
Using Rewriting-Logic Notation for Funcional Verification
in Data-Stream Based Reconfigurable Computing

Reiner W. Hartenstein1, Ricardo P. Jacobi2
1Fachbereich Informatik

Kaiserslautern University of Technology
hartenst@rhhk.uni-kl.de

2Depto. De Ciência da Computação
Universidade de Brasília

rjacobi@cic.unb.br

Maurício Ayala-Rincón3, Carlos H. Llanos4

3Departamento de Matemática
ayala@mat.unb.br

4Departamento de Engenharia Mecânica
llanos@unb.br

Universidade de Brasília
Brasília - Brazil

Abstract

Reconfigurable Systolic Arrays are a generalization of Systolic Arrays where node operations and interconnections
can be redefined even at run time. This flexibility increases the range of systolic array’s application, making the
choice of the best systolic architecture to a given problem a critical task. In this work we investigate the
specification and verification of such architectures using rewriting-logic, which provides a high level design
framework for architectural exploration. In particular, we show how to use ELAN rewriting system to specify
reconfigurable systems which can perform both arithmetic and symbolic computations.

1. Introduction

The widespread popularization of mobile computing and wireless communication systems fostered
the research on new architectures to efficiently deal with communications issues in hardware
constrained platforms like PDAs, mobile phones and pagers, for instance. Some tasks such as data
compression, encoding and decoding are better implemented through dedicated hardware modules than
using standard general purpose processors (GPP). However, the exploding costs of integrated circuit
fabrics associated with shorter devices lifetimes makes the design of ASIC (Application Specific
Integrated Circuit) a very expensive alternative. The growing capacity of Field Programmable Gate
Arrays (FPGA) and the possibility of reconfiguring them to implement different hardware architectures
makes it a good solution to this rapid changing wireless market. An FPGA may be configured to
implement a cipher algorithm at one moment and can be later reconfigured to implement a data
compressing algorithm. This flexibility opens a wide range of architectural alternatives to implement
algorithms directly in hardware. In this context, it is very important to provide methods and tools to
rapidly model and evaluate different hardware architectures to implement a given algorithm.

In this paper we propose the use of rewriting systems to model and evaluate reconfigurable systolic
hardware architectures. After the seminal work of Knuth-Bendix about the completion of algebraic
equational specifications, which allows for the automatic generation of a rewrite-based theorem prover
for the equational reduct of the subjacent treated theories [KnBe70], rewriting has been successfully
applied into different areas of research in computer science as an abstract formalism for assisting the
simulation, verification and deduction of complex computational objects and processes. In particular, in
the context of computer architectures, rewriting theory has been applied as a tool for reasoning about
hardware design.

To review only a reduced set of different approaches in this direction, we find of great interest the
work of Kapur who has used his well-known Rewriting Rule Laboratory - RRL (the first successful
prover assistant based on rewriting) for verifying arithmetic circuits [KaSu2000, Ka2000, KaSu1997] as
well as Arvind’s group that treated the implementation of processors with simple architectures
[ShAr98a,ShAr98b,ArSh99], the rewrite-based description and synthesis of simple logical digital
circuits [HoAr99] and the description of cache protocols over memory systems [RuShAr99,ArStSh01].
Also contributions in this field have shown how rewriting theory can be applied for the specification of
processors (as Arvind’s group does) as well as for the purely rewrite based simulation and analysis of
the specified processors [ANJLH02]. To achieve this rewriting-logic has been applied, that extends the
pure rewriting paradigm allowing for a logical control of the application of the rewriting rules by

strategies [Me00,CiKi99]. Important programming environments based on the rewriting-logic paradigm
are ELAN [CiKi99,BKKM02], Maude [Me00, Cla02] and Cafe-OBJ [DiFu02]. The impact of rewriting-
logic as a successful programming paradigm in computer science as well as of the applicability of the
related programming environments is witnessed by [MOMe02]. All our implementations and
experiments were done in ELAN, since we consider of great flexibility its easy manipulation of
strategies. However, for effects of model checking Maude has been proved to be more adequate.

Section 2 provides an introduction to basic concepts in rewriting theory and reconfigurable circuits.
Section 3 presents the specification and simulation of reconfigurable systolic arrays. Section 4 discusses
use of rewriting-logic for simulating reconfiguration and another approach for data driven systolic arrays
and section 5 is the conclusion.

2. Background

An example of our typical target environments is mapping applications onto platforms like coarse-
grained DPAs (DataPath Arrays) or rDPAs (reconfigurable DPAs). We assume, that such platforms are
completely pre-debugged, so that only the related mapping source has to be verified. Using Term
Rewriting Systems (s. section 2.1) in such an environment means to specify or verify designs from
sources at abstraction levels being higher than that of languages like VHDL or Verilog. Such notations
are much more compact and concise than with traditional hardware language source notations in EDA.
An example is the input language of ELAN which is a parsable derivative of the math formula space.

This paper uses systolic arrays as demo examples (section 2.2). Systolic arrays, however, are special
cases of super-systolic platforms like DPAs or rDPAs [HaKrRe95], which are data-stream-based [Ha03]
pipe networks. (By the way: such platforms may also be emulated on larger FPGAs.) The only
difference between systolic and super-systolic is the mapping method [Ha97]. Algebraic mapping or
linear projection methods yield only solutions with linear uniform pipes which is restricted to the special
case of applications with strictly regular data dependencies. But using simulated annealing, genetic
algorithms or other optimization methods, permits any heterogeneous networks with free form pipes like
zigzag, circular, or any much more wild shapes, and may also include forks and joins. The methodology
introduced by this paper may be used for all kinds of data-stream-based hardwired or reconfigurable
platforms.

