
On solving nominal fixpoint equations

Mauricio Ayala-Rincón1, Washington de Carvalho-Segundo1, Maribel
Fernández2, and Daniele Nantes-Sobrinho1

1 Departamentos de Matemática e Ciência da Computação
Universidade de Braśılia, Brazil
2 Department of Informatics,
King’s College London, UK

Abstract. In nominal syntax, variable binding is specified using atom-
abstraction constructors, and alpha-equivalence is formalised using fresh-
ness constraints and atom swappings, which implement variable renam-
ings. Composition of swappings gives rise to atom permutations. Algo-
rithms to check equivalence, match and unify nominal terms have been
extended to deal with terms where some operators are associative and/or
commutative. In the case of nominal C-unification, problems are trans-
formed into finite and complete families of fixpoint equations of the form
π.X ≈? X, where π is a permutation. To generate nominal C-unifiers,
a technique to obtain a sound and complete set of solutions for these
equations is needed. In this work we show how complete sets of solutions
for nominal fixpoint problems are built and discuss efficient techniques
to generate solutions based on algebraic properties of permutations.

1 Introduction

Nominal syntax is an extension of first order syntax, where terms are built using
function symbols, abstractions, and two kinds of variables: atoms, which can be
abstracted, and unknowns (or simply variables), which behave like first order
variables, except for the fact that they can have “suspended atom permuta-
tions”, which act when the variable is instantiated by a term. Atom abstractions
induce an α-equivalence relation on nominal terms, which is axiomatised using
a freshness relation between atoms and terms. Nominal unification is unification
of nominal terms, and takes into account the α-equivalence relation.

In many application domains, function symbols have equational properties,
such as associativity and commutativity, which must be taken into account dur-
ing the unification process. In previous work [3], we studied α-AC-equivalence
of nominal terms, and nominal C-unification [4], that is, nominal unification in
languages with commutative operators. The nominal C-unification problem was
proved to be NP-complete in [9]. To solve the problem, we provided in [4] a set
of simplification rules that generates, for each solvable C-unification problem, a
finite set of fixpoint problems that are finite sets of fixpoint equations together
with a freshness context and a substitution. The fixpoint equations generated in
the process of solving nominal C-unification problems have the form π.X ≈? X,
where π is a permutation.

In [4], in addition to introducing the rule-based algorithm to transform nom-
inal C-unification problems into a finite set of equivalent fixpoint problems, we
also formalised in Coq its correctness and completeness. Also, we provided a
sound method to generate solutions for fixpoint problems showing that infinite
independent solutions are possible for a single fixpoint equation, which implies
that nominal C-unification is infinitary.

Beyond the extensions of nominal unification, we can find equivariant unifi-
cation [1, 7] as well as nominal narrowing [5], that are a useful tools in confluence
analysis of nominal rewriting systems [2, 8] .
Contribution. The main result is a sound and complete procedure to solve
fixpoint problems. More specifically:

– We prove the completeness of solutions for fixpoint equations generated in [4].
The analysis is based on the feasibility of combinations of the atoms in the
domain of permutations used in the fixpoint equations in a fixpoint problem,
that are built considering the combinatorial properties of the atoms in the
permutations and by combining them using the basic elements of the nominal
syntax, that is, pairs, abstractions and variables, as well as the commutative
and non commutative function symbols in the signature. Variables included in
these feasible combinations are new variables that should be restricted through
adequate freshness contexts in such a way that atoms in the domain of the
permutations should be fresh in these variables. The greedy generation of
complete sets of solutions for a fixpoint equation is based on the construction
of the so called extended pseudo-cycles from permutation cycles in the alge-
braic representation of permutations as products of permutation cycles. Only
permutation cycles of length (period) a power of two are considered since
permutation cycles of other lengths do not generate feasible (commutative)
combinations.

– Furthermore, we work out an interesting improvement that avoids the genera-
tion of feasible solutions for different fixpoint equations on the same variable.
The improvement is based on the fact that the feasible combinations for per-
mutation cycles of the same length (a power of two) with the same domain,
that are not algebraic factors of each other would not give rise to feasible
common solutions.

Organisation. Section 2 introduces the background about nominal syntax and
nominal C-unification. Section 3 proves the soundness and completeness of com-
binatorial solutions for fixpoint equations. Section 4 presents the improvements
of the generator of solutions. Section 5 concludes the paper with future work.

2 Nominal syntax and nominal (α-)C-unification

2.1 Nominal Syntax

Consider countable disjoint sets of variables X := {X,Y, Z, · · · } and atoms A :=
{a, b, c, · · · }. A permutation π is a bijection on A with a finite domain, where
the domain (i.e., the support) of π is the set dom(π) := {a ∈ A | π · a 6= a}.

We will assume as in [3] countable sets of function symbols with different
equational properties such as associativity, commutativity, idempotence, etc.
Function symbols have superscripts that indicate their equational properties;
thus, fCk will denote the kth function symbol that is commutative and f∅j the

jth function symbol without any equational property.

Definition 1 (Nominal grammar). Nominal terms are generated by the fol-
lowing grammar. s, t := 〈〉 | ā | [a]t | 〈s, t〉 | fEk t | π.X

〈〉 denotes the unit (that is the empty tuple), ā denotes an atom term, [a]t
denotes an abstraction of the atom a over the term t, 〈s, t〉 denotes a pair, fEk t
the application of fEk to t and, π.X a moderated variable or suspension.

Suspensions of the form nil.X will be represented just by X. The set of
variables occurring in a term t will be denoted as V ar(t). This notation extends
to a set S of terms in the natural way: V ar(S) =

⋃
t∈S V ar(t).

A substitution σ is a mapping from variables to terms such that X 6= Xσ
only for a finite set of variables. This set is called the domain of σ and is denoted
by dom(σ). For X ∈ dom(σ), Xσ is called the image of X by σ. Define the image
of σ as im(σ) = {Xσ | X ∈ dom(σ)}. The set of variables occurring in the image
of σ is then V ar(im(σ)). A substitution σ with dom(σ) := {X0, · · · , Xn} can be
represented as a set of binds in the form {X0/t0, · · · , Xn/tn}, where for 0 ≤ i ≤
n, Xiσ = ti. We assume that the action of permutations and substitutions on
nomins terms have their standard definitions (see e.g. [10], [13]). Since for our
purposes the combinatorial properties of permutations on atoms are relevant, in
this paper permutations are seen as products of permutation cycles: for instance,
the nominal swapping permutation (a b) :: (a c) :: (a d) :: (e f) :: (e g) is seen as
the product of permutation cycles (a b c d) (e f g).

2.2 The relation ≈{α,C} and Nominal ≈{α,C}-unification

In [3], the relation ≈α was extended to deal with associative and commutative
theories. Here we will consider α-equivalence modulo commutativity, denoted
≈{α,C}. This means that some function symbols in our syntax are commutative.

The inference rules defining freshness and ≈{α,C}-equivalence are given in
Figures 1 and 2. The difference set between two permutations π and π′ is the set
of atoms where the action of π and π′ differs: ds(π, π′) := {a ∈ A | π ·a 6= π′ ·a}.

The symbols ∇ and ∆ are used to denote freshness contexts that are sets of
constraints of the form a#X, meaning that the atom a is fresh in X. The domain
of a freshness context dom(∆) is the set of atoms appearing in it; ∆|X denotes
the restriction of ∆ to the freshness constraints on X: {a#X | a#X ∈ ∆};
dom(π)#X and ds(π, π′)#X denote, respectively, the sets {a#X | a ∈ dom(π)}
and {a#X | a ∈ ds(π, π′)}.

