate 

the size of the vector for devices 
based on the same logic element. 
For instance, an APEX 
EP20K400, with 16.640 logic 
elements could hold 180 nodes. 
Last generation devices, like 
Stratix II or Virtex II could hold 
thousands of nodes. The 
decreasing curve (y-axis to the 
right) corresponds to the 
frequency attained by the array. It 
is interesting to note that initially 

the frequency decays strongly with the size of the vector and then stabilize for vectors with 
30 or more cells, around 56 Mhz.  
The time needed to compute a sequence comparison is given by the time the running se-
quence takes to traverse the systolic array. Thus, if the reference sequence has n elements 
and the data base sequence has m elements, then we need n + m clock cycles to compute 
the comparison. To get a rough estimation of the gain with respect to a software solution, 
suppose that the frequency keeps around 50 Mhz for larger devices. Considering that we 
can chain FPGA in order to implement larger sequences, an estimation of the speed up 



provided by the systolic vector compared to the time required by a cluster of workstations 
obtained from [14] is given in table 1. The real speed up should be less than this value 
because it does not include the communication among FPGAs. Even in this case, the gain 
in speed is of several orders of magnitude. The values do not take into account the time to 
recover the alignments. 

 
Figure 7. LSA simulation of sequences CATAG and ATAGC. 

Table 1. Processing time for a cluster of workstations and the systolic array. 

Seq. Size 1 proc. 2 Proc. 4 Proc. 8 Proc. Systolic Array 
15K x 15 K 296s 283,18s 202,18s 181,29s 0,000614s 
50K x 50K 3461s 2884,15s 1669,53s 1107,02s 0,002048s 
80K x 80K 7967s 6094,19s 3370,40s 2162,82s 0,003277s 

6   Conclusions and Future Work 
The systolic array derived in this work 
can speed up string comparison (string 
pattern matching and sequence alignment) 
algorithms by software in several orders 
of magnitude. Previous works in the 
literature on string comparison in 
hardware focused on sequence 
comparison for biological problems using 
different approaches but, if implemented 
with current technologies, should provide 
similar speed up. The main contribution 

of this work is the computation of the sequence alignment instead of sequence compari-
son.  The systolic architecture generates alignments through relative one bit pointers that 
allow the host to recover the proper alignments by software in a post processing step.  It 
should be noted that by using rewriting-logic in this work we could easily extend the range 
of problems covered by our systolic architecture through design exploration and simula-
tion. The reconfigurability of the systolic architecture plays a fundamental role here, al-
lowing the designer to switch from one algorithm to another. Current work address the 



integration of this architecture in cluster of reconfigurable workstations, where the FPGA’s 
work in parallel and a distributed operating system controls the process. 
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