2.1. Rewriting theory

We include the minimal needed notions on rewriting theory and rewriting-logic. For a detailed
presentation of rewriting see [BaNi98].

A Term Rewriting System, TRS for short, is defined as a triple · R, S, S0 Ò, where S and R are
respectively sets of terms and of rewrite rules of the form l ’ r i f p(l) being l and r terms and p a
predicate and where S0 is the subset of initial terms of S. l and r are called the left-hand and right-hand
sides of the rule and p its condition.

In the architectural context of [ShAr98b], terms and rules represent states and state transitions,
respectively.

A term s can be rewritten or reduced to the term t, denoted by s ’ t, whenever there exists a subterm
s' of s that can be transformed according to some rewrite rule into the term s'' such that replacing the
occurrence of s' in s with s'' gives t. A term that cannot be rewritten is said to be in normal or canonical
form. The relation over S given by the previous rewrite mechanism is called the rewrite relation of R
and is denoted by ’. Its inverse is denoted by ¨ and its reflexive-transitive closure by ’* and its
equivalence closure by ´*.

The important notions of terminating property (or Noetherianity) and Church-Rosser property or
confluence are defined as usual. These notions correspond to the practical computational aspects as the
determinism of processes and their finiteness.

• a TRS is said to be terminating if there are no infinite sequences of the form s0 ’ s1 ’ ...

• a TRS is said to be confluent if for all divergence of the form s ’* t1, s ’* t2 there exists a term u
such that t1 ’

* u and t2 ’
* u .

The use of the subset of initial terms S0, representing possible initial states in the architectural context
(which is not standard in rewriting theory), is simply to define what is a "legal" state according to the set
of rewrite rules R; i.e., t is a legal term (or state) whenever there exists an initial state s Œ S0 such that
s ’* t.

Using these notions of rewriting one can model the operational semantics of algebraic operators and
functions. Although in the pure rewriting context rules are applied in a truly non deterministic manner
in the practice it is necessary to have a control of the ordering in which rules are applied. Thus rewriting
theory jointly with logic, that is known as rewriting-logic, has been showed of practical applicability in
this context of specification of processors since they may be adapted for representing in the necessary
detail many hardware elements involved in processors. Moreover, other important fields of hardware
design such as verification and synthesis of logical circuits may be benefited from the simplicity and
versatility of this theoretical framework.

2.2. Systolic arrays and reconfigurable systems

A systolic array is a mesh-connected pipe network of DPUs (datapath units), using only nearest
neighbor (NN) interconnect [Ku78, Ku87]. DPU functional units operate synchronously, processing
streams of data that traverse the network. Systolic arrays provide a large amount of parallelism and are
well adapted to a restrict set of computational problems, i.e., those which can be efficiently mapped to a
regular network of operators.

Figure 1 shows a simple systolic example of a matrix-
vector multiplication. The vector elements are stored in
the cells and are multiplied by the matrix elements that
are shifted bottom-up. On the first cycle, the first cell
(DPU1) computes x1*a11, while the second and third cells
(DPU2 and DPU3) multiply their values by 0. On the
second cycle, the first cell computes x1*a21, while the
second cell computes x1*a11 + x2*a12, where the first term
is taken from the first cell and added to the product
produced in second cell. In the third cycle, the third cell
produces the first result: y1 = x1*a11 + x2*a12 + x3*a13. In
the following two cycles y2 and y3 will be output by the
third cell.

There are several alternative configurations of functional cells, each one tailored to a particular class
of computing problems. However, one of the main critics to systolic arrays is its restriction to
applications with strictly regular data dependencies, as well as its lack of flexibility. Once designed, it is
suitable to support only one particular application problem.

The limitations of systolic arrays may be circumvented by using reconfigurable circuits, the most
representative of them being the FPGAs (Field Programmable Gate Arrays). An FPGA can have its
behavior redefined in such a way that it can implement completely different digital systems on the same
chip. Fine grain FPGAs may redefine a circuit at the gate level, working with bit wide operators. This
kind of architecture provides a lot of flexibility, but takes more time to reconfigure than coarse grain
reconfigurable platforms (rDPAs: reconfigurable DPAs). These work with word wide operators that are
slightly less flexible but more area efficient and take much less time to reconfigure than the fine grain
ones. The design of reconfigurable systolic architectures [HaKrRe95, HHHN00] aims to overcome the
restriction of pure systolic circuits while keeping the benefits of a large degree of parallelism. In the
reconfigurable approach, the operations performed by each functional unit as well as the interconnection
among them may be reconfigured in order to be adapted to different applications. Moreover, it is
possible to change the configuration of the circuit during run time, an approach called dynamic
reconfiguration, which broadens even more the architectural alternatives to implement applications in
hardware.

a11

a21

a31

a12

a22

a32

0

a13

a23

a33

0
0

y1 = a11x1+a12x2+a13x3

y2 = a21x1+a22x2+a23x3

y3 = a31x1+a32x2+a33x3

DPU1
(X1)

DPU2
(X2)

DPU3
(X3)

Figure 1: Vector – matrix computation.

3. Specification and Simulation of Systolic Arrays via Rewriting-Logic

Here we show how rewriting-logic can be applied to specify simple systolic arrays for vector and
matrix multiplication using the ELAN system. In these systems we can consider as the reconfigurable
part the constants in each component (DPU as in Figure 1), here called MAC (Multiplier/Adder).

