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Abstract

We investigate an automated program synthesis system that is based on the paradigm
of programming by proofs. To automatically extract a λ-term that computes a recur-
sive function given by a set of equations the system must find a formal proof of the
totality of the given function. Because of the particular logical framework, usually such
approaches make it difficult to use termination techniques such as those in rewriting
theory. We overcome this difficulty for the automated system that we consider by
exploiting product types. As a consequence, this would enable the incorporation of
termination techniques used in other areas while still extracting programs.
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1 Introduction

The Curry-Howard isomorphism [3] that establishes a correspondence between programs
and proofs of specifications plays a major role in many type systems. Programming meth-
ods using the proof as program paradigm ensure some correctness of programs extracted
from a proof of function totality and provide a logical framework for which the behaviour of
programs can be analysed. Of these systems which exploit the proof as program paradigm,
we mention Second Order Functional Arithmetic (AF2, cf. [7, 9]) and a faithful extension
of AF2 called Recursive Type Theory (TTR, cf. [16]). Both systems use equations as al-
gorithmic specifications. In AF2 and TTR, the compilation phase corresponds to formal
termination proofs of the specifications of functions from which λ-terms that compute the
functions are extracted.

Using the logical framework of TTR, an automated system called ProPre, has been
developed by P. Manoury and M. Simonot [12, 11]. The automated termination problem
turns out to be a major issue in the development of the system. Alongside the system,
where data types and specifications of functions are introduced by the user in an ML-style,
an algorithm has been designed using strategies to search for formal termination proofs for
each specification. When the system succeeds in developing a formal termination proof for
a specification, a λ-term that computes the function is given.

As mentioned in [12], the automated termination proofs in this system differ from the
usual techniques of rewriting systems because they have to follow several requirements. They
must be proofs of totality in order to enable the extraction of λ-terms. In ProPre, one has
to make sure not only that the programs will give an output for any input, but also that
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for any well-typed input the result will also be well-typed. Finally, the proofs must also be
expressed in a formal logical framework, namely, the natural deduction style. The λ-terms
are obtained from the proof trees that are built in a natural deduction style according to
the recursive type theory TTR.

Therefore enhancing automated proofs strategy is a central issue in programming lan-
guages like AF2 or TTR. While termination methods for functional programing based on or-
dinal measures have been developed in [14, 5] relating to the formal proofs devised in [12, 13],
the purpose of this paper is to analyse in some sense the reverse of the question. That is,
we analyse the possibility to incorporate new termination techniques for the extraction of
programs in the ProPre or TTR context.

In order to simplify the analysis of the formal proofs obtained in the logical framework
of ProPre, we show that the kernel of these formal proofs, called formal terminal state
property (ftsp), can be abstracted using a simple data structure. This gives rise to a simple
termination property, which we call abstract terminal state property (atsp). The interest
of atsp is that on one hand the termination condition is sufficient to show the termination
using the ordinal measures of [5] independently of the particular logical framework of ProPre,
and on the other hand we also prove that we can automatically reconstruct a formal proof
directly from an atsp so that a lambda term can be extracted. That is to say the first result
of this paper is to establish a correspondence between atsp with a class of ordinal measures
in a simple context for the termination and the formal proofs built in ProPre.

This correspondence implies that the termination proofs of recursive functions obtained
in [4] do not admit in general a formal proof in ProPre. Indeed the class of these functions
is larger than those proved with the class of ordinal measures of [14, 5]. To overcome the
fact that there is in general no formal proof in ProPre for these functions, the second result
presented in this paper allows the synthesis of these functions still making use of the whole
framework of ProPre but in a different way in TTR. Actually the result turns out to be
stronger since it can be applied for recursive functions whose termination is proved by other
automated methods such as techniques coming from rewriting theory (see e.g. [1]). The
principle consists in simulating a semantic method. That is, from a well-founded ordering
for which each recursive call is decreasing, one must be able to build a formal proof by
considering general induction on tuples of arguments of the function. Though the principle
is natural, this approach becomes difficult when we want in particular to extract programs
because we have to take into account the logical framework and the structures of the proofs
that we may or may not be able to build.

2 Logical framework

We briefly present the ProPre system (see [10, 12, 13] for details). ProPre relies on the
proofs as programs paradigm that exploits the Curry-Howard isomorphism and deals with
the recursive type theory TTR [16]. In ProPre, the user needs to only define data types and
functions. λ-terms are automatically extracted from the formal proofs of the termination
statements of functions which can be viewed as the compilation part.

ProPre deals with recursive functions. The data types and functions are defined in an
ML like syntax. For instance, if N denotes the type of natural numbers, then the list of
natural numbers is defined by:

Type Ln : Nil | Cons N Ln;

and the append function is specified by:

Let append : Ln, Ln -> Ln

Nil y => y | (Cons n x) y => (Cons n (append x y));



Once a data type is introduced by the user, a second order formula is automatically gener-
ated. E.g., the following second order formula is automatically generated and associated to
the list of natural numbers:

Ln(x) := ∀X(X(nil) → (∀n(N(n) → ∀y(X(y) → X(cons(n, y))))) → X(x)).

This formula stands for the least set that contains the nil element and is closed under the
constructor cons. Each data type will be abbreviated by a unary data symbol, as it is for
instance with the symbol N that represents the data type of natural numbers. Further-
more, once a function is specified in the system, a termination statement is automatically
produced [11]. As an example, the termination statement of the append function is the
formula:

∀x(Ln(x) → ∀y(Ln(y) → Ln(append(x, y)))).

The system then attempts to prove the termination statement of the function using the
set of equations that define the function. In a successful case, a λ-term that computes the
function is synthesized from the building of a formal proof in a natural deduction style [12].
Informally, if T is a λ-term obtained for the function append and t1, t2 are λ-terms that
respectively model terms u1 of type Ln and u2 of type Ln, then the λ-term ((T t1) t2) reduces
to a normal form V that represents the value of append(u1, u2) of type Ln.

We refer the reader to [7, 8, 15, 16] regarding the theory that allows to derive λ-terms
from termination proofs of the specification in a natural deduction style.

2.1 The typing rules of AF2

We recall the typing rules of AF2 which are also part of TTR. We assume a set F of function
symbols and a countable set X of individual variables. The logical terms are inductively
defined as follows:

• individual variables are logical terms;

• if f is an n-ary function symbol in F and t1, . . . , tn are logical terms, then f(t1, . . . , tn)
is a logical term.

We also assume a countable set of predicate variables. Formulas are inductively defined as
follows:

• if X is an n-ary predicate variable and t1, . . . , tn are logical terms, then X(t1, . . . , tn)
is a formula;

• if A and B are formulas then A → B is a formula;

• if A is a formula and η is a first or second order variable, then ∀ηA is a formula.

We will use ∀xA → B to denote ∀x(A → B). For convenience, a formula of the form
F1 → (F2 → . . . (Fn−1 → Fn) . . .) will also be denoted by F1, . . . , Fn → F . For instance
∀xD1(x), ∀yD2(y) → F stands for the formula ∀x(D1(x) → ∀y(D2(y) → F )).