Key properties of the nominal freshness and α-equivalence relations have been
extensively explored in previous works [3, 6, 12, 13]. In [4] we also have formalised
analogous properties for ≈{α,C}. Among them we have freshness preservation: If

(#〈〉)
∇ ` a# 〈〉

(#atom)
∇ ` a# b

∇ ` a# t
(#app)

∇ ` a# fEk t
(#a[a])

∇ ` a# [a]t

∇ ` a# t
(#a[b])

∇ ` a# [b]t

(π−1 · a#X) ∈ ∇
(#var)

∇ ` a#π.X

∇ ` a# s ∇ ` a# t
(#pair)

∇ ` a# 〈s, t〉

Fig. 1. Rules for the relation #

(≈{α,C} 〈〉)∇ ` 〈〉 ≈α 〈〉
(≈{α,C} atom)

∇ ` a ≈{α,C} a

∇ ` s ≈{α,C} t
, E 6= C or both s and t are not pairs (≈{α,C} app)

∇ ` fEk s ≈{α,C} fEk t

∇ ` s0 ≈{α,C} ti, ∇ ` s1 ≈{α,C} t(i+1)mod 2
, i = 0, 1 (≈{α,C} C)

∇ ` fCk 〈s0, s1〉 ≈{α,C} fCk 〈t0, t1〉

∇ ` s ≈{α,C} t
(≈{α,C} [aa])

∇ ` [a]s ≈{α,C} [a]t

∇ ` s ≈{α,C} (a b) · t ∇ ` a# t
(≈{α,C} [ab])

∇ ` [a]s ≈{α,C} [b]t

ds(π, π′)#X ⊆ ∇
(≈{α,C} var)

∇ ` π.X ≈{α,C} π′.X
∇ ` s0 ≈{α,C} t0 ∇ ` s1 ≈{α,C} t1

(≈{α,C} pair)
∇ ` 〈s0, t0〉 ≈{α,C} 〈s1, t1〉

Fig. 2. Rules for the relation ≈{α,C}

∇ ` a# s and ∇ ` s ≈{α,C} t, then ∇ ` a# t; equivariance: for all permutations
π, if ∇ ` s ≈{α,C} t then ∇ ` π · s ≈{α,C} π · t; and, equivalence: ` ≈{α,C}
is an equivalence relation, indeed.

Definition 2 (Nominal unification problem). A nominal unification prob-
lem is a pair 〈∆,P 〉, where ∆ is a freshness context and P is a finite set of
equations and freshness constraints of the form s ≈? t and a#?s, respectively,
where ≈? is symmetric, s and t are terms and a is an atom. Nominal terms
in the equations preserve the syntactic restriction that commutative symbols are
only applied to tuples.

A formalised sound and complete rule-based algorithm was presented in [4],
that transforms a nominal unification problem, say 〈∆,P 〉, with commutative
function symbols into a finite set of fixpoint problems that consist exclusively
of equations of the form π.X ≈? X. The transformation starts from the triple
P = 〈∆, id , P 〉, where id denotes the substitution identity, and the rules act over
triples building a finite set of fixpoint problems of the form Qi = 〈∇i, σi, Qi〉,
for 0 ≤ i ≤ n, where for each i, ∇i is a freshness context, σi a substitution, and
Qi consists only of fixpoint equations.

For ∇ and ∇′ freshness contexts and σ and σ′ substitutions, ∇′ ` ∇σ denotes
that ∇′ ` a#Xσ holds for each (a#X) ∈ ∇; ∇ ` σ ≈ σ′ denotes that ∇ `
Xσ ≈{α,C} Xσ′ for all X (in dom(σ) ∪ dom(σ′)).

Definition 3 (Solution for a triple or problem). A solution for a triple
P = 〈∆, δ, P 〉 is a pair 〈∇, σ〉, where the following conditions are satisfied:

1. ∇ ` ∆σ;
2. if a#?t ∈ P then ∇ ` a# tσ;

3. if s ≈? t ∈ P then ∇ ` sσ ≈{α,C} tσ;
4. there exists λ such that ∇ ` δλ ≈ σ.

A solution for a unification problem 〈∆,P 〉 is a solution for the associated
triple 〈∆, id , P 〉. The solution set for a problem or triple P is denoted by UC(P).

Definition 4 (More general solution and complete set of solutions). For
〈∇, σ〉 and 〈∇′, σ′〉 in UC(P), we say that 〈∇, σ〉 is more general than 〈∇′, σ′〉,
denoted 〈∇, σ〉4̇〈∇′, σ′〉, if there exists a substitution λ satisfying ∇′ ` σλ ≈ σ′

and ∇′ ` ∇λ. A subset V of UC(P) is said to be a complete set of solutions of
P if for all 〈∇′, σ′〉 ∈ UC(P), there exists 〈∇, σ〉 in V that is more general than
〈∇′, σ′〉.

Example 1. The problem P = 〈{b#Y }, {+〈(a b).X, Y 〉 ≈? +〈(b c).Y,X〉}〉 would
be transformed by the algorithm in [4] into the set of fixpoint problems {Q1,Q2},
where Q1 = 〈{b#Y }, {Y/X}, {(a c b).X ≈? X}〉 and Q2 = 〈{b#Y }, id , {(a b).X
≈? X, (b c).Y ≈? Y }〉. These fixpoint problems are generated by considering
‘+’ to be a commutative symbol and by inversions on the permutations in the
suspended variables.

The results in [4] include formalisations in Coq of theorems related with
the following properties: termination: there are no possible infinite chains of
applications of the unification transformation rules; soundness: for each possible
transformation from P to Q, one has that UC(Q) ⊆ UC(P); unsolvability: if
Q = 〈∆,σ,Q〉 cannot be simplified and Q contains non fixpoint equations or
freshness constraints then UC(Q) = ∅; and, completeness: if the unification
problem P = 〈∇, id , P 〉 is transformed into the finite set of fixpoint problems
Qi, for 1 ≤ i ≤ n, then UC(P) =

⋃n
i=1 UC(Qi).

Example 2. (Continuing example 1) The unification algorithm requires a mech-
anism to enumerate solutions of the fixpoint problems. Solutions in U(Q1) are
built using the substitution {Y/X} and solutions for the single fixpoint problem
〈{b#Y }, {(a c b).X ≈? X}〉. One such solution is 〈{b#Y, a#X, b#X, c#X}, id〉;
therefore, 〈{b#Y, a#X, b#X, c#X}, {Y/X}〉 is a solution for P. Solutions in
U(Q2) are built by combining solutions for the associated single fixpoint prob-
lems 〈{b#Y }, {(a b).X ≈? X}〉 and 〈{b#Y }, {(b c).Y ≈? Y }〉. Assuming ‘?’ is
a commutative operator in the signature, an admissible solution (among other
infinite possibilities) for the former problem would be 〈{b#Y }, {X/(a+ b) ? (a+
b)}〉. Notice that since the freshness constraint b#Y belongs to P, no possi-
ble combinations as the one given for X are allowed, and the unique possible
solution for 〈{b#Y }, {(b c).Y ≈? Y }〉 is 〈{b#Y } ∪ {b#Y, c#Y }, id〉. Therefore,
〈{b#Y, c#Y }, {X/[d]〈(a+ b), Y 〉 ? [d]〈(a+ b), Y 〉}〉 is also a solution for P.

2.3 Solutions of fixpoint problems through extended pseudo-cycles

Given a permutation π, the set of solutions of a fixpoint equational problem
〈∇, {π.X ≈? X}〉 is built according to the recursive definition of (unitary) ex-
tended pseudo-cycles below ([4]).