Vector multiplication: ELAN provides a very flexible programming environment where the user
defines the syntax and semantics of data types (called sorts) and operations to be used in the program.
Figure 2 shows the syntax of the data types in the ELAN program that models the vector multiplication.
In the left side of a definition the data is specified using a combination of text and place holders which
are represented by an ‘@’ character. For instance, an element of sort Port is defined as port(@, @). The
sort of the parameters as well as the sort of the element itself is defined in the right side of the definition.
In this example, the two parameters of port are an integer and a Boolean, and the resulting element
port(int, bool) is of sort Port. A MAC data is composed of six elements. The sort of the elements is,
respectively, int, for the identifier, two of sort Port and two of sort Reg for the ports and registers and
one of sort Const for the respective constant component of the multiplier vector. The processor sort Proc
consists of four components: three of sort MAC and one of sort DataStream. The DataStream is
described as an object with three components of sort list[Data].

operators global
 @ : (int) Const;
 port(@,@) : (int bool) Port;
 reg(@,@) : (int bool) Reg;
 '[' @,@,@,@,@,@ ']' : (int Port Port Reg Reg Const) MAC;
 '<' @ @ @ @ '>' : (MAC MAC MAC DataStream) Proc;
 (@ @ @) : (list[Data] list[Data] list[Data]) DataStream;
 @ : (int) Data;
end

Figure 2. Sorts of the MAC in ELAN

The rule named sole, used to describe the behavior of the processor during each cycle of the
execution is given in figure 4. Informally, the rule is fired when the expression being processed matches
the left side of the rule. It is replaced by the expression produced at the right side of the rule, which is
again matched against the set of rules that define the program. Rules can be named for future reference
when defining strategies. The rule name sole appears between square brackets in the beginning of the
rule. Observe that after one-step of reduction applying this rule all necessary changes in the specified
processor are executed. First, notice that the data d1, d 2 and d 3 at the top of the DataStream, are
removed from the three lists of data and placed in the first ports of the three MACs.

Figure 3. MAC Systolic Array Architecture

The multiplications between the contents of each first port vpi1 and the corresponding constant ci are
placed in the first register of each MAC, for i=1,2 3 and 3 and the additions between the first register vri1

and the second port vpi2 are placed in the second port of each MAC, for i=1,2 and 3. Zeros preceding
each operator vi are included to synchronize the two operations executed in each MAC. Finally, observe
the data transfer from the second register vri2 of each MAC to the second port of the next component
vp(i+1)2 for i=1 and 2. All that is simultaneously done by only one application of the rewriting rule sole.

With respect to the timing aspects of this example, the model assumes a clocked operation like
traditional systolic architectures. There is no handshake between nodes and each application of rule sole
corresponds to a single clock cycle. Thus, each node in fig. 3 takes two clock cycles to produce its

output. The synchronization between nodes for the first values is achieved introducing pairs of zero
values, as illustrated in figure 3, and the Boolean flags used to synchronize nodes could be omitted.

Executing all steps with a singe rewriting rule could appear artificial in other contexts of computer
science, such as semantics of programming languages and in general theory of computing. Nice but
relatively complex theoretical results can be related with the possibility of having a unique rewriting rule
which simulates a (universal) Turing machine [Da1989, Da1992]. This nontrivial theoretical development
may be better understood when we relate a sole rule with the execution of a "cycle" of a processor.

rules for Proc
 d1,d2,d3 : int; // variables for input data
 l1,l2,l3 : list[Data]; // lists of input data
 vp11, vp12, vp21, vp22, vp31, vp32 : int; // ports
 vr11, vr12, vr21, vr22, vr31, vr32 : int; // registers
 c1, c2, c3 : int; // constants
global
 [sole]
<[1,port(vp11,true),port(0,true),reg(vr11,true),reg(vr12,true),c1]
 [2,port(vp21,true),port(vp22,true),reg(vr21,true),reg(vr22,true),c2]
 [3,port(vp31,true),port(vp32,true),reg(vr31,true),reg(vr32,true),c3]
 (d1.l1 d2.l2 d3.l3) > =>
<[1, port(d1,true),port(0,true),reg(vp11*c1,true), reg(0+vr11,true),c1]
 [2, port(d2,true),port(vr12,true),reg(vp21*c2,true), reg(vp22+vr21,true),c2]
 [3, port(d3,true),port(vr22,true),reg(vp31*c3,true), reg(vp32+vr31,true),c3]
 (l1 l2 l3) >
 end
end

Figure 4. ELAN Description of the Sole Rule.

For our example we will consider as simple mechanism of reconfiguration the possibility of changing
the constants in each MAC. Then a computation with our systolic array consists of two stages: a
reconfiguration stage, where the constants are set and the subsequent processor execution with the
previously defined rule sole.

Figure 5 shows one additional rule created for the reconfiguration of a processor called conf. It
simply changes the contents of the constant part of each MAC (in our case by the vector (1,0,0)).
Observe that with the pure rewriting based paradigm this rule applies infinitely, because the resulting
expression will match against the left side of the rule again and again. Thus, for controlling its
application, we define a logical strategy, called withconf.

withconf simply allows for the execution of one-step of reduction with the rule conf (the first
reconfiguration stage) and a subsequent normalization with the rule sole (the second processor execution
stage). This normalization is an available ELAN strategy, which applies the rewriting rules given as
argument (in our case the rule sole) until a normal form is reached.