A typing judgment is an expression of the form: “x1 : F1, . . . , xn : Fn `E t : F”, where
x1, . . . , xn are distinct λ-variables, t is a λ-term, F, F1, . . . , Fn are formulas and E is a set of
equations on logical terms. The left-hand side of the judgment is called the context. Note
that we can freely use the same notation for both the λ-terms and the logical terms which
occur in the formulas, as the context will clarify whether a term is a λ-term or a logical
term. In particular, the word “variable” may also refer to a “λ-variable”. The typing rules
of AF2 are given in Table 1 where E is a set of equations on logical terms.



Γ, x : A `E x : A
(ax)

Γ `E t : A[u/y] E ` u = v

Γ `E t : A[v/y]
(eq)

Γ, x : A `E t : B

Γ `E λx.t : A → B
(→i)

Γ `E u : A Γ `E t : A → B

Γ `E (t u) : B
(→e)

Γ `E t : A

Γ `E t : ∀yA
(∀1

i )
Γ `E t : ∀yA

Γ `E t : A[τ/y]
(∀1

e)

Γ `E t : A

Γ `E t : ∀Y A
(∀2

i )
Γ `E t : ∀Y A

Γ `E t : A[T/Y ]
(∀2

e)

Table 1: Rules of the Second Order Functional Arithmetic (AF2)

Γ `E t : A Γ `E e

Γ `E t : A � e
(�1)

Γ `E t : A � e

Γ `E t : A
(�2)

Γ `E t : A � e

Γ `E e
(�3)

Table 2: Rules of the hiding operator �.

In Table 1, Γ is a context of the form x1 : A1, . . . , xn : An and may be empty; y (resp.
Y ) is a first (resp. second) order variable not occurring free in A1, . . . , An; τ, u, v are first
order terms and T is a formula. The expression E ` u = v means that the equation u = v
is derivable from E in second order logic. For more explanations we refer to [7].

The types and formal data types play an important role in AF2 and TTR in relation to a
notion of realizability [8] that ensures the extracted λ-terms compute the defined functions.
However, for the sake of clarity, we do not state here the definition of formal data types and
the realizability notion whose details can be found in [7, 8]. Now, for an n-ary function f if
we have the typing judgment:

`E t : ∀x1 . . . ∀xn(D1(x1) → (. . . → (Dn(xn) → D(f(x1, . . . , xn)) . . .)

for some λ-term t where D1, . . . , Dn, D denote formal data types, then the λ-term t computes
the function f according to the set E .

2.2 Some rules of TTR

As for AF2, we do not state the data types and the realizability notion of TTR. In particular
we do not give the second order least fixed point operator µ (see [15]) which allows one to de-
fine the data types which are represented here by unary data symbols D, D′, . . . , D1, . . . , Dn.
Furthermore, for the sake of presentation we do not state all the rules (which also include
those of AF2 ), but only give those needed for our purpose.

In TTR, a binary symbol �, called hiding operator in [15], is added. Its meaning is a
conjunction which only keeps the algorithmic contents of the left part in order to prevent
unnecessary algorithmic content of the termination proof to be carried out in the λ-terms
(see [16, 12]). The rules related to the hiding operator are given in Table 2.

The hiding operator is used with a relation ≺ where the definition of formulas given in
section 2.1 is now completed as follows:



If A is a formula, and u, v are terms then A � (u ≺ v) is a formula.

If A is a formula where a distinguished variable x occurs, we abbreviate the formula
A[u/x] � (u ≺ v) with the notation Au≺v.

Among the rules of TTR, several rules are used to reproduce, from the programming
point of view, the reasoning by induction. The rule below stands in TTR for an external
induction rule where the relation ≺ denotes a well-founded partial ordering on the terms of
the algebra:

Γ `E t : ∀x[∀z[Dz≺x → B[z/x]] → [D(x) → B]]

Γ `E (T t) : ∀x[D(x) → B]
(Ext)

In the rule (Ext), the lambda term T is the Turing fixed-point operator, D is a data type
and x is a variable not occurring in the formula B.

¿From the (Ext) rule, it is possible to derive the Ĩnd formula:

Ĩnd := ∀x(Dr(x) → ∀X(∀y(Dr(y) → ∀z(Drz≺y → X(z)) → X(y)) → X(x))).

That is, for each recursive data type, there is a λ-term ind such that: `E ind : Ĩnd for

any set E of equations. We say that the term ind witnesses the proof of Ĩnd. This is stated
with Lemma 2.1 below, which is presented with the type of natural numbers in [15].

Lemma 2.1. For each recursive data type, there exists a λ-term ind such that:

`E ind : Ĩnd for any set E of equations.

Lemma 2.1 can be proven for E being empty. Then, one can use the result of [7] which
states that if E1 ⊆ E2 then `E1 t : P implies `E2 t : P . The proof of Lemma 2.1 in [15],
given only with the type of natural numbers, can actually also be applied to any data
type. In particular if T is the Turing fixed-point operator, then the lambda term ind =
(T λxλyλz((z y) λm((x m) z))), is valid for any data type D. The above Lemma is useful
for the definition of a macro-rule, called the Ind-rule, in the ProPre system.

2.3 The ProPre system

We assume that the set of functions F is divided into two disjoint sets, the set Fc of
constructor symbols and the set Fd of defined function symbols also called defined func-
tions. Each function f is supposed to have a type denoted by D1, . . . , Dn → D where
D1, . . . , Dn, D denote data symbols and n denotes the arity of the function f . We may
write f : D1, . . . , Dn → D to both introduce a function f and its type D1, . . . , Dn → D.

Definitions 2.2. [Specification; termination statement; recursive call]

• A specification Ef of a defined function f : D1, . . . , Dn → D in Fd is a non overlapping
set of left-linear equations {(e1, e

′
1), . . . , (ep, e

′
p)} such that for all 1 ≤ i ≤ p, ei is of the

form f(t1, . . . , tn) where tj is a constructor term (i.e. without occurrences of defined
function symbols) of type Dj, j = 1, . . . , n, and e′i is a term of type D.

• The termination statement of a function f : D1, . . . , Dn → D is the formula

∀x1(D1(x1) → . . . → ∀xn(Dn(xn) → D(f(x1, . . . , xn)))).

• Let Ef a specification of a function f . A recursive call of f is a pair (t, v) where t is the
left-hand side of an equation (t, u) of Ef and v a subterm of u of the form f(v1, . . . , vn).

An equation (l, r) of a specification may be written l = r (as an equational axiom in
TTR). We may also drop the brackets to ease the readability.



The formal proofs of ProPre, called I-proofs, are built upon distributing trees, based on
two main rules derived from the TTR Struct rule and the Ind rule in [12]. The distributing
trees built in ProPre are characterized by a property called formal terminal state property.
This section presents these two main rules, the distributing trees and the formal terminal
state property. Let us first introduce some notations.