Definition 5 (Extended Pseudo-cycle). Let π.X ≈? X be a fixpoint equa-
tion. The extended pseudo-cycles (epc , for short) κ′ of π are inductively defined
from its permutation cycles as follows:

1. κ′ = (Y), for any variable not occurring in the problem, is an extended
pseudo-cycle;

2. κ′ = (a0 · · · ak′−1) is an extended pseudo-cycle w.r.t. (a0 · · · ak′−1) a per-
mutation cycle in π such that k′ = 2l, for l > 0, called trivial pseudo-cycle
of π.

3. κ′ = (A0 ... Ak′−1) is an extended pseudo-cycle w.r.t. π, if the following
conditions are simultaneously satisfied:

(a) i. each element of κ′ is of the form Bi ? Bj, where ? is a commutative
function symbol in the signature, and Bi, Bj are different elements of κ,
an extended pseudo-cycle w.r.t. π. κ′ will be called an extended first-
instance pseudo-cycle of κ w.r.t. π, or

ii. each element of κ′ is of the form Bi ? Cj for any commutative symbol ?,
where Bi and Cj are elements of κ and κ′′ extended pseudo-cycles w.r.t.
π, that might be the same, but not being κ′ an extended first-instance
pseudo-cycle, or

iii. each element of κ′ is of the form 〈Bi, Cj〉, where Bi and Cj are elements
of κ and κ′′ extended pseudo-cycles w.r.t. π, that might be the same, or

iv. either each element of κ′ is of the form g Bi or each element is of the form
[e′]Bi, where g is a non commutative function symbol in the signature
and e′ /∈ dom(π), and each Bi is an element of an extended pseudo-cycle
w.r.t π.

v. each element of κ′ is of the form [aj]Bi, where aj and Bi are resp. atoms
in κ and elements in κ′, a permutation cycle of π and an extended
pseudo-cycle w.r.t. π.

(b) For ∇ = ∪Y ∈V ar(κ′)dom(π)#Y ,
i. it does not hold that ∇ ` Ai ≈{α,C} Aj for i 6= j, 0 ≤ i, j ≤ k′−1, where
k′ is the length of κ′ (that is, the number of elements in κ′), and

ii. for each 0 ≤ i < k′ − 1 one has ∇ ` π(Ai) ≈{α,C} Ai+1, where i + 1
abbreviates i+ 1 modulo k′.

Extended pseudo-cycles built using only items 2 and 3.a.i are called pseudo-
cycles. Extended pseudo-cycles of length 1 are called unitary.

Remark 1. Pseudo-cycles are built just from atom terms in dom(π) and com-
mutative function symbols, while extended pseudo-cycles consider all nominal
syntactic elements including new variables, and also non commutative function
symbols.

Example 3. Let κ = (a b c d) be a permutation cycle of π. Assume, e /∈ dom(π),
? and ⊕ are commutative symbols, f and g non commutative symbols and Y
a new variable. The following are pseudo-cycles: (a ? d b ? a c ? b d ? c),
(a?c⊕b?d), etc. The following are epc ’s: (f〈a, b〉 f〈b, c̄〉 f〈c, d〉 f〈d, a〉), ([e]a?
c [e]b ? d), (g〈fa, [e]a〉 g〈fb, [e]b〉 g〈fc, [e]c〉 g〈fd, [e]d〉), (〈t, f〈g〈fa, [e]b〉, Y 〉⊕
f〈g〈fc, [e]d〉, Y 〉〉 ? 〈t, f〈g〈fb, [e]c〉, Y 〉 ⊕ f〈g〈fd, [e]a〉, Y 〉)〉), etc.

A relevant aspect in this construction (Def. 5) is that case 3.a.i allows to
build epc ’s that have half the length of the epc ’s to which this case is applied.
Therefore, we can only produce unitary epc ’s from a permutation cycle that
has length 2k, for a positive integer k. Considering that the last step transforms
an epc of the length two of the form (A0, A1) such that ∇ ` π(A0) ≈{α,C} A1

and ∇ ` π(A1) ≈{α,C} A0 (3.b.ii), the resulting unitary epc , (A0 ? A1) satisfies
∇ ` π(A0?A1) ≈{α,C} A0?A1. Which means that this kind of solutions might be
generated only from permutation cycles that have period a power of two. Indeed,
it holds that only cycles of length a power of two might generate combinations
that are feasible solutions.

Another relevant aspect of this construction is that although, we are using
the relation ≈{α,C}, by the type of nominal terms involved in the extended
pseudo-cycles only ≈C is necessary, except for considerations related with the
freshness constraints (on new variables); hence, the invariant 3.b.ii can be seen
as π(Ai) ≈C Ai+1, where i+ 1 is read modulo the length of the epc .

3 Soundness and completeness of combinatorial solutions
for fixpoint equations

Definition 6 (Generated solutions of fixpoint equations). Given a solu-
tion triple P = 〈∇, σ, P 〉, such that π.X ≈? X ∈ P . The set of generated solu-
tions for 〈∇, π.X ≈? X〉, denoted as 〈∇, π.X ≈? X〉SolG , includes all solutions
of the form 〈∇′, {X/s}〉 where (s) is an extended unitary pseudo-cycle of π such
that ∇′ ` dom(∇|X)#s, where ∇′ = ∇∪Y ∈V ar(s) (dom(∇|X)#Y ∪ dom(π)#Y).

In the following we are using 〈∇, π.X ≈? X〉SolC to denote the solutions set
of the fixpoint problem 〈∇, π.X ≈? X〉.

Theorem 1 (Soundness of eps solutions). Each generated solution of the
form 〈∇, {X/s}〉 in 〈∇, π.X ≈? X〉SolG is a solution in 〈∇, π.X ≈? X〉SolC .

Proof. The proof follows the lines of reasoning used for non trivial unitary
pseudo-cycles. By construction, the invariant that the elements of an extended
pseudo-cycle of length l, κ′ = (e0 . . . el−1), satisfy the property∇′ ` π(ei) ≈{α,C}
ei+1, where i + 1 abbreviates i + 1 modulo l, and ∇′ = ∪Y ∈V ar(κ′)dom(π)#Y ,
holds. The only case in which the length of an extended pseudo-cycle decreases
is 3.a.i. Thus, when this case applies to a binary pseudo-cycle, say (s0 s1), an
extended unitary pseudo-cycle (s) is built, being this of the form (s0 ⊕ s1)
for a commutative function symbol ⊕. Since by the invariant we have that
∇′ ` π(si) ≈{α,C} si+1, for i = 0, 1, we have that ∇′ ` π(s0⊕s1) ≈{α,C} s0⊕s1;
thus, we have that ∇′ ` π(s) ≈{α,C} s. In further steps in the construction
of extended pseudo-cycles, new unitary pseudo cycles (t′) might be built from
unitary extended pseudo-cycles (t) applying cases 3.a.ii, iii, iv and v, that,
can easily be checked, preserve the property ∇′ ` π(t′) ≈{α,C} t′, for ∇′ =
∪Y ∈V ar(t′)dom(π)#Y , if ∇′ ` π(t) ≈{α,C} t, for ∇′ = ∪Y ∈V ar(t)dom(π)#Y .
Therefore all unitary non-trivial extended pseudo-cycles give a correct solution

of the form 〈∇′, {X/s}〉 of the problem 〈∅, π.X ≈? X〉. Hence, if in addition,
we have that ∇′ ∪ ∆ ` dom(∆|X)#s, then 〈∇′ ∪ ∆, {X/s}〉 is a solution of
〈∆,π.X ≈? X〉, whenever ∆ ` dom(∆|X)#s. ut

Assuming the symbols in the signature are denumerable, it is possible to
enumerate the unitary extended pseudo-cycles and thus the generated solutions.
This can be done as usual, enumerating first all possible unitary pseudo-cycles
with an element of length bounded by a small natural, say twice the length of π,
and using only the first |π| symbols in the signature and atoms in dom(π); then,
this length is being increased generating all extended unitary pseudo-cycles with
elements of length |π|+1 and using only the first |π+1| symbols in the signature
and atoms in dom(π) and so on.