 [conf]
< [1,port(vp11,true),port(0,true),reg(vr11,true),reg(vr12,true),c1]
 [2,port(vp21,true),port(vp22,true),reg(vr21,true),reg(vr22,true),c2]
 [3,port(vp31,true),port(vp32,true),reg(vr31,true),reg(vr32,true),c3]

(d1.l1 d2.l2 d3.l3) > =>
< [1,port(vp11,true),port(0,true),reg(vr11,true),reg(vr12,true),1]
 [2,port(vp21,true),port(vp22,true),reg(vr21,true),reg(vr22,true),0]
 [3,port(vp31,true),port(vp32,true),reg(vr31,true),reg(vr32,true),0]
 (d1.l1 d2.l2 d3.l3) >

end
strategies for Proc

 implicit
 [] withconf => conf; normalise(sole) end
 [] simple => normalise(sole) end

end

Figure 5. conf Rule for Reconfiguration

Matrix Multiplication: figure 6 shows the matriz multiplication structure and the description of its
components is given in figure 7. Using the previous approach (that is, specifying a sole rule) implies the
use of an excessive number of variables, which is not directly supported in ELAN. In fact, we would
need different variables for the two ports, three registers and the constant belonging to each MAC, which

gives a total of 96 variables; additionally, we would need 16 variables for describing the two 4x data
streams. This could be done by enlarging the ELAN capacity for dealing with variables before
compiling the system. But a better solution is to split the cycle defining independent rewriting rules to be
applied under a reasonable strategy, to simulate the internal process into each MAC component and the
propagation of data between each component to their North and East connected MACs.

We define a rule for each of the sixteen components, which propagates the contents into their
registers two and three to their North and East connected components, respectively. As a consequence of
the form in which data should be transferred in the processor, these sixteen rules should be applied from
the right to the left and top-down in order to complete a whole cycle of execution.

Figure 6. Systolic Matrix-vector multiplication

operators global
 @ : (int) Const;
 p(@) : (int) Port;
 r(@) : (int) Reg;
 '['@,@,@,@,@,@,@']' : (int Port Port Reg Reg Reg Const) MAC;
 '<' @
 @ @ @ @
 @ @ @ @
 @ @ @ @
 @ @ @ @
 @ '> : (DataString
 MAC MAC MAC MAC // MACs 13 14 15 16
 MAC MAC MAC MAC // MACs 09 10 11 11
 MAC MAC MAC MAC // MACs 05 06 07 08
 MAC MAC MAC MAC // MACs 01 02 03 04
 DataString) Proc;
 (@ @ @ @) : (list[Data] list[Data] list[Data] list[Data])
 DataString;
 @ : (int) Data;
end

Figure 7. A 4¥4 Systolic array Description

All these rules are very similar and a selected group of them is presented in the Figure 8. The rules
for the South (mac01, mac02, mac03, mac04) and West (mac01, mac05, mac09, mac13) MACs, called
boundary components of the processor, load the data (dS and dW) in the head of the corresponding list
of the data stream (lS1, lS2, lS3, lS4 and lW1, lW2, lW3 and lW4). Moreover, the rules for MACs in the
North (mac13, mac14, mac15, mac16) and East (mac04, mac08, mac12, mac16) boundaries of the
processor only transfer data to the East and North corresponding boundary components; except, of
course, for mac16. Consequently, different orderings for applying these rules completing a whole cycle
of the processor are possible. For instance, we could take the ordering: mac16, mac12, mac08, mac04,
mac15, mac11, mac07, mac03, mac14, mac13, mac10, mac09, mac06, mac05, mac02, mac01.

In the Figure 9 we present a possible strategy called onecycle which defines an(other) ordering of
application of these rules for completing a sole cycle of the processor. For completing the simulation of
execution with this simple processor, one should define a normalization via this strategy:
normalise(onecycle). In this rewriting-logical environment, our specification could be easily modified
allowing the interpretation of parts of the processors as reconfigurable components.

At first glance, one could look at the constants of the 16 MACs as a reconfigurable component. In
this way the processor can be adapted to be either a 4-vector versus 4x4-matrix multiplier or vice-versa
and the 4x4-matrix may be modified to represent, for example, either the identity or the matrix F4 of the
Fast Discrete Fourier Transform (FFT).
rules for Proc
 m01,m02,m03,m04,m05,m06,m07,m08: MAC; // 1-8 MACs
 m09,m10,m11,m12,m13,m14,m15,m16:MAC; //9-16 MACs
 dW, dS : int; // data East and South
 lW1,lW2,lW3,lW4,lS1,lS2,lS3,lS4:list[Data]; // West and
South
 r1,r2, r3,rN1,rN2,rN3 : int; // Central North and
 rE1,rE2,rE3 : int; // East registers 1,2,3
 p1,p2,pN1,pN2,pE1,pE2: int; //Central,North and East ports
 c,cE,cN : int;
global
[mac16]
< (lW1 lW2 lW3 lW4)
 m13 m14 m15 [16,p(p1),p(p2),r(r1),r(r2),r(r3),c]
 m09 m10 m11 m12
 m05 m06 m07 m08
 m01 m02 m03 m04
 (lS1 lS2 lS3 lS4) > =>
< (lW1 lW2 lW3 lW4)
 m13 m14 m15 [16,p(p1),p(p2),r(p1*c),r(r1+p2),r(p1),c]
 m09 m10 m11 m12
 m05 m06 m07 m08
 m01 m02 m03 m04
 (lS1 lS2 lS3 lS4) >
end ...
[mac11]
< (lW1 lW2 lW3 lW4)
 m13 m14 [15,p(pN1),p(pN2),r(rN1),r(rN2),r(rN3),cN] m16
 m09 m10 [11,p(p1),p(p2),r(r1),r(r2),r(r3),c]
 [12,p(pE1),p(pE2),r(rE1),r(rE2),r(rE3),cE]