Notation 2.3. If P is the formula F1, . . . , Fk, ∀xD′(x), Fk+1, . . . , Fm → D(t), then P−D′(x),
will denote the formula F1, . . . , Fk, Fk+1, . . . , Fm → D(t).

The above notation is correct as it will be used at the same time when the quantified
variable x will be substituted by a term in the formula P−D(x) with respect to the context
(cf. next two lemmas with Notation 2.4) or when the variable x will be introduced in the
context.

Notation 2.4. Let C be a constructor symbol of a type D1, . . . , Dk → D. Let x1, . . . , xk, z
be distinct variables. Let F (x) be a formula in which the variable x is free and the variables
z, x1, . . . , xk do not occur and let t = C(x1, . . . , xk). Then ΦC(F (x)) and ΨC(F (x)) will be
respectively the following formulas:

• ΦC(F (x)) is: ∀x1D1(x1), . . . ,∀xkDk(xk) → F [t/x];

• ΨC(F (x)) is: ∀x1D1(x1), . . . ,∀xkDk(xk), ∀z(Dz≺t → F [z/x]) → F [t/x].

The notation may suggest some kind of formulas that are actually useful in the construc-
tion of I-proofs which are defined as follows:

Definitions 2.5. [I-formulas and restrictive hypothesis]

• A formula F is called an I-formula if and only if F is of the form H1, . . . , Hm →
D(f(t1, . . ., tn)) for some:
− data type D, defined function f ,
− formulas Hi for i = 1, . . . , m such that Hi is of the form ∀xD′(x) or of the form

∀z(D′z≺u → F ′) for some data type D′, I-formula F ′ and term u.

• An I-restrictive hypothesis of an I-formula F of the form H1, . . . , Hm → D(f(t1, . . ., tn))
is a formula Hi of the form ∀z(D′z≺u → F ′). We say that H ′ is a restrictive hypothesis
to an I-restrictive hypothesis H = ∀z(D′z≺u → F ′) if H ′ is an I-restrictive hypothesis
of the I-formula F ′.

The definition of an I-formula is recursive, and an I-formula may have sub-I-formulas.
An I-restrictive hypothesis is not an I-formula and we can use the term restrictive hypothesis
to also denote I-restrictive hypothesis. The termination statement of a defined function is
an I-formula which has no restrictive hypothesis.

The lemmas below state that one can use two additional rules, called Struct rule and Ind
rule, in TTR as they can be derived from the other rules of TTR. These rules correspond to
macro-rules, the former one can be seen as a reasoning by cases, while the last one stands
for an induction rule.

Lemma-Definition 2.6. [The Ind rule]
Let D be a data type and consider all the constructor functions Ci of type Di1 , . . . , Dik

→ D,
0 ≤ ik, i = 1, . . . , q. Let P be a formula of the form F1, . . . , Fk, ∀xD(x), Fk+1 , . . . , Fm →
D′(t), and Γ a context. For ΨCi

(P−D(x)) given as in Notation 2.4, the induction Ind rule
on type D is:

Γ `E ΨC1(P−D(x)) . . . Γ `E ΨCq
(P−D(x))

Γ `E P
Ind(x)



Along with the Ind rule, the Struct rule defined below, which is also a macro-rule derived
from TTR, can be considered as a reasoning by cases.

Lemma-Definition 2.7. [The Struct rule]
Let D be a data type and consider all the constructor functions Ci of type Di1 , . . . , Dik

→ D,
0 ≤ ik, i = 1, . . . , q. Let P be a formula of the form F1, . . . , Fk, ∀xD(x), Fk+1 , . . . , Fm →
D′(t), and Γ a context. For ΦCi

(P−D(x)) given as in Notation 2.4, the Struct rule on type
D is:

Γ `E ΦC1(P−D(x)) . . . Γ `E ΦCq
(P−D(x))

Γ `E P
Struct(x)

Due to these lemmas, two macro-rules can be added in TTR: the Struct-rule (Lemma 2.7)
and the Ind-rule (Lemma 2.6). From these rules, distributing trees can be built in ProPre

(see Definition 2.10).

Remark 2.8. I-formulas are preserved by the Struct-rule and the Ind-rule. That is, if P
is an I-formula, then so are: ΦC(P−D(x)) and ΨC(P−D(x)).

Definition 2.9. [Heart of formula] The heart of a formula of the form F = H1, . . . , Hm →
D(t), where D is a recursive data type, will be the term t, denoted by H(F ).

The distributing trees are defined as follows:

Definition 2.10. [Distributing tree] Assume Ef is a specification of a function f :
D1, . . . , Dn → D. A is a distributing tree for Ef iff A is a proof tree built only with the
Struct rule and Ind rule where:

1. the root of A is the termination statement of f with the empty context, i.e.:
`Ef

∀x1D1(x1), ...,∀xnDn(xn) → D(f(x1, ..., xn)).

2. if L = {Γ1 `Ef
F1, ..., Γq `Ef

Fq} is the set of A’s leaves, then there exists a one to
one application B: L ↪→ Ef such that B(L) = (t, u) with L = (Γ `Ef

F ) in L and the
heart of F is H(F ) = t.

Note that it can be inductively checked, from the root, using remark 2.8, that any formula
in a distributing tree is an I-formula.

The I-proofs found by the ProPre system are formal termination proofs of termination
statements of defined functions. They are divided into three phases:

1. the development of a distributing tree for the specification of a defined function, char-
acterized by a property, called formal terminal state property;

2. each leaf of the distributing tree is extended into a new leaf by an application of an
(eq) rule;

3. each leaf, coming from the second step, is extended with a new sub-tree, with the use
of rules defined in [12], whose leaves end with axiom rules.

Due to the following fact proved in [12], it is not necessary to consider in this paper the
middle and upper parts of proof trees built in the ProPre system:

Fact 2.11. A distributing tree T can be (automatically) extended into a complete proof
tree iff T enjoys a property, called the formal terminal state property.

That is, it is enough to look at distributing trees that have the formal terminal state property
to be able to complete the proof tree and hence state the termination of the function.
Therefore it remains for us to state the mentioned property.



Definition 2.12. We say that an I-formula or a restrictive hypothesis P can be applied
to a term t if the heart H(P ) of P matches t according to a substitution σ where for each
variable x that occurs free in P we have σ(x) = x.

The relation ≺ of Definition 2.5 deals with the measure | . |# on the terms, ranging over
natural numbers, which counts the number of subterms of a given term t (including t), and
is interpreted as follows:

Definition 2.13. Let Var(t) be the set of variables occurring in t. Let u, v be terms. We
say that u ≺ v iff: |u|# < |v|#, Var(u) ⊆ Var(v), and u is linear.

This clearly defines a well-founded ordering ≺ on terms. We can now state the main property
that a distributing tree must enjoy in the I-proofs of ProPre.