The following technical result is proved by induction (see Appendix A) and
is used in the proof of completeness of generated solutions for fixpoint problems.

Lemma 1 (Extended pseudo-cycle correspondence between π and π2).
For k ≥ 1, (A0 · · ·A2k−1) is an extended pseudo-cycle for π if, and only if, there
exist (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1) epc ’s for π2 with a substitution σ
such that atoms in its image belong to dom(π)\dom(π2), and for 0 ≤ j ≤ 2k−1−1
one has Bjσ ≈{α,C} A2j and Cjσ ≈{α,C} A2j+1.

Example 4. For (a b) and (c d e f), permutation cycles of π, one has that (a), (b),
(c e) and (d f) are permutation cycles of π2, and also, a, b ∈ dom(π)\dom(π2).
Therefore ((c∗e)+a)?((d∗f)+b) and ((c∗e)+Y)?((d∗f)+Y ′) are respectively
unitary epc ’s of π and π2. Then:

– 〈∆, {X/((c ∗ e) + a) ? ((d ∗ f) + b)}〉 ∈ 〈∆,π.X ≈? X〉SolG iff
– 〈∆′, {X/((c ∗ e) + Y) ? ((d ∗ f) + Y ′)}〉 ∈ 〈∆,π2.X ≈? X〉SolG ,

where ∆′ = ∆ ∪ dom(π2)#Y, Y ′ ∪ dom(∆|X)#Y, Y ′. So the σ of Lemma 1 will
be {Y/a, Y ′/b}, so that ((c ∗ e) + a (d ∗ f) + b) is an epc of π, ((c ∗ e) + Y) and
((d∗f)+Y ′) are epc ’s of π2, with ((c∗e)+Y)σ = (c∗e)+a and ((d∗f)+Y ′)σ =
(d ∗ f) + b.

Theorem 2 (Completeness of generated solutions for fixpoint prob-
lems). Let 〈∆,π.X ≈? X〉 be a fixpoint problem. If 〈∇, {X/s}〉 ∈ 〈∆,π.X ≈?

X〉SolC then there exists a more general extended solution, that is, 〈∇′, {X/t}〉 ∈
〈∆,π.X ≈? X〉SolG such that 〈∇′, {X/t}〉�̇〈∇, {X/s}〉.

Proof. Since 〈∇, {X/s}〉 ∈ 〈∆,π.X ≈? X〉SolC , it follows that ∇ ` ∆{X/s} and
∇ ` π(s) ≈{α,C} s. The proof is by induction on the structure of s.
Base Case. This case will be split in two parts.

1. s = a.
The pair 〈∇, {X/a}〉 is a solution only if a /∈ dom(∆|X) ∪ dom(π),
then ∅ ` π · a = a. Let Y be a new variable and ∇′ = dom(∆|X)#Y ∪
dom(π)#Y , then 〈∇′, {X/Y }〉 is a generated solution. Let σ = {Y/a}, notice
that ∇ ` ∇′σ and Y σ = a. Therefore, 〈∇′, {X/Y }〉�̇〈∇, {X/a}〉.

2. s = π′.Y and dom(π)#π′.Y .
Notice that 〈∇, {X/π′.Y }〉 ∈ 〈∆,π.X ≈? X〉SolC only if
∇ ` dom(∆|X)#π′.Y, dom(π)#π′.Y , that is, if ∇ ` (π′)−1 · dom(∆|X)#Y
and ∇ ` (π′)−1 · dom(π)#Y , so that

∆ ∪ ((π′)−1 · dom(∆|X) ∪ (π′)−1 · dom(π))#Y ⊂ ∇

Let 〈∇′, {X/Z}〉 ∈ 〈∆,π.X ≈? X〉SolG with∇′ = ∆∪(dom(π)∪dom(∆|X))#Z,
Consider the substitution σ = {Z/π′.Y }, then ∇ ` Zσ ≈{α,C} π′.Y and
∇′σ = ∆σ ∪ (dom(π)∪ dom(∆|X))#Zσ = ∆∪ (π′)−1 · dom(π)#Y ∪ (π′)−1 ·
dom(∆|X)#Y , so ∇ ` ∇′σ. Therefore, 〈∇′, {X/Z}〉�̇〈∇, {X/π′.Y }〉.

Induction Step.

1. s = 〈s1, s2〉
In this case∇ ` π(〈s1, s2〉) ≈{α,C} 〈s1, s2〉, that is,∇ ` 〈π(s1), π(s2)〉 ≈{α,C}
〈s1, s2〉, which implies in ∇ ` π(si) ≈{α,C} si, for i = 1, 2.
By i.h. and Definitions 5 and 6, there exist 〈∇′1, {X/t1}〉, 〈∇′2, {X/t2}〉 ∈
〈∆,π · X ≈? X〉SolG s.t. (t1), (t2) and (〈t1, t2〉) are unitary epc ’s w.r.t. π.
Furthermore 〈∇′i, {X/ti}〉�̇〈∇, {X/si}〉, i.e., there exist substitutions λi s.t.
∇ ` ∇iλi and ∇ ` tiλi ≈ si, for i = 1, 2. One can choose (t1) and (t2)
s.t. V ars(t1) ∩ V ars(t2) = ∅ and dom(λi) ∩ V ars(sj) = ∅, for i, j = 1, 2.
Then, ∇ ` 〈t1, t2〉λ1λ2 ≈{α,C} 〈s1, s2〉, and ∇ ` (∇1 ∪ ∇2)λ1λ2, that is,

〈∇1 ∪∇2, {X/〈t1, t2〉}〉�̇〈∇, {X/〈s1, s2〉}〉.
2. s = fs′

Since ∇ ` π · fs′ ≈{α,C} fs′, it follows that ∇ ` f(π(s′)) ≈{α,C} fs′

and therefore, ∇ ` π(s′) ≈{α,C} s′. By i.h. and Defs. 5 and 6, there ex-
ist 〈∇′, {X/t′}〉 ∈ 〈∆,π · X ≈? X〉SolG such that (t′) and (ft′) are unitary
epc ’s w.r.t. π. Furthermore 〈∇′, {X/t′}〉�̇〈∇, {X/s′}〉, that is, there exist
a substitution σ such that ∇ ` ∇′σ and ∇ ` t′σ ≈{α,C} s′, and since
∇ ` ft′σ ≈{α,C} f(t′σ) ≈{α,C} fs′ and adding f at the top of t′ does not
change the variables of t′, therefore, 〈∇′, {X/ft′}〉 ∈ 〈∆,π · X ≈? X〉SolG
and 〈∇′, {X/ft′}〉�̇〈∇, {X/fs′}〉.

3. s = [e]s′.
(a) e /∈ dom(π)

Since ∇ ` π([e]s′) ≈{α,C} [e]s′, it follows that ∇ ` π(s′) ≈{α,C} s′, that
is, 〈∇, X/s′〉 is a solution for 〈∆,π ·X ≈? X〉. By i.h. and Defs. 5 and 6,
there exist 〈∇′, {X/t′}〉 ∈ 〈∆,π ·X ≈? X〉SolG such that (t′) and ([e]t′)
are unitary epc ’s w.r.t. π. Furthermore 〈∇′, {X/t′}〉�̇〈∇, {X/s′}〉, that
is, there exist a substitution σ such that ∇ ` ∇′σ and ∇ ` t′σ ≈{α,C} s′,
therefore, 〈∇′, {X/[e]t′}〉 ∈ 〈∆,π ·X ≈? X〉SolG and
〈∇′, {X/[e]t′}〉�̇〈∇, {X/[e]s′}〉.