 m05 m06 m07 m08
 m01 m02 m03 m04
 (lS1 lS2 lS3 lS4) > =>
< (lW1 lW2 lW3 lW4)
 m13 m14 [15,p(pN1),p(r2),r(rN1),r(rN2),r(rN3),cN] m16
 m09 m10 [11,p(p1),p(p2),r(p1*c),r(r1+p2),r(p1),c]
 [12,p(r3),p(pE2),r(rE1),r(rE2),r(rE3),cE]
 m05 m06 m07 m08
 m01 m02 m03 m04
 (lS1 lS2 lS3 lS4) >
end ...
…
…
 [mac01]
< (dW.lW1 lW2 lW3 lW4)
 m13 m14 m15 m16
 m09 m10 m11 m12
 [05,p(pN1),p(pN2),r(rN1),r(rN2),r(rN3),cN] m06 m07 m08
 [01,p(p1),p(p2),r(r1),r(r2),r(r3),c]
 [02, p(pE1),p(pE2),r(rE1),r(rE2),r(rE3),cE]m03 m04
 (dS.IS1) IS2 IS3 IS$) > =>
< (IE1 IE2 IE3 IE4)
 m13 m14 m15 m16
 m09 m10 m11 m12
 [05, p(pN1),p(r2) r(rN1) r(rN2) r(rN3), cN] m06 m07 m08
 [01, p(dW), p(dS),r(p1*c), r((rE2), r(rE3), cE] m03 m04
 (IS1 IS2 IS3 IS4)>
end
end

Figure 8. A selected set of rules for matrix-vector multiplipy.

Strategies for Proc
 implicit
 [] onecycle =>
 mac16;mac15;mac14;mac13;
 mac12;mac11;mac10;mac09;
 mac08;mac07;mac06;mac05;
 mac04;mac03;mac02;mac01
 end
 end

Figure 9. onecycle strategy for rule application.

reconfF4 => F4;
normalise(mac16;mac15;mac14;mac13;
 mac12;mac11;mac10;mac09;
 mac08;mac07;mac06;mac05;
 mac04;mac03;mac02;mac01)
end

Figure 10: strategy working over processor.

The last is specified by a strategy additional, that is presented at the Figure 11, which before to the
simulation of the normalization executes the rewrite rule F4. F4 transforms any given state of the
processor into another where the reconfigurable constants are replaced with the corresponding powers of
a primitive complex 4-root of the unity of F4 (either i o r -i) as illustrated in the Figure 11. In this
specification the components of each MAC have been divided into the fixed ones and the reconfigurable
constant [fxnn cnn]. This simple idea can be directly extended to different kind of MACs, where other
components are considered to be reconfigurable.
[F4]
< dstreamEast
 [fx13 c13] [fx14 c14] [fx15 c15] [fx16 c16]
 [fx09 c09] [fx10 c10] [fx11 c11] [fx12 c12]
 [fx05 c05] [fx06 c06] [fx07 c07] [fx08 c08]
 [fx01 c01] [fx02 c02] [fx03 c03] [fx04 c04]
 dstreamSouth > =>
< dstreamEast
 [fx13 i0] [fx14 i3] [fx15 i6] [fx16 i9]
 [fx09 i0] [fx10 i2] [fx11 i4] [fx12 i6]
 [fx05 i0] [fx06 i1] [fx07 i2] [fx08 i3]
 [fx01 i0] [fx02 i0] [fx03 i0] [fx04 i0]
 dstreamSouth >
end

Figure 11: rule for FFT Transformer

4. Alternative Models

4.1 Variable Size Systolic Arrays

One limitation of the ELAN models presented above
is that the rules are defined for a specific systolic
architecture. A more flexible description will allow the
specification of systolic arrays with an arbitrary number
of functional units. In this case, the rewriting rules
should be defined independently of the array size or
topology.

This is exemplified in this section through the
modeling of a simple version of the KressArray
architecture [HaKrHe95]. It is defined by a matrix of
reconfigurable functional units (rDPUs: reconfigurable
datapath units) where both the operations and the interconnections may be redefined (compare fig. 12 c
and d). Figure 12 illustrates a KressArray family design space, which covers a wide variety of
reconfigurable connect fabrics: nearest neighbour interconnect (NN) and backbus fabrics (segmented
and / or non-segmented). Figure 13 shows a detailed example of NN ports featuring individual path
width and individual mode (in, out, or bi-directional).

Mapping C expressions to KressArrays is performed by assigning C operators to the nodes while
keeping the corresponding data dependency among them. One particularity is that a KressArray is a
pipe network which implements a dataflow model of computation. Coming along with synthesis tools
also supporting non-uniform non-regular pipe networks [HHHN00, Na01] (in contrast to classical
systolic array synthesis methods accepting only applications with strictly regular data dependencies) the
KressArray family is a generalization of the systolic array. In addition to the generalized NN
interconnect the KressArray family also provides a
backbus (BB) second level interconnect fabrics with
resources like buses and bus segments (for family
member examples see fig. 12 e, f, g).