Definition 2.14. [Formal Terminal State Property]
Let Ef be a specification of a function f and A be a distributing tree for Ef . We say
that A satisfies the formal terminal state property (ftsp) iff for all leaves L = (Γ `Ef

F )
of A with the equation e ∈ Ef such that B(L) = e, where B is the application given in
Definition 2.10, and for all recursive calls (t, v) of e, there exists a restrictive hypothesis
P = ∀zDz≺s, H1, . . . , Hk → D(w) of F and a substitution σ such that P can be applied to
v according to σ with:

1. σ(z) ≺ s and

2. for all restrictive hypothesis H of P of the form ∀yD′y≺s′ → K there is a restrictive
hypothesis H0 of F of the form ∀yD′y≺s0 → K with σ(s′) � s0.

So, ProPre establishes the termination of a function f by showing that the distributing tree
of the specification of f (which is a partial tree whose root is the termination statement of
f) has the formal terminal state property (and hence can be extended into a complete proof
tree of the termination statement of f).

3 The abstract terminal state property

Proof structures can often be heavy and difficult to work with. However, in the constructive
framework of the Curry-Howard isomorphism, compiling a recursive algorithm corresponds
to establishing a formal proof of its totality. In ProPre, termination proofs play an important
role as they make it possible to obtain λ-terms that compute programs. We set out to
simplify the termination techniques developed in ProPre by showing that its automated
formal proofs can be abstracted giving rise to a simpler property which respects termination.
Instead of dealing with formulas, we will use the simpler concept of functions. Also, instead
of data symbols, we will use sorts and assume that there is a correspondence between the
data types of ProPre and our sorts. Instead of the complex concept of distributing trees
used in ProPre (Definition 2.10), we will use the much simpler notion of term distributing
trees of [14]. By living in the easier framework, we will introduce the new abstract terminal
state property which will play for term distributing trees a similar role to that played by
the formal terminal state property for distributing trees. In this section we present a data
structure for which we will be able to introduce a new termination property.
We consider a countable set X of individual variables and we assume that each variable of
X has a unique sort and that for each sort s there is a countable number of variables in X
of sort s. For sort s, F subset of F , and X subset of X , T (F,X )s denotes the set of terms
of sort s built from F and X . In case X is empty we will also use the notation T (F )s.

We recall the definition of term distributing trees of [14]. A term distributing tree is
much simpler than the distributing tree of ProPre given in Definition 2.10. The novelty of
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Figure 1: The operator H

this section will be a term distributing tree equipped with abstract terminal state property
(Definition 3.5 below).

Definition 3.1. [Term distributing tree] Let Ef be a specification of a function f :
s1, . . . , sn → s. T is a term distributing tree for Ef iff it is a tree where:

1. its root is of the form f(x1, . . . , xn) where xi is a variable of sort si, i ≤ n;

2. each of its leafs is a left-hand side of an equation of Ef (up to variable renaming); and

3. each node f(t1, . . . , tn) of T admits one variable x′ of a sort s′ such that the set
of children of the node is {f(t1, . . . tn)[C(x′

1, . . . x
′
r)/x′], where x′

1, . . . , x
′
r are not in

t1, . . . tn and C : s′1, . . . , s
′
r → s′ ∈ Fc}.

A term distributing tree can bee seen as a skeleton form of a distributing tree T by taking
the heart of the formulas in the nodes of T , which gives rise to an operator H illustrated by
Figure 1.
Therefore we have the following proposition:

Proposition 3.2. If there is a distributing tree for a specification Ef of a function f then
there is also a term distributing tree for the specification Ef .

A term distributing tree is easier to handle than a distributing tree. But, in both parts of
Figure 1, term distributing trees and distributing trees may have no termination property.
However, we know by Fact 2.11 that a function terminates if we have a distributing tree
that satisfies a right terminal state property. What we want is to define a notion on the
term distributing trees that also ensures the termination of functions. We first give some
notations and remarks.

Notations 3.3. Let T be a term distributing tree with root θ1.

• A branch b from θ1 to a leaf θk is denoted by (θ1, y1), . . . , (θk−1, yk−1), θk where for
each i ≤ k − 1, yi corresponds to the variable x′ for the node θi in the third clause of
Definition 3.1. We use Lb to denote the leaf of the branch b.

• If a node θ matches a term u of a recursive call (t, u) then the substitution will be
denoted by ρθ,u (in particular in Definition 3.5).

• For a term t of a left-hand side of an equation, b(t) will denote the branch in the term
distributing tree that leads to t (second clause of Definition 3.1).

Remarks 3.4.



• Let f : s1, . . . , sn → s be a function and Ef be a specification of f . Let T be a term
distributing tree of Ef . Then for each (w1, . . . , wn) of T (Fc)s1 ∗ . . . ∗ T (Fc)sn

there
is one and only one leaf θ of T and a ground constructor substitution ϕ such that
ϕ(θ) = f(w1, . . . , wn).

• Let T be a term distributing tree for a specification and let b be a branch from the
root θ1 of T to a leaf θk with b = (θ1, x1), . . . , (θk−1, xk−1), θk. Then for each node
θi, θj with 1 ≤ i ≤ j ≤ k, there exists a constructor substitution, denoted σθj ,θi

, such
that σθj ,θi

(θi) = θj .

Now, we give the abstract terminal state property for term distributing trees:

Definition 3.5. [Abstract terminal state property]
Let T be a term distributing tree for a specification. We say that T has the abstract
terminal state property (atsp) if there is an application µ : T → {0, 1} on the nodes of T
such that if L is a leaf, µ(L) = 0, and for every recursive call (t, u), there is a node (θ, x)
in the branch b(t) with µ(θ) = 1 such that θ matches u with ρθ,u(x) ≺ σLb(t),θ(x) (cf.
Notations 3.3 and Remark 3.4) and for all ancestors (θ′, x′) of θ in b(t) with µ(θ′) = 1, we
have ρθ′,u(x′) � σLb(t),θ

′(x′).

Note that similarly to term distributing trees, no formula is mentioned in the definition of
atsp and hence atsp is easier to handle than ftsp (Definition 2.14) because atsp only uses
relations of substitutions where all proposition informations have been abstracted. However,
it is not obvious that a term distributing tree that satisfies atsp implies the termination of
the given function. A way to prove this fact would be to infer some particular measures
from such distributing trees and to show that these measures have the decreasing property
through the recursive calls of the given function so that the function terminates.

We will not follow this way because we want to prove a stronger result: we will show
in the next section that from a term distributing tree that has the atsp we can reconstruct
an I-proof, which implies that the given function terminates and also enables a λ-term that
computes the function to be extracted.

4 Building formal proofs from skeleton forms

The aim of this section is first to show that the atsp can be viewed as an abstract form of
the the ftsp. This is formally stated with Theorem 4.2 below. Secondly, Theorem 4.5 states
that the atsp is a sufficient condition to construct a distributing tree with the ftsp from a
term distributing tree (skeleton form). This can be illustrated with the picture below.