(b) e ∈ dom(π).
By hypothesis, ∇ ` π([e]s′) ≈{α,C} [e]s′, that is, ∇ ` [π ·e](π(s′)) ≈{α,C}
[e]s′, and ∇ ` π(s′) ≈{α,C} (π · e e)(s′) only if ∇ ` (π · e)#s′.
Notice that e occurs in s′ iff π · e occurs in s′. Therefore, for ∇ ` e#s′,
it follows that ∇ ` π(s′) ≈{α,C} s′ and the result follows by induction
hypothesis.

4. s = s1 ⊕ s2
This case has two parts:

(a) ∇ ` π(s1) ≈{α,C} s1 and ∇ ` π(s2) ≈{α,C} s2.

By i.h. and Definitions 5 and 6, there exist 〈∇′1, {X/t1}〉, 〈∇′2, {X/t2}〉 ∈
〈∆,π ·X ≈? X〉SolG s.t. (t1), (t2) and (t1⊕ t2) are unitary epc ’s w.r.t. π.
Furthermore 〈∇′i, {X/ti}〉�̇〈∇, {X/si}〉, i.e., there exist substitutions λi
s.t. ∇ ` ∇iλi and ∇ ` tiλi ≈ si, for i = 1, 2. One can choose (t1) and (t2)
s.t. V ars(t1)∩ V ars(t2) = ∅ and dom(λi)∩ V ars(sj) = ∅, for i, j = 1, 2.
Then, ∇ ` (t1 ⊕ t2)λ1λ2 ≈{α,C} (s1 ⊕ s2), and ∇ ` (∇1 ∪∇2)λ1λ2, that

is, 〈∇1 ∪∇2, {X/t1 ⊕ t2}〉�̇〈∇, {X/s1 ⊕ s2}〉.
(b) ∇ ` π(s1) ≈{α,C} s2 and ∇ ` π(s2) ≈{α,C} s1.

Notice that ∇ ` π2(s1) ≈{α,C} π(s2) ≈{α,C} s1 and ∇ ` π2(s2) ≈{α,C}
π(s1) ≈{α,C} s2. Therefore, 〈∇, {X/s1}〉 and 〈∇, {X/s2}〉 are solutions
of 〈∆,π2.X ≈? X〉. By IH, there exist 〈∇1, {X/t1}〉, 〈∇2, {X/t2}〉 ∈
〈∆,π2 · X ≈? X〉SolG such that 〈∇i, {X/ti}〉�̇〈∇, {X/si}〉. Then there
exist substitutions λi s.t. ∇ ` ∇iλi and ∇ ` tiλi ≈{α,C} si, for i = 1, 2.

One can choose (t1) and (t2) s.t. V ars(t1)∩V ars(t2) = ∅ and dom(λi)∩
V ars(sj) = ∅, for i, j = 1, 2.

Therefore, 〈∇1 ∪ ∇2, X/t1 ⊕ t2〉 ∈ 〈∆,π2 · X ≈? X〉SolG and 〈∇1 ∪
∇2, X/t1 ⊕ t2〉�̇〈∇, X/s1 ⊕ s2〉, via substitution λ = λ1λ2.

Notice that ∇ ` (π · t1)λ ≈{α,C} π · s1 ≈{α,C} s2 ≈{α,C} t2λ and anal-
ogously, ∇ ` (π · t2)λ ≈{α,C} t1λ. Hence, 〈∇, λ〉 is a solution for the

C-unification problems π · t1 ≈?
{α,C} t2 and π · t2 ≈?

{α,C} t1. Let 〈∇′, λ′〉
be a mgu for 〈∇, λ〉 such that dom(λ′) ⊆ dom(π)\dom(π2). Since (π · t1)
and (π·t2) are unitary epc ’s of π2, it follows by Lemma 1, that (t1λ

′ t2λ
′)

is an epc for π.

By Definition 5, (t1λ
′⊕t2λ′) is a unitary epc for π, such that 〈∇′, X/t1λ′⊕

t2λ
′〉 ∈ 〈∆,π ·X ≈? X〉SolG and 〈∇′, X/t1λ′ ⊕ t2λ′〉�̇〈∇, X/s1 ⊕ s2〉.

ut

Remark 2. Notice that to build a most general C-unifiers in the proof of Lemma
2 (case 4.b) and Def. 7 one can use the algorithm proposed by Siekmann [11],
which provides a finite, minimal and complete set of C-unifiers.

Definition 7 (General C-matchers). Let si, for i = 1..k, be nominal terms.
A most general C-matcher of these terms, if it exists, is the image of a most
general C-unifier restricted to the domain Z, say {Z/t}, of the C-unification
problem {si =? Z}i=1..k, where Z is a new variable.

Remark 3. Alternatively, Definition 5 could be restricted to ground terms (by
removing the first case in the construction of extended pseudo-cycles), and
then instead of computing C-matchers via C-unification, one could use an α-
C-equivalence checker (for example, the one specified in [3]). This would also
simplify case iv in Definition 5, since it would be sufficient to consider just one
atom e′ not in dom(π).

Definition 8 (Generated solutions for a variable). Let the fixpoint prob-
lems for X in P be given by 〈∇, πi.X ≈? X〉, for πi ∈ ΠX , and such that
|ΠX | = k. If there exist solutions 〈∇i, {X/ti}〉 ∈ 〈∇, πi.X ≈? X〉SolG and for:

– δ, a most general C-matcher of terms {ti}i=1..k with X as new variable and
– ∇′′ := ∇∪ki=1 ∇i, and ∇′ := ∇′′ ∪Y ∈dom(δ) ∪Y ′∈V ar(Y δ)dom(∇′′|Y)#Y ′;

it holds that for all Y ∈ dom(δ), ∇′ ` dom(∇′′|Y)#Y δ; then in this case we
say that 〈∇′, {X/Xδ}〉 is a generated solution for X. The set of all generated
solutions is denoted by [X]PG

.

Example 5. Let Pi := πi.X ≈? X, for i = 1..3, be fixpoint equations for π1 =
(a b c d), π2 = (a c) and π3 = (b d) and suppose that P := 〈∇, σ, P 〉 is a
successful leaf such that Pi for i = 1..3 are the fixpoint equations for X in P .

1. 〈a, b, c, d#Y, δ1 := {X/((a ∗ c) ∗ (b ∗ d))⊕ Y }〉 ∈ 〈∇, P1〉SolG ;
2. 〈a, c#Y ′, Y ′′, δ2 := {X/((a ∗ c) ∗ Y ′)⊕ Y ′′}〉 ∈ 〈∇, P2〉SolG ; and
3. 〈b, d#Y ′1 , Y

′′
1 , δ3 := {X/((b ∗ d) ∗ Y ′1)⊕ Y ′′1 }〉 ∈ 〈∇, P3〉SolG .

Notice that δ = {X/((a∗c)∗(b∗d))⊕Y ′′, Y ′/(b∗d), Y ′1/(a∗c), Y/Y ′′, Y ′′1 /Y ′′}
is a most general C-unifier of terms {ti := Xδi} with variable X.

According to the definiton, the set of initial freshness constraints is given as
∇′′ = ∇∪{a, b, c, d#Y, a, c#Y ′, Y ′′, b, d#Y ′1 , Y

′′
1 }. Notice that Y ′′ ∈ V ar(im(δ)),

have to satisfy the constraints on Y ′′1 , Y and X, that is, a, b, c, d#Y ′′ is a new
constraint on Y ′′, inherited from the constraints of the variables in the domain
of δ.