The DPU nodes of both, systolic arrays and rDPAs,
may operate in a clocked mode, or asynchronously,
where each operation is triggered as soon as data is
available at the node inputs. (The latter version of
systolic arrays has been usually called wavefront
arrays). This asynchronous operation is accomplished
by a handshake between interconnected nodes, since
each operation may take several clock cycles
(multiplication, for instance, is implemented in its
typical serial way, through sums and shifts).

Modeling of KressArrays in ELAN takes a different approach. To allow the specification of variable
size systolic arrays, the nodes are stored on a list of arbitrary length. The designer provides the
interconnections among nodes through signals, implemented with variables that connect the registers at
the inputs and outputs of the nodes. Thus, if node ni is connected to node nj, then the same variable is
associated to ni output and nj input. The operations of the nodes are dynamically specified along with the
data that is to be processed by the array. To illustrate this kind of modeling lets consider a practical
example: a KressArray that computes the differential equation loop body, given in figure 14.

This array is defined by a list of 12 nodes, numbered from left to right and top to bottom. The first 4
nodes are presented in figure 15. Each rDPU node is a kind of rAlu (reconfigurable Arithmetic-Logic
Unit). In this simplified version, each rDPU has two registers in the inputs and one register at the output.
Each register is defined by the variable it holds, its value and a flag that indicates if the data it holds is
valid. The flag models the signal used for handshake in hardware. Rule assign() is used by the designer
to provide values to input variables, specified in the form “x=5.y=2…”. Then, rule dpu() is applied to the

Figure 12. KressArray family design space:
(a, b) NN fabrics examples; (e, f, g) backbus
(BB) fabrics examples; rDPU configuration:
c) routing only configuration, d) routing and
function configuration

16

24

32

4

8

2rDPU

Figure 13: a KressArray family member
example illustrating individual port mode

and path width

array produced by assign(). The Systole keyword is a strategy that normalizes the rule taking the first
result (basic ELAN strategy first one) produced by dpu() rule, presented in Figure 16.

Figure 14. KressArray implementation of the differential equation.

Label Eval names the rule to allow calling it from the strategies. dpu() rule produces a call to itself
taking as parameter the systolic array where a ready node was processed. Rule exec() computes the
output value of each rAlu. This rule simply applies the operation specified in the node to its inputs and
update the output register, setting its ready flag to true. The rules update() and propagate() traverse the
rAlu list updating the input of the nodes connected to the node that was processed.

 [] compute(al) => outLst
 where proc :=
(Systole) dpu (assign(al, rAlu(1, reg(void,0,false), reg(void, 0, false), reg(x, 0, false), nop).
 rAlu(2, reg(kte, 3, true), reg(x, 0, false), reg(s2, 0, false), *).
 rAlu(3, reg(kte, 3, true), reg(y, 0, true), reg(s3, 0, false), *).

 rAlu(4, reg(s3, 0, false), reg(y, 0, false), reg(s4, 0, false), *).
 …

Figure 15. A simple KressArray Description

The fact that ELAN process sequentially the input is not an issue, due to the data flow nature of this
array. After the primary (external) inputs are defined by the user, the array is simulated iteratively until
all nodes have processed their respective inputs. When a node computes a new value, it is propagated
through the array to all registers that depends on that variable through the rules update() and propagate()
cited above. The node’s control flag is set to true, indicating that the register data is ready to be used by
the node. The labeled rule Eval transforms the input list of rAlu’s taking the first one which is ready to
process (both registers have the flag set to true), computing its output and them propagating it to other
nodes.

rules for Dpu
//---------//
lstAlu, lstAluOut : list[Alu];
al : AssgnLst;
aluRdy, newAlu : Alu;
global
[Eval] dpu(lstAlu) => dpu(lstAluOut) where aluRdy :=()getAluRdy(lstAlu) if aluRdy != aluNull
 where newAlu := () exec(aluRdy)
 where lstAluOut := () propagate(outReg(newAlu), update(newAlu, lstAlu))
 end
end

Figure 16. DPU rule in KressArray Description

The circuit can be simulated providing a query in the form “compute(x=2.y=4.dx=5.u=2.a=10.null) end”,
for instance, to ELAN. The result, for a single pass of the algorithm, is returned in the form
“u1=41.y1=14.x1=7.c=1.null”.

The reconfiguration is implemented by providing a list of operators that should be assigned to each
node. This is easily implemented by extending the compute() rule to include a list of operations as
another parameter. Figure 17 exemplifies this new rule including a configuration list as parameter and
the call of a new rule assignCFG() to apply this configuration to the KressArray. The parameter cfglst is
in the form: “*.+.nop. … . nil”. Thus, the expression that describes the KressArray is first processed by
the reconfiguration rule followed by the input variable assignments and finally simulated through the
dpu() rule.

4.2 Symbolic Computation

One interesting aspect in using rewriting systems to model hardware is that it is relatively simple to
define rules that permit the symbolic processing of the inputs. In this case, the designer can provide a set
of variables as inputs and the system produces a set of equations in terms of those variables as the
output.
[] compute(al, cfglst) => outLst
 where proc :=
(Systole) dpu (assign(al, assignCFG(cfglst, rAlu(1, reg(void,0,false), reg(void, 0, false), reg(x, 0, false), nop).
 rAlu(2, reg(kte, 3, true), reg(x, 0, false), reg(s2, 0, false), nop).
 rAlu(3, reg(kte, 3, true), reg(y, 0, true), reg(s3, 0, false), nop).
 …

Figure 17. Including reconfiguration in KressArray.