Distributing trees in
Formal terminal proofs

with

(skeleton)
- Term distributing trees

with

Formal terminal state property

Theorem 4.2
-

�

Theorem 4.5

Abstract terminal state property

We start by extending the application H (Figure 1) into a new operator H′ from a distribut-
ing tree A to the term distributing tree H(A) which is now equipped with an application
µ : H(A) → {0, 1} defined on the node of H(A), so that H′(A) will be (H(A), µ). A term
distributing tree equipped with an application µ will also be called a µ-term distributing
tree.



To define the operator H′, the application µ is given as follows: Let A be a distributing tree
and (Γ `Ef

P ) be a node of A. If (Γ `Ef
P ) is a leaf, we take µ(H(P )) = 0. If not, we

consider µ(H(P )) = 1 if the rule applied on (Γ `Ef
P ) in A is the Ind rule and µ(H(P )) = 0

otherwise.
Note that H is not injective: there is at least two distinct distributing trees A and A′ such
that H(A) = H(A′). However, H′ is injective. Actually if we consider term distributing
trees equipped with a µ-application, then H′ becomes bijective and the inverse operator of
H′ can be stated with the definition below.

Lemma-Definition 4.1. [D, the inverse of H′] Let Ef be a specification of a function
f : s1, . . . , sn → s, and let (T, µ) be a term distributing tree for Ef (equipped with a µ
application). There is one and only one distributing tree A for Ef such that H′(A) = (T, µ).
This one can be automatically obtained from (T, µ) and we define the application D with
D(T, µ) = A.

Proof: Let F = ∀x1D1(x1), . . . ,∀xnDn(xn) → D(f(x1, . . . , xn)) be the termination state-
ment of f . We can inductively build a distributing tree A of the same size as T by taking
the root of A to be `Ef

F and assuming the existence of a node (Γ `Ef
P ) of A, for P is an

I-formula, such that:

i) P is of the form: F1, . . . , Fr, ∀xD′(x), Fr+1, . . . , Fp → D(f(t1, . . . , tn)) where D and
D′ are data symbols, and variables in the heart of P are bound,

ii) T admits a level, the same as those (Γ `Ef
P ) in A, such that the node θ at this level is

distinct from a leaf, with θ = f(t1, . . . , tn) whose variable according to Definition 3.1.3
is the variable x of sort s′ associated to D′.

¿From above, we build the children nodes of (Γ `Ef
P ) in A as follows:

• If µ(θ) = 0, the node (Γ `Ef
P ) is extended by the Struct rule on x in P .

• If µ(θ) = 1, the node (Γ `Ef
P ) is extended using the Ind rule on x in P .

In both cases, since P is an I-formula, if P ′
j denotes either ΨCj

(P−D(x)) or ΦCj
(P−D(x)) of

Definitions 2.6 and 2.7 as a children node of P , then P ′
j is an I-formula. As the variables

that occur in P are bound, by construction of its children, the variables occurring in the
heart of P ′

j are bound too. Now, due to the definitions of the term distributing trees and the
Ind and Struct rules, it is easy to see that there is a child node θj of θ such that C(P ′

j) = θ′j .
Therefore, the above process allows the property ii) to be held by each child of (Γ `Ef

P )
except if the corresponding node in T is a leaf. By definition of A, C′(A) = (T, µ) and its
uniqueness results from injectivity of C′. This gives the associated tree A = D(T ) of T with
C′(D(T, µ)) = (T, µ). Hence we deduce, because C′ is injective, that D(C′(A)) = A for each
distributing tree. 2

This means that for any distributing tree A and term distributing tree (T, µ), we have:
D(H′(A)) = A and H′(D(T, µ)) = (T, µ). We can illustrate D with Figure 2.

However there is still no warranty on the termination of functions using µ-term distribut-
ing trees. The first theorem below shows that the atsp of µ-term distributing trees stands in
some sense for the ftsp from which all proposition informations are abstracted in a simpler
context.

Theorem 4.2. Let Ef be a specification of a function f and A be a distributing tree for
Ef . If A has the formal terminal state property then the term distributing tree H′(A) has
the abstract terminal state property.

Proof: Similar to the proof of Theorem 4.5 below. 2

Before giving the opposite of Theorem 4.2, Theorem 4.5, we need to introduce the following
two definitions:
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Figure 2: The reverse operator of H′

Definition 4.3. [Nr(Q, P )] Let P be an I-formula and Q a restrictive hypothesis of P .
Nr(Q, P ) is the number of restrictive hypotheses of P that appear between the outermost
restrictive hypothesis of P . E.g., if Q is the outermost restrictive hypothesis of P , then
Nr(Q, P ) = 1. Ni(P ) is the number of restrictive hypothesis of P .

Definition 4.4. [Trj,k
b (Q)] Let A be a distributing tree for a specification Ef . Let b be

a branch and P a node in b at a level i from the root. We define Tri+1,i
b (Q), where Q is

a restrictive hypothesis of P , as the restrictive hypothesis Q′ in the child P ′ of P in b as
follows depending on whether the rule applied on P is:

• Struct: Q′ is the restrictive hypothesis where Nr(Q
′, P ′) = Nr(Q, P ).

• Ind: Q′ is such that Nr(Q
′, P ′) = Nr(Q, P ) + 1.

We also define Trj,k
b (Q) with j > k as the restrictive hypothesis of the node P ′′ at level j

in b defined by: Trj,k
b (Q) = Trj,j−1

b ◦ . . . ◦ Trk+2,k+1
b ◦ Trk+1,k

b (Q).

Finally Tri,i
b will denote the identity on P .

The next theorem is the opposite of Theorem 4.2 and shows that we can automatically
rebuild a distributing tree that has the ftsp from a skeleton form that has the atsp. As
a consequence, according to Section 2.3, we can also build an I-proof and thus extract a
λ-term that computes the given function.

Theorem 4.5. Let Ef be a specification of a function f and (T, µ) be a µ-term distributing
tree for Ef . If (T, µ) has the abstract terminal state property then the distributing tree
D(T, µ) has the formal terminal state property.

Proof: Let (T, µ) be a term distributing tree for Ef which has the Atsp. We want to show
that D(T, µ) has the ftsp. Take a recursive call (t, v) of an equation of Ef . We have to find a
restrictive hypothesis R = ∀zDz≺s, F1, . . . , Fk → D(w) in L of D(T, µ) with B(L) = (t, v),
where B is the application of Definition 2.10, such that clauses 1. and 2. of Definition 2.14
hold. Let B be the corresponding branch in D(T, µ) of b(t) in T , and let (θ, x) be the node
in b(t) given in Definition 3.5. Consider (Γ `Ef

P ) in D(T, µ) that is at the same level of
(θ, x) in T . As µ(θ) = 1, by construction of D(T, µ), a new restrictive hypothesis of the form
Q = ∀z(Dz≺s → P−D(x)[z/x]) is created in the child P ′ of P in B. Consider R = Trj,i

B (Q)
the restrictive hypothesis in B where i and j are respectively the level of P ′ and the leaf of
B. We can write R = ∀z(Dz≺s′ → P−D(x)[z/x]) for some term s′ because:

1) The free variables in Q are those of the term s, and the applied Ind/Struct rule is
done on a variable in P ′ which is out of the scope of Q.