For ∇′ = ∇′′ ∪ {a, b, c, d#Y ′′}, it holds that ∇′ ` dom(∇′′|Z)#Zδ, for all
Z ∈ dom(δ). Therefore, 〈∇′, X/Xδ〉 belongs to [X]PG

.

Now we prove that the set of generated solutions [X]PG
is correct.

Corollary 1 (Soundness and completeness of generated solutions for a
variable). Let P be fixpoint problem. Any solution in [X]PG

is a solution of each
fixpoint equation for X in P. If 〈∇, X/t〉 is a solution for each fixpoint equation
for X in P then there exists 〈∇′, X/t′〉 ∈ [X]PG

such that 〈∇′, X/t′〉�̇〈∇, X/t〉

Proof (sketch). (Soundness) By Lemma 1 and Def. 6 each solution 〈∇i, {X/ti}〉
in 〈∇, πi.X ≈? X〉SolG is a correct solution for 〈∇, πi.X ≈? X〉, for πi ∈ ΠX .
Suppose 〈∇′, {X/Xδ}〉 belongs to [X]PG

. Since δ is a C-unifier of terms ti with
variable X, we have that Xδ ≈C tiδ, and also that ∇i ` π.ti ≈{α,C} ti. Thus,
∇′ ` π.tiδ ≈{α,C} tiδ since by definition we also have that ∇′ ` dom(∇|X)#Xδ,
because by construction for all Y ∈ V ar(Xδ), ∇′ includes the freshness con-
straints dom(∇′′|X)#Y and ∇′′ is an extension of ∇.
(Completeness) Let {〈∆,πi.X ≈? X〉}πi∈ΠX

be a family of all fixpoint equations
on X in P and 〈∇, X/t〉 a solution for all of them, that is, ∇ ` ∆{X/t} and
∇ ` πi · t ≈{α,C} t, for all πi ∈ ΠX . Since 〈∇, X/t〉 ∈ 〈∆,πi.X ≈? X〉SolC , by
Theorem 2, there exist a most general solution 〈∇i, X/ti〉 ∈ 〈∆,π.X ≈? X〉SolG .
Let 〈∇′, δ〉 be a most general C-matcher of the terms {ti}. By the construction
in Definition 8 follows the result. ut

Example 6. Let π = (a b c d e f g h) then π2 = (a c e g)(b d f h). There are
solutions of 〈∅, π2 ·X ≈? X〉 that are not solutions of 〈∅, π.X ≈? X〉:

– 〈∅, X/(a⊕ e)⊕ (c⊕ g)〉, 〈∅, X/(b ? f)⊕ (d ? h)〉 ∈ 〈∅, π2 ·X ≈? X〉SolG ;
– 〈∅, X/((a⊕ e)⊕ (c⊕ g))⊕ ((b ? f)⊕ (d ? h))〉 ∈ 〈∅, π2 ·X ≈? X〉SolG

but none of them is a solution for 〈∅, π.X ≈? X〉.
However there exist solutions in the intersection of both problems, for in-

stance, 〈∅, X/((a⊕ e)⊕ (c⊕ g)) ∗ (X/(b⊕ f)⊕ (d⊕ h))〉.

Definition 9 (Generated Solutions for fixpoint problems). Let P be a
fixpoint problem. The set of generated solutions for P denoted as [P]SolG is
defined as the set that contains all solutions of the form〈 ⋃

X∈V ar(P)

∇X ,
⋃

X∈V ar(P)

{X/sX}

〉
, where each 〈∇X , {X/sX}〉 ∈ [X]PG

.

Corollary 2 (Soundness and completeness of generated solutions for
fixpoint problems). Let P be a fixpoint problem. Any solution in the set of
solutions [P]SolG is a correct solution of P. For any 〈∇, δ〉 solution of P there
exist a pair 〈∇′, σ〉 ∈ [P]SolG such that 〈∇′, σ〉�̇〈∇, δ〉.

Proof (Sketch). (Soundness) By previous corollary, a solution of P is of the

form
〈⋃

X∈V ar(P)∇X ,
⋃
X∈V ar(P){X/sX}

〉
, where each 〈∇X , {X/sX}〉 is a cor-

rect solution for all fixpoint equations in P for the variable X, this completes the
soundness proof. (Completeness) Let P = {〈∆, {πi1 ·X1 ≈? X1}πi1∈ΠX1

, . . . , {πik ·
Xk ≈? Xk〉πk∈ΠXk

} and 〈∇, δ〉 be a solution of P. Then, 〈∇, δ〉 ∈ 〈∆,πij .Xj ≈?

Xj〉SolC , for all i and j. By Corollary 1, there exist most general 〈∇j , X/tj〉 ∈
[Xj]PG

, for j = 1, . . . , k, i.e., 〈∇j , X/tj〉�̇〈∇, δ〉 and . Therefore, 〈∪j∇j ,∪j{X/tj}〉
�̇ 〈∇, δ〉 and 〈∪j∇j ,∪j{X/tj}〉 ∈ [P]SolG . ut

A greedy procedure for the generation of solutions in [X]P proceeds as fol-
lows. Follow the construction of generated solutions in Definition 6 for each
fixpoint problem 〈∇, πi.X ≈? X〉 in P , where πi ∈ ΠX , as given in Lemma
1; for each generated solution 〈∇′, {X/s}〉 build the freshness context ∇′′ =
∇′∪

⋃
Y ∈V ar(s) dom(∇|X)#Y ∪dom(ΠX)#Y and check whether 〈∇′′, {X/s}〉 is

a solution for all 〈∇, πi.X ≈? X〉, for πi ∈ ΠX . Here, dom(ΠX)#Y abbreviates
∪πi∈ΠX

dom(πi)#Y .

4 Improvements in the generation of solutions

The greedy procedure might be improved eliminating generation of solution of
non interesting permutation cycles in ΠX , according to the observations below.

In first place, notice that according to the theory of pseudo-cycles, we are
interested in building solutions with atoms that occur only in permutation cycles
of length a power of two in all permutations π ∈ ΠX .

In second place, notice that if there exist permutation cycles of length a power
of two κi ∈ πi and κj ∈ πj , for πi, πj ∈ ΠX , such that dom(πi) ∩ dom(πj) 6= ∅,
dom(πi)\dom(πj) 6= ∅ and dom(πj)\dom(πi) 6= ∅, then there might not be pos-
sible solutions with occurrences of atom terms in the domain of πi and/or πj for
the fixpoint equations related with permutations πi and πj . The simplest exam-
ple is given by permutation cycles (a b) and (a c). The precise relation between
permutation cycles that allows for construction of solutions for all permutations
in ΠX is given in the next definition.

Definition 10 (Permutation factor). A permutation π is said to be an n-
factor of a permutation π′ whenever there exists n such that πn = π′.

Example 7. Let π = (a b c d e f g h). The odd powers of π, π1, π3 = (a d g b e h c f),
π5 = (a f c h e b g d) and π7 = (a h g f e d c b) are the only factors of π.

Remark 4. For κ a permutation cycle of length 2k, their factors corresponding
to permutation cycles of the same length, are exactly the permutations cycles
κp, for p odd such that 0 < p < 2k; also, if λ is a p-factor of κ then λ is the
q-factor of κ, where q is the minimum odd number such that 0 < q < 2k and
p · q = 1 modulo 2k. For instance, if κ is a permutation cycle of length 24, κ3,
κ5, κ7, etc, are respectively the 11- 13- and 7-factors, etc, of κ.