In the previous example, consider the set of equations:

x1 = x + dx;
c = a < x1;

Providing as input (x, dx, a) = (3, 1, 10) results in (x1, c) = (4, 0). On the other hand, if one supplies
as input (x, dx, a) = (t, r, s) the result will be:

 (x1, c) = ((t + r), s < (t + r))

The symbolic expressions obtained this way can be used to formally verify the algorithm
implemented in the systolic array, by checking them against the specification extracted from the C
language description. The formal verification is one of the subjects for future research.

Implementing symbolic processing in ELAN can done by creating a partial ordering relationship
between integers and variables. In this example, the sort input was created as a supertype of integer and
variable, as illustrated bellow.

…
sort Reg Op Dpu Pair input variable; end // sort declaration
operators global
 @ : (int) input; // this is a type casting, specifying that both int and variable

 @ : (variable) input; // sorts should be considered as input sort as well

Given this type casting, then the rules may be defined taking into account any combination of
parameter sorts. For example, one operation may be defined only for integer values, or it may be defined
for integer and variable, and so on. In this example, the operations should be defined in terms of the
supertype input:
 @ * @ : (input input) input; // operations defined over input sort operands
 @ + @ : (input input) input; // and producing input sort result

@ / @ : (input input) input;

The two expressions above are implemented by two nodes of the KressArray. An extract of the
ELAN definition of this simple example is presented below.

reg(@,@) : (input bool) Reg; // register with value and ready flag.
rAlu(@,@,@,@) : (Reg Reg Reg Op) Node; // reconfigurable alu.
dpu(@, @) : (Node Node) rDpu; // a simple datapath unit.

The dpu consists of two nodes, each one containing three registers and a operation. Each register
holds an input sort data and the ready flag. The transformations rules are applied in a similar fashion, as
shown in figure 18. Each rule is triggered by the availability of the operands, which is specified by the
ready flag. Those rules basically change the registers status. The input registers are marked as processed
and the output registers receive the results, which may be a numeric value or a symbolic expression. The
rAlu() rule compute the result and returns it as a register value. Note that there is the rAlu() data type,
which has four components and the rAlu() rule, used for computing, which has three components. The
rAlu() rule is defined as follow:

[] rAlu(reg(d0, b0), reg(d1, b1), op) => reg(d, b)
 where d := () operate(d0, d1, op)
 where b := () true

end

The matching engine of ELAN will select the appropriate operation based on the sort of the operands
d0 and d1. Rules (1) and (2) below are defined either over integer parameters i and j or over variable sort
parameters s and t.

(1) [] operate(i, j, *) => k where k := ()i * j end
(2) [] operate(s, t, *) => (s*t) end

While rule (1) computes the integer value of i*j , the second rule returns the symbolic expression
“(s*t)”, in terms of the actual values of s and t.

[] dpu(rAlu(a1, b1, r1, op1), rAlu(a2, b2, r2, op2)) => dpu(rAlu(na1, nb1, nr1, op1), rAlu(na2, b2, r2, op2))
 if ready(a1) and ready(b1)
 where nr1 := ()rAlu(a1, b1, op1)

 where na1 := ()used(a1)
 where nb1 := ()used(b1)
 where na2 := ()nr1
end

 [] dpu(rAlu(a1, b1, r1, op1), rAlu(a2, b2, r2, op2)) => dpu(rAlu(a1, b1, r1, op1), rAlu(na2, nb2, nr2, op2))
 if ready(a2) and ready(b2)
 where nr2 := ()rAlu(a2, b2, op2)
 where na2 := ()used(a2)
 where nb2 := ()used(b2)

 end

Figure 18. Rules for symbolic computation example.

5. Conclusions

In this paper we have shown how rewriting-logic can be used to model and simulate reconfigurable
systolic arrays. The examples presented in this paper illustrate the specification and simulation of both
synchronous and dataflow models of such systems. The rewriting-logic environment ELAN used in this
work permits a high-level functional style description of systems. The discrimination between rewriting
and logical strategies in those systems is used to simplify the purely rewrite based specification,
experimentation, simulation and verification of reconfigurable systems. By rewriting-logic even
sophisticated dynamic reconfiguration appears a very natural mechanism to be simulated via logical
strategies. Hardware description languages like VHDL and Verilog, and even SystemC, do not provide
the degree of abstraction and flexibility found in rewriting systems. In fact, they do not compete in this
field, since the detailed hardware design still must pass through a hardware description language (VHDL
is the “assembly language” in this context). We do not need their architectural and circuit details for
mapping an application onto a rDPA, nor design space exploration to optimize KressArray platforms
[Na01].

Since digital systems get more and more complex, modeling the various architectural trade offs in the
context of reconfigurable systems may benefit from the high abstraction level provided by rewriting-
logic environments. Moreover, with a relatively small effort it is possible to generate symbolic
expressions from the model, which helps the formal verification of the selected architecture. Currently,
more sophisticated models are under development to study the possibilities of dynamic reconfiguration
of systolic arrays.

6. References
[ArSh99] Arvind and X. Shen. Using Term Rewriting Systems to Design and Verify Processors,

Technical Report 419, Laboratory for Computer Science - MIT, 1999. Also in IEEE
Micro Special Issue on Modeling and Validation of Microprocessors, 1999.