2) As 1) first holds for Q′ = Tri+1,i
B (Q), next holds for Tri+2,i

B (Q)=Tri+2,i+1
B (Q′), . . . , we

have that: R = Trj,i
B (Q) = ∀z(Dz≺s′ → P−D(x)[z/x]) where the variables of C(R) are

closed in R.

Clause 1 We know that θ matches v with a substitution ρθ,v, but C(P ) = θ, so R can be
applied to v according to a substitution σ defined with σ(z) = ρθ,v(x) and σ(y) = ρθ,v(y) for
y 6= z. We have to show that σ(z) ≺ s′. This can be easily proved, by induction on k ≥ i,

that if Trk,i
B (Q) = ∀z(Dz≺sk

→ P−D(x)[z/x]) for some term sk, then sk = σk,i−1(x) where
the node θ matches the node at level k in T with the substitution σk,i−1. By definition of
j, σj,i−1 = σLB ,θ, so ρθ,v(x) ≺ σj,i−1(x) by Definition 3.5, and we can now deduce that
σ(z) ≺ s′ since s′ = sj . Therefore clause 1. of Definition 2.14 holds.
Clause 2 Consider a restrictive hypothesis H = ∀zD′z≺r → K in R; we have to find a
restrictive hypothesis H0 in P of the form ∀zD′z≺r0 → K such that σ(r) � r0. As H is
a restrictive hypothesis of Trj,i

B (Q), H is also a restrictive hypothesis of Q. Hence, one
associates to H a restrictive hypothesis H ′ in

P ′ = ∀xi1Di1(xi1 ), . . . ,∀xik
Dik

(xik
), ∀z(Dz≺si

→ P−D(x)[z/x])
︸ ︷︷ ︸

Q

→ P−D(x)[si/x],

where H and H ′ respectively appear in P−D(x)[z/x] and P−D(x)[si/x]. As H is of the
form ∀zD′z≺r → K then H ′ is of the form ∀zD′z≺r0 → K since only the variables in the
term r are free in H . Now consider the node (Γ `Ef

N) in B at a level l such that 1)
a new restrictive hypothesis M is created in the child N ′ of N in B, namely, Ni(N

′) =

Ni(N) + 1 and Nr(M, N ′) = 1, and 2) Tri,l
B (M) = H ′. Let (θ′, x′) be the corresponding

node in T of (Γ `Ef
N) in A. It is clear that θ′ is an ancestor of θ in T since l < j

in D(T, µ). Furthermore as Ni(N
′) = Ni(N) + 1, we have µ(θ′) = 1. By Definition 3.5

we have the relation ρθ′,v(x
′) � σLb(t),θ

′(x′). Let us now choose H0 = Trj,l+1
B (M) as the

restrictive hypothesis in P ′. Using the same property of clause 1 as we did with Trj,i
B (Q),

we know that r0 is σj,l(x
′) = σLb(t),θ

′(x′). Let us show that σ(r) = σθ′,v(x
′). We note

that i − 1 ≥ l + 1 since i − 1 and l are respectively the level of P and N that are distinct.
We have Tri−1,l+1

B (M) = ∀z(D′z≺σi−1,l(x′) → K) in P , where σi−1,l is by definition the
substitution σθ,θ′. So, according to the restrictive hypothesis Q in P ′, the term r in H
is σθ,θ′(x′)[z/x]. Now, by definition of σ in clause 1 of Definition 2.14, we have σ(r) =
ρθ,v {z→x}(σθ,θ′(x′)[z/x]) = ρθ,v(σθ,θ′(x′)). But the relation of substitutions gives us ρθ′,v =
ρθ,v ◦ σθ,θ′. So we finally obtain σ(r) = ρθ′,v(x

′), and we can deduce from the above and
Definition 3.5 that σ(r) � r0. Hence, clause 2. of Definition 2.14 holds. 2

In [5], measures were related to given functions whose decreasing property through the
recursive calls were dependent on the ftsp enjoyed by distributing trees. We claim that it is
possible to infer measures directly from term distributing trees whose decreasing property
through the recursive calls of the considered functions now rely only on atsp. We do not state
the measures for lack of space but just remark that this is a straightforward consequence of
the results of this section with the previous one and [5].

Following distributing tree with atsp makes the analysis of the I-proofs easier. In par-
ticular there are no measures from [5] associated to the quot function (defined in the next
section) that have the decreasing property (see [4]). As a consequence of the above results
of this section, there are no I-proofs for such function. The aim of the following section is
to show that the framework of ProPre can actually be applied to new functions (e.g. quot
function) provided an automated termination procedure (e.g. [4, 1, 2]) is used.

5 Synthesizing programs from termination techniques

As noted in Section 2, if we can prove, in TTR, a formula that states the totality of a
function then it is possible, in term of programs, to obtain a λ-term as the code of the
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Figure 3: A formal proof of totality of the function f .

function. As earlier mentioned, this formula is called termination statement in ProPre (Def-
inition 2.2). More precisely, assume that Ef1 , . . . , Efm

are specifications of defined functions
already proved in the ProPre system. Let f be a new defined function with a specification
Ef . We put E = tj=n

j=1Efj
, and E1

f = Ef t E . In order to obtain a lambda term F that
computes the new function f , ProPre needs to establish `E1

f
F : Tf in TTR.

Now consider the following specification function :

Example 5.1. Let quot : nat, nat, nat → nat be a defined function with specification Equot

given by the equations:

quot(x, 0, 0) = 0 quot(s(x), s(y), z) = quot(x, y, z)
quot(0, s(y), z) = 0 quot(x, 0, s(z)) = s(quot(x, s(z), s(z))

The value quot(x, y, z) corresponds to 1 + bx−y

z
c when z 6= 0 and y ≤ x, that is to say

quot(x, y, y) computes bx
y
c. Its specification does not admit an I-proof and therefore no

λ-term can be associated by the ProPre system.
To circumvent this drawback, we show, considering the framework of ProPre and TTR,

that it is possible to add other automated termination procedures than the one of ProPre

regarding the automation of the extraction of λ-terms.
When ProPre builds a formal proof of a specification, it needs to check at different steps

that some subterm in one argument of the equations decreases in the recursive calls according
to the relation devised in Definition 2.13. These informations are given by a termination
algorithm designed in ProPre. Said informally, to convey the termination informations in
the formal proof in ProPre, it is used with the relation ≺ included in formulas of the form
A[u/x] � (u ≺ v) due to Table 2.

Now assume, for a given function that terminates, the equations admit only one argu-
ment. This provides a natural (partial) relation on the data type on which the function is
specified so that each recursive call decreases. Also assume that an automated procedure
ensures the termination of this function. Then this one can be used as the termination al-
gorithm of ProPre, but we now consider the new relation instead of the earlier relation ≺ of
ProPre. Due to the hiding rules of the operator � we can develop a particular formal proof,
as an I-Proof, for the considered function but where in particular the sequent Γ`E (u≺ v)
in the rule (�1) with e = (u≺ v) can be obtained with the new termination procedure that
provides the new relation ≺.