The key observation about permutation cycles κ and λ, of respective lengths

2k and 2l, for k ≥ l ≥ 0, such that, κ2
k−l

contains a permutation cycle, say ν,
that is a p-factor of λ, is that this happens if and only if regarding elements
in dom(λ), possible generated solutions from both permutation cycles coincide.

Indeed, first, notice that either l = 0 and then ν = λ or l > 0 and λ2
l−1

consists
of 2l−1 permutation cycles of length two; second, observe that if l > 0, then

λ2
l−1

= νp·2
l−1

= ν2
l−1

, since p is an odd number (such that 0 < p < 2l).

Moreover, notice that κ2
k−l |dom(λ) = ν, that implies that κ2

k−1 |dom(λ) = ν2
l−1

.
Thus, the permutation cycles of length two generated from κ and λ, restricted
to dom(λ) are the same, which implies that commutative combinations built
(according to Def. 5) regarding to the elements in dom(λ) are the same.

Example 8. Consider κ = (a b c d e f g h) and λ = (a g e c). Notice that κ2 =
(a c e g)(b d f h) and λ is a 3-factor of ν = (a c e g). Then λ2 = ν3·2 = ν2 =
(a e)(c g). Also, notice that the unitary extended pseudo-cycles built from λ and
ν are the same.

Definition 11 (Permutation cycles in the top of ΠX). Let ΠX be the set
of permutations for fixpoint equations on the variable X in a fixpoint problem. A
permutation cycle κ ∈ π ∈ ΠX is in the top of ΠX , whenever for all atoms a ∈
dom(κ) and all π′ ∈ ΠX , if a ∈ dom(π′), and a is an element in a permutation
cycle λ in π′, then there exists a natural m such that the permutation cycle of
the element a in π2m , say ν, is a factor of the permutation cycle λ.

Example 9. Consider the permutations π1 = (a b c d e f g h), π2 = (a g e c)(b f)
and π3 = (a e)(c g)(d h). The permutation cycle π1 is in the top of the set of per-
mutations; indeed, notice that all permutation cycles in all permutations appear

as a factor in powers of two of π1: π0
1 = (a b c d e f g h); π2

1 = (a c e g)(b d f h);
π4
1 = (a e)(c g)(b f)(d h); π8

1 = (a)(e)(c)(g)(b)(f)(d)(h).

Theorem 3 (Atoms of interest in fixpoint problems on a variable). Let
ΠX be the set of permutations for fixpoint equations on the variable X in a
fixpoint problem. Only the set of atoms in the domain of permutation cycles in
the top of ΠX might occur in solutions of all fixpoint equations on X.

Proof. Only atoms that are in permutation cycles of length a power of two in
all permutations π ∈ ΠX might occur in solutions of all fixpoint equations on
X. Suppose a is an atom that only occurs in permutation cycles of length a
power of two for all π ∈ ΠX and let κ be a permutation cycle in ΠX of maximal
length, say 2k, with a ∈ dom(κ). Suppose λ is a permutation cycle in φ, for some
φ ∈ ΠX , with a ∈ dom(λ) and let 2l be the length of λ. Only if λ is a factor of a

permutation cycle in π2k−l

, say ν such that νp = λ, the extended pseudo-cycles
built from λ (and from κ) will maintain the invariants required, restricted to the
atoms in dom(λ), that is for an extended pseudo-cycle built from λ of the form

(A0 . . . A2m−1), where m ≤ l, φ(Ai) ≈C Ai+1 and φ2
l−m

(Ai) ≈C Ai, where i+1
reads modulo 2m. This also holds for λ. Hence, since ν is a p-factor of λ (and

also, π2k−l |dom(λ) = ν), one has that νp(Ai) ≈C Ai+1 and νp·2
l−m

(Ai) ≈C Ai.
If the extended pseudo-cycle is of length two, that is it is of the form (A0A1),

we have m = 1 and νp·2
l−1

(Ai) ≈C Ai, for i = 0, 1, and since p is odd, this

implies that ν2
l−1

(Ai) ≈C Ai, for i = 0, 1. This condition also holds for π, since

(π2k−l |dom(ν))
2l−1

= (ν)2
l−1

; hence, π2k−1

(Ai) = Ai+1, for i = 0, 1. If κ is not a
permutation cycle in the top of ΠX , then there exists some permutation cycle
λ ∈ φ ∈ ΠX , such that a ∈ dom(κ) ∩ dom(λ), 2l is the length of λ, but the

permutation cycle of length 2l in κ2
k−l

, say ν, such that a ∈ dom(ν) is not a

factor of λ. Thus, since ν2
l−1 6= λ2

l−1

atoms in the domains of ν and λ cannot
be combined uniformly to build common solutions for κ and λ (i.e., for π and
ψ).

To finish we show how a common solution can be built when κ is in the
top of ΠX . Suppose that (A) is a unitary extended pseudo cycle built from λ
by successive applications of case 3.a.i. of Definition 5 halving in each step the
length of the pseudo-cycle. We have that λ(A) = A. It is possible to generate

an extended pseudo-cycle for κ of the form (Aκ(A)κ2(A) . . . κ2
k−l−1(A)). From

this extended pseudo-cycle it is possible to build a unitary extended pseudo-
cycle by successive applications of case 3.a.i. of Definition 5, first obtaining (A?1
κ2

K−l−1

(A) κ(A)?1κ
2k−l−1+1(A) . . . κ2

k−l−1−1(A)?1κ
2k−l−1(A)), and so on until

a unitary extended pseudo-cycle of the form ((· · · ((A?1B1)?2B2) · · ·)?k−lBk−l)
is obtained where the Bi’s, for 1 ≤ i ≤ k − l are adequate combinations of the

terms κ(A), . . . κ2
k−l−1(A) according to the constructions of extended pseudo-

cycles. From this extended pseudo-cycle one has the solution for π.X ≈? X of
the form 〈∅, {X/(· · · ((A?1 B1) ?2 B2) · · ·) ?k−l Bk−l}〉, where ?j , for j = 1, . . . , l
are commutative symbols. Using the unitary cycle (A) for λ and cases 1 and
3.a.ii of Definition 5 one can generate the unitary pseudo-cycle ((· · · ((A?1 Y1)?2

Y2) · · ·)?k−l Yk−l) which gives the solution 〈∇, {X/(· · · ((A?1 Y1)?2 Y2) · · ·)?k−l
Yk−l}〉 for λ, where ∇ = {dom(λ)#Yj |1 ≤ j ≤ l}. The C-unification problem
〈∇, X ≈? (· · · ((A?1B1)?2B2) · · ·)?k−lBk−l, X ≈? (· · · ((A?1Y1)?2Y2) · · ·)?k−l
Yk−l}〉 unifies with solution 〈∅, {X/(· · · ((A ?1 B1) ?2 B2) · · ·) ?k−l Bk−l}〉 which
is a common solution for π and φ.

Example 10. (Continuing example 9) First, notice that the permutation cycle
π1 = (a b c d e f g h) is not in the top of (a d e b g h c f); also, π1 is neither in the
top of (a b c d) nor in the top of (a i). Since π1 is not a factor of π2, solutions
generated from the extended pseudo-cycle (ā d̄ ē b̄ ḡ h̄ c̄ f̄) might not be solutions
built for π1; for instance, consider the unitary extended pseudo-cycle built for π2,
(((ā?ḡ)�(ē? c̄))⊕((d̄?h̄)�(b̄? f̄)), which is not a solution for π1, since not π1((ā?
ḡ) � (ē ? c̄)) ≈C (d̄ ? h̄) � (b̄ ? f̄). Also, for the extended pseudo cycle (ā b̄ c̄ d̄): the
permutation cycles in π2

1 are (a c e g) and (b d f h), which give different solutions.
For (ā ī), the permutation cycle (a e) in π4

i will produce different solutions.
Now consider solutions of fixpoint equations πi.X ≈? X, for i = 1, 2, 3,

where ΠX consists of the permutations π1 = (a b c d e f g h), π2 = (a g e c)(b f)
and π3 = (a e)(c g)(d h). In this case, we have seen (Example 9) that π1 is a
permutation cycle in the top of ΠX . Among the solutions generated for πi.X ≈?