[ANJLH02] M. Ayala-Rincón, R. M. Neto, R.P. Jacobi, C. H. Llanos and R. W. Hartenstein.
Applying ELAN Strategies in Simulating Processors over Simple Architectures. In B.
Gramlich and S. Lucas Eds., Reduction Strategies in Rewriting and Programming,
Elsevier ENTCS 70(6):20 pages, 2002.

[BaNi98] F. Baader and T. Nipkow. Term Rewriting and all That, Cambridge University Press,
1998.

1998.
[Bo98] P. Borovansk_, C. Kirchner, H. Kirchner, P.-E. Moreau and C. Ringeissen. An overview of ELAN,

in Elsevier ENTCS, Vol. 15, 1998.
[BKKM02] P. Borovansk_, C. Kirchner, H. Kirchner and P.-E. Moreau. ELAN from a rewriting logic point of

view, pages 155-185 of [MOMe2002].
[Cla02] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer and J. F. Quesada. Maude:

specification and programming in rewriting logic, pages 187-243 of [MOMe2002].
[CiKi99] H. Cirstea and C. Kirchner. Combining Higher-Order and First-Order Computation Using rho-

Calculus: Towards a Semantics of ELAN, Chapter 6 in Gabbay, D. M. and de Rijke, M. Eds.,
Frontiers of Combining Systems 2, Studies on Logic and Computation, 7, pages 95-121, Research
Studies Press/Wiley, 1999.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms, The MIT
Press, 2001.

[DiFu02] R. Diaconescu and K. Futatsugi. Logical foundations of CafeOBJ, pages 289-318
 of [MOMe02].

[Da89] M. Dauchet, Simulation of Turning Machines by a Left-Linear Rewrite Rule. 3rd Int. Conference
on Rewriting Techniques and Applications RTA89, Vol. 355, pages 109-120 of Lecture Notes in
Computer Science, 1989

[Da92] M. Dauchet. Simulation of Turing Machines by a Regular Rewrite Rule. Theoretical Computer
Science, 103(2):409-420, 1992

[Ha97] R. Hartenstein (invited paper). The Microprocessor is no more General Purpose: why Future
Reconfigurable Platforms will win; Proc. of IEEE International Conference on Innovative
Systems in Silicon, (ISIS`97), Austin, Texas, USA, 1997

[Ha03] R. Hartenstein (keynote). Data-stream-based Computing and Morphware; joint 33rd Speedup
and 19th PARS Workshop, Basel, Switzerland, 2003

[HHHN00] R. Hartenstein, M. Herz, T. Hoffmann, U. Nageldinger. Kress Array Explorer: A New CAD
Environment to Optimize Reconfigurable Datapath Array Architectures. 5th Asia and South
Pacific Design Automation Conference - ASP-DAC 2000, Yokohama, Japan, 2000. Available at
www.kressarray.de.

[HaKrRe95] R. Hartenstein, R. Kress and H. Reinig. A Scalable, Parallel and Reconfigurable Datapath
Architecture. Sixth International Symposium on IC Technology, Systems and Applications -
ISIC’95, Singapore, 1995. Available at www.kressarray.de.

[Ka00] D. Kapur. Theorem Proving Support for Hardware Verification, invited talk Third Int. Workshop
on First-Order Theorem Proving, St. Andrews, Scotland, 2000.

[KaSu97] D. Kapur and M. Subramaniam. Mechanizing Verification of Arithmetic Circuits: SRT Division.
In Proc. Seventeenth Conference on Foundations of Software Technology and Theoretical
Computer Science. Vol. 1346 of LNCS, Springer-Verlag, 1997.

[KaSu00] D. Kapur and M. Subramaniam. Using and Induction Prover for Verifying Arithmetic Circuits.
Journal of Software Tools for Technology Transfer. 3(1):32-65, Springer Verlag, 2000.

[KnBe70] D. E. Knuth and P. B. Bendix. Computational Problems in Abstract Algebra, chapter Simple
Word Problems in Universal Algebras, pages 263-297. J. Leech, ed. Pergamon Press, Oxford,
1970.

[Ku78] H.T. Kung, C. E. Leiserson. Systolic Arrays for VLSI; Sparse Matrix Proc. 1978, Society for
Industrial and Applied Mathematics, 1979, pages 256-282.

[Ku87] S. Y. Kung. VLSI Array Processors. Prentice-Hall, 1987.

[MOMe02] N. Martí-Oliet and J. Meseguer, eds. Special issue on Rewriting Logic and its Applications,
Theoretical Computer Science 285(2): 119-564, 2002.

[Me00] J. Meseguer. Rewriting Logic and Maude: Concepts and Applications, In L. Bachmair Ed.,
Eleventh Int. Conf. on Rewriting Techniques and Applications RTA 2000, LNCS, Vol. 1833,
pages 1-26, Springer, 2000.

[Na01] U. Nageldinger. Coarse-Grained Reconfigurable Architecture Design Space Exploration.
Dissertation, Univ. Kaiserslautern, June 1, 2001.

[ShAr98a] X. Shen and Arvind. Design and Verification of Speculative Processors, Technical Report 400A,
Laboratory for Computer Science - MIT, 1998. Also in Proc. of the Workshop on Formal
Techniques for Hardware and Hardware-like Systems, Marstrand, Sweden, 1998.

[ShAr98b] X. Shen and Arvind. Modeling and Verification of ISA Implementations, Technical Report
400B, Laboratory for Computer Science - MIT, 1998. Also in Proc. of the Australasian
Computer Architecture Conference, Perth, Australia, 1998.