In case the function admits several arguments, we would like to cluster the arguments
of the equations of the specification into one argument. To do so, we show that the use of
uncurryfication forms of functions is harmless in TTR (also in AF2) in the sense given by
Lemma 5.4 by considering the product types. As a consequence this enables us to follow
the principle illustrated in Figure 3 where f̃ stands for an uncurryfication form of a given
function f . The left part of Figure 3 is obtained with Theorem 5.7.

We will now come into more details to get the synthesis of a function concerning the
above principle.



5.1 Product types

We introduce particular specifications that correspond in some sense to uncurryfication
forms of earlier specifications. To do so, we will consider a product type associated to a
function. As we have not stated the data types of TTR with the operator µ (cf. beginning
of Section 2.2), for the sake of presentation, we present below the product types in the
context of AF2. This presentation in Definition 5.2 is harmless because Lemma 5.4 below
and its proof hold both in AF2 and TTR.

Definition 5.2. [Product type of a function]
Let f : D1, . . . , Dn → D be a defined function, cp ∈ Fc be a new constructor of arity n and
take the termination statement of f :
Tf = ∀x1 . . . ∀xn(D1(x1), . . . , Dn(xn) → D(f(x1, . . . , xn))). The data type K(x) defined by
the formula: ∀X∀y1 . . . ∀ynD1(y1), . . . , Dn(yn) → X(cp(y1, . . . , yn)) → X(x) is called the
product type of D1, . . . , Dn, and is denoted by (D1 × . . . × Dn)(x).

Starting from the specification of a defined function f it is possible to associate another
defined function f̃ whose specification Ef̃ takes into account the product type of f .

Definition 5.3. Let f : D1, . . . , Dn → D be a defined function with a specification Ef .

Let f̃ be a new defined symbol in Fd, which is called the twin function of f . To define the
specification Ef̃ of f̃ , we define each equation f̃(cp(t1, . . . , tn)) = v of Ef̃ from each equation
f(t1, . . . , tn) = v of Ef where cp is the constructor symbol of the product type associated to
f . The term v is recursively defined from v as follows:

• (i) if v is a variable or a constant then v = v,

• (ii) if v = g(u1, . . . , um) with g a constructor or a symbol function distinct from f ,
then v = g(u1, . . . , um),

• (iii) if v = f(u1, . . . , un) then v = f̃(cp(u1, . . . , un)).

Note that this clearly defines the specification Ef̃ of the defined function f̃ associated to f ,

and that the termination statement of f̃ is:
Tf̃ = ∀x((D1 × . . . × Dn)(x) → D(f̃(x))).
Let us consider the specification Ef of a function and the set of equations E ′

f = Ef ∪

{f(x1, . . . , xn) = f̃(cp(x1, . . . , xn))}. The set E ′
f is not a specification according to Defini-

tion 2.2 in ProPre, but we can still reason in TTR. Assume the termination statement of f̃
proved in TTR with Ef̃ and the set E of the specifications already proved. Now we can add
the equations of Ef̃ in the set E before proving the termination statement Tf . Due to the

form of the specifications Ef̃ and Ef , the equation f(x1, . . . , xn) = f̃(cp(x1, . . . , xn)) does
not add any contradiction in the set of the equational axioms Ef tE . Therefore we can now
use the new set E ′

f t E to prove the termination statement Tf in TTR. So, the equation

f(x1, . . . , xn) = f̃(cp(x1, . . . , xn)) provides the connection between Ef and Ef̃ from the log-
ical point of view and the proof of Tf̃ provides the computational aspect of the function f .
More precisely we have the following lemma.

Lemma 5.4. Let f : D1, . . . , Dn → D be a defined function with a specification Ef , and Ef̃

the specification of the twin function f̃ . Let E1, . . . , En be the specifications of the defined
functions already proved (in AF2 or TTR), E = ti=n

i=1Ei. Let us note E1
f̃

= Ef̃ t E and

E2
f̃

= E ′
f̃
t E1

f̃
with E ′

f = Ef ∪ {f(x1, . . . , xn) = f̃(cp(x1, . . . , xn))}. If there is a λ-term F̃

such that `E1
f̃

F̃ : Tf̃ , then there is a λ-term F such that `E2
f̃

F : Tf .



Proof: This lemma holds both in AF2 and TTR, (using the rules in Table 1). We assume
familiarity with AF2 and only give steps without naming the rules. Let K = (D1× . . .×Dn)
be the product type of f with cp the associated constructor symbol. By definition of the
data type K, we get in TTR:
a1 : D1(x1), . . . , an : Dn(xn)`Ef

λk(. . . ((k a1) a2) . . . an) :K(cp(x1, . . . , xn)).

Hence: a1 : D1(x1), . . . , an : Dn(xn)`E1
f̃

( eF λk(. . . ((k a1) a2) . . . an)) :D(f̃(cp(x1, . . . , xn))).

Because E1
f̃
⊂ E2

f̃
we have:

a1 : D1(x1), . . . , an : Dn(xn)`E2
f̃

( eF λk(. . . ((k a1) a2) . . . an)) :D(f̃(cp(x1, . . . , xn))).

Now, we have the equation f(t1, . . . , tm) = f̃(cp(t1, . . . , tm)) in E2
f̃
.

Hence: a1 : D1(x1), . . . , an : Dn(xn)`E2
f̃

( eF λk(. . . ((k a1) a2) . . . an)) :D(f(x1, . . . , xn)).

Finally: `E2
f̃

F : Tf , with F = λa1 . . . λan(F̃ λk(. . . ((k a1) a2) . . . an)). 2

We are now going to show that the specification of the twin of a function admits a
particular I-proof in our new context according to the fact that its termination is proved
with an automated procedure.

5.2 Canonical I-proofs

Let f : D1, . . . , Dn → D be a defined function, with a specification Ef , which is terminating
with an automated procedure. As mentioned earlier, instead of using the ordering of the
terms given in Definition 2.13, we define a new ordering for the symbol relation ≺ by
considering the ordering given with the recursive calls of the equations of the specification Ef̃ .
As in the ProPre system, we will assume that we have a subset F?

d of Fd of defined functions
whose specification admits a proof of totality in TTR (the functions already introduced by
the user) so that the defined functions occurring in the specification of the function f for
which we want to prove the termination statement, are in F?

d ∪ {f}.
Now, let t be a term in T (F ,X )s′ , for some sort s′ (see Section 3), such that all the

defined functions occurring in t admit a specification and are terminating. Then, for each
ground sorted substitution σ, we can define the ground term ppσ(t)qq as the term in T (Fc)s

that corresponds to the normal form of σ(t). The definition of ppσ(t)qq makes sense as the
functions occurring in the specification f are terminating which gives the existence of the
normal form while the definition of the specifications (Definition 2.2) gives the uniqueness
of the normal form. Therefore, we can state formally the relation ≺f̃ below.

Definition 5.5. Let Ef̃ be a specification of the twin function of a defined function
f such that the functions occurring in the specification Ef̃ admit a specification and are
terminating. We also assume the function f to be terminating. Let K be the product type
(D1× . . .×Dn) associated to f and cp the constructor associated to K. We define a relation
≺f̃ on K such that for each recursive call (f(cp(t1, ..., tn)), f(cp(v1, . . . , vn))) of Ef̃ , we have
cp(ppσ(v1)qq, . . . , ppσ(vn)qq) ≺f̃ σ(cp(t1, . . . , tn)) for any ground sorted substitution σ.

Hence, we get the straightforward but useful following fact.

Fact 5.6. The above relation ≺f̃ is a well-founded ordering on K.

The next theorem says that if a function f is terminating and if we have a distributing
tree for the specification Ef̃ of the twin function f , having or lacking the formal terminal
state property, it is then possible to get a new one having the ftsp. The principle mainly
consists of changing, in the initial distributing tree, the Struct and Ind rules in such way
that we now have a new tree with ftsp which can be called a canonical distributing tree. It
means that the formal proofs we are going to build will depend on the ability of building



a distributing tree whatever its properties and on the ability of showing the termination of
the function.

Theorem 5.7. Let Ef be a specification of a defined function f : D1, . . . , Dn → D such
that the defined symbols that occur on the right-hand side of the equations of Ef are in

F?
d ∪ {f}. Let A be a distributing tree for the specification Ef̃ of the twin function f̃ .

Assume the function f is proved terminating by a termination procedure. Then there is a
distributing tree A′ for Ef̃ , which can be automatically obtained from A, that satisfies the
formal terminal state property with the relation ≺f̃ .

Proof: Let Ef be a specification of a defined function f : D1, . . . , Dn → s such that the
defined symbols that occur in the right-hand side of the equations of Ef are in F?

d ∪ {f}.

Let A be a distributing tree for the specification Ef̃ of the twin function f̃ . We assume
f is proved terminating by a termination procedure. Since we know that the function is
terminating given by an automated procedure we can introduce the ordering ≺f̃ . From the
term distributing tree A we can associate a new distributing tree A′ with the ordering ≺f̃ ,
illustrated with Figure 4, which can be called the canonical distributing tree of A.
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`E
f̃

Termination statement of f̃

A Distributing Tree of Ef̃

Figure 4: The canonical distributing tree A′ of A

Note that A′ can be built automatically from A. We show that A′ satisfies the formal
terminal state property. The root of A′ is `E

f̃
Tf̃ , with Tf̃ = ∀x(K(x) → D(f̃(x))) the

termination statement of f̃ where K denotes the product type (D1 × . . . × Dn) and cp its
associated constructor.

Let L = (Γ `E
f̃

P ) be a leaf of A′ and e = (t, u) be the equation of Ef̃ with H(P ) = t. Let

(t, v) be a recursive call of e. According to the definition of a specification and a recursive
call, the terms t and v are respectively of the form f(cp(t1, . . . , tn)) and f(cp(v1, . . . , vn)).
Because of the construction of the canonical distributing tree A′ that uses a particular order
of the application rules Struct and Ind (also illustrated with Figure 4), P is of the form:

∀x′
i1

D′
i1

(x′
i1

), . . . ,∀x′
im

D′
im

(x′
im

), ∀z(Kz≺cp(h1,...,hn) → K(f(z)))

→ K(f(cp(h1, . . . , hn))).
As the heart of P is H(P ) = t, we have hj = tj for any 1 ≤ j ≤ n.

Now, let Q be the restrictive hypothesis ∀z(Kz≺cp(t1,...,tn) → K(f(z))) of P . Let us show
that Q can be applied to the term v according to a substitution. By the definition of Q,
we have H(Q) = f(z), so we can take a substitution σ with σ(z) = cp(v1, . . . , vn). We also
take the value σ(y) = y for any free variable y in Q, that is any variable y in cp(t1, . . . , tn).
Hence Q can be applied to v according to the above substitution σ. We now have to show
the two items of Definition 2.14. As we are in the conditions of Definition 5.5, we know that
cp(ppρ(v1)qq, . . . , ppρ(vn)qq) ≺f̃ ρ(cp(t1, . . . , tn)) for any ground sorted substitution ρ. But
σ(z) = cp(v1, . . . , vn), thus we get the first item. The second item becomes straightforward:



because of the form of Q, the set of restrictive hypotheses of Q is empty. Hence, we conclude
that the canonical distributing tree A′ satisfies the formal terminal state property. 2

The next theorem (and its proof) expresses Figure 3. It tells that if we know that a
function f is terminating, and if we have already a proof of totality of each defined function
that occurs in the specification of f (apart from f), and if we have a term distributing tree
associated to the specification of f , then we are able to get a λ-term that computes the
function f in the sense of TTR.

Theorem 5.8. Let Ef be a specification of a defined function f : D1, . . . , Dn → D and D
be a given distributing tree for the specification Ef such that the defined symbols that occur
on the right-hand side of the equations of Ef are in F?

d ∪ {f}. Assume the termination of
the function f given by an automated procedure. Then there is a proof of totality of f in
TTR that can be found automatically.

Proof: Let f̃ be the twin function of f and Ef̃ its specification given in Definition 5.3. By
Definition 5.3, a distributing tree A associated to Ef̃ can be automatically obtained from
D. Hence, with Theorem 5.7, we now have a (canonical) distributing tree A′ associated to
Ef̃ which has the ftsp with ≺f̃ as the ordering relation. As Fact 2.11 still holds with the
new ordering relation, we get an I-proof of Ef̃ that can be called canonical proof. Thus we
obtain a formal proof of the termination statement Tf̃ in TTR. Hence, by Lemma 5.4 we
finally obtain a proof of totality of f in TTR. 2

Let us now go back to Example 5.1. It was shown in [1, 4] that the termination of the
specification Equot can be proven with automated termination methods. So if we consider
such methods in the right upper part of Figure 3, we then obtain a new ordering relation
≺ for the specification E gquot of the associated function q̃uot. Together with our setting, this

provides a formal proof of totality of q̃uot as expressed in the left part of Figure 3. Finally,
using this latter result, and thanks to Lemma 5.4, we obtain a formal proof of totality of
the function quot which was not previously possible in the ProPre system .

6 Conclusion

An important part of the programming paradigms using logics as is done in ProPre, is the
Curry-Howard isomorphism where a λ-term is extracted from the proof. However because
of the logical framework, it is often difficult to make use of termination techniques from
different areas. The study of this paper has shown that, for the automated system ProPre,
the extraction part of λ-terms can be released from the termination analysis, using the
setting of ProPre, so that other automated termination techniques (like those of [1, 2, 4])
can now be included in this framework modulo distributing trees.
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