X, for i = 1, 2, 3 through extended pseudo-cycles we have, respectively:
〈∇1, {X/s1 =((ā+ ē) ? (c̄+ ḡ))⊕ ((b̄+ f̄) ? (d̄+ h̄)}〉,
〈∇2, {X/s2 =((ā+ ē) ? (c̄+ ḡ))⊕ ((b̄+ f̄) ? Y }〉 and
〈∇3, {X/s3 =((ā+ ē) ? (c̄+ ḡ))⊕ (Z ? (d̄+ h̄)}〉,
where ∇1 = ∅, ∇2 = {a#Y, b#Y, c#Y, e#Y, f#Y, g#Y } and ∇3 = {a#Z, c#Z,
d#Z, e#Z, g#Z, h#Z}, and the symbols ⊕, ? and + are commutative. The C-
unification problem 〈∇1 ∪ ∇2 ∪ ∇3, {X ≈? s1, X ≈? s2, X ≈? s3}〉 has solution
{X/s1, Y/d̄+ h̄, Z/b̄+ f̄} with the respective freshness constraints; thus, restrict-
ing this solution to the freshness constraints on X we have the common solution
〈∅, {X/s1}〉.

The greedy generation algorithm can then be improved by generating solu-
tions only for the atoms in permutation cycles in the top of ΠX .

5 Conclusions and future work

We presented a procedure to generate solutions of fixpoint nominal C-unification
problems modulo commutativity. The procedure is proved to be sound and com-
plete. This piece of work is relevant to provide a sound and complete procedure
to generate solutions of nominal C-unification problems which consists of an
initial phase in which nominal C-unification problems are transformed into an
equivalent finite set of fixpoint problems, as described in [4] and the second phase
that consist of the generation of potentially infinite set of independent solutions,
presented in this paper, based on combinatorial properties of permutations.

Additional improvements of the generation procedure should be investigated
exhaustively, as well as possible extensions of nominal unification, nominal match-
ing, nominal narrowing modulo other equational theories of interest.

References

[1] T. Aoto and K. Kikuchi. A Rule-Based Procedure for Equivariant Nominal Uni-
fication. In Pre-proc. of Higher-Order Rewriting (HOR), pages 1–5, 2016.

[2] T. Aoto and K. Kikuchi. Nominal Confluence Tool. In Proc. of 8th Int. Joint
Conf.: Automated Reasoning (IJCAR), volume 9706 of LNCS, pages 173–182.
Springer, 2016.

[3] M. Ayala-Rincón, W. Carvalho-Segundo, M. Fernández, and D. Nantes-Sobrinho.
A Formalisation of Nominal Equivalence with Associative-Commutative Function
Symbols. In Pre-proc. of Logical and Semantic Frameworks with Applications
(LSFA), to appear in ENTCS, pages 78–93, 2016.

[4] M. Ayala-Rincón, W. Carvalho-Segundo, M. Fernández, and D. Nantes-Sobrinho.
Nominal C-Unification. Available at ayala.mat.unb.br/publications.htlm,
2017.

[5] M. Ayala-Rincón, M. Fernández, and D. Nantes-Sobrinho. Nominal Narrowing.
In Proc. of 1st Int. Conf. on Formal Structures for Computation and Deduction
(FSCD), volume 52 of LIPIcs, pages 1–16. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

[6] M. Ayala-Rincón, M. Fernández, and A. C. Rocha-oliveira. Completeness in PVS
of a Nominal Unification Algorithm. ENTCS, 323:57–74, 2016.

[7] J. Cheney. Equivariant unification. J. of Automated Reasoning, 45:267–300, 2010.
[8] M. Fernández and M. J. Gabbay. Nominal Rewriting. Information and Compu-

tation, 205(6):917–965, 2007.
[9] T. Kutsia, J. Levy, M. Schmidt-Schauß, and M. Villaret. Nominal Unification of

Higher Order Expressions with Recursive Let. In Proc. of 26th Int. Sym. on Logic-
Based Program Synthesis and Transformation (LOPSTR), pages 1–15, 2016. To
appear in LNCS.

[10] A. M. Pitts. Nominal Logic, a First Order Theory of Names and Binding. Infor-
mation and Computation, 186(2):165–193, 2003.

[11] J. H. Siekmann. Unification of Commutative Terms. In Proc. of An Int. Symp. on
Symbolic and Algebraic Manipulation, volume 72 of LNCS, pages 22–29. Springer,
1979.

[12] C. Urban. Nominal Unification Revisited. In Proc. of Int. Work. on Unification
(UNIF), volume 42 of EPTCS, pages 1–11, 2010.

[13] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal Unification. Theoretical
Computer Science, 323(1-3):473497, 2004.

A Technical Proof

Lemma 1 (Extended pseudo-cycle correspondence between π and π2).
For k ≥ 1, (A0 · · ·A2k−1) is an extended pseudo-cycle for π if, and only if, there
exist (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1) epc ’s for π2 with a substitution σ
such that atoms in its image belong to dom(π)\dom(π2), and for 0 ≤ j ≤ 2k−1−1
one has Bjσ ≈{α,C} A2j and Cjσ ≈{α,C} A2j+1.

Proof. The proof is by induction in the construction of the extended pseudo-
cycles.
Base Case.

1. Case 1 of Def. 5 does not apply since k ≥ 1.
2. Let (a b) be a trivial epc for π, and let (Y Y ′) be an epc for π2. Notice that
dom(π2) = dom(π)\{a | a ∈ 2-cycle of π}.

Induction Step.

1. By Def. 5(3.a.i), from an epc for π, (A0 · · ·A2k−1) one can build another
epc in steps A and/or B. By i.h., there exist epc ’s for π2: (B0 · · ·B2k−1−1)
and (C0 · · ·C2k−1−1) and a substitution σ such that Bjσ ≈{α,C} A2j and
Cjσ ≈{α,C} A2j+1. We consider two cases, depending on whether the epc obtained

has length equal to 2k or 2k−1:
(a) (A0 ? Aj · · ·A2k−1 ? A2k−1+j) with j 6= 2k−1, then the length of the new

epc does not change. From the two epc ’s for π2 we build the epc ’s in
the following way:
– j is even: (B0 ? B j

2
· · ·B2k−1−1 ? B2k−1+ j

2−1
) and

(C0 ? C j
2
· · ·C2k−1−1 ? C2k−1+ j

2−1
). Notice that the conditions of σ

are preserved, for instance, (B0 ? B j
2
)σ = A0 ? Aj .

– j is odd: (B0 ? C j−1
2
· · ·B2k−1−1 ? C2k−1+ j−1

2 −1
) and

(C0 ? B j+1
2
· · ·C2k−1−1 ? B2k−1+ j+1

2 −1
). Notice that (B0 ? C j−1

2
)σ =

B0σ ? C j−1
2
σ = A0 ? Aj , similarly, one can check that the two epc ’s

satisfy the conditions on σ.
(b) (A0 ? A2k−1 · · ·A2k−1−1 ? A2k−1) with j = 2k−1. From the epc ’s for π2

we build (B0 ?B2k−2 · · ·B2k−2−1 ?B2k−1−1) and (C0 ?C2k−2 · · ·C2k−2−1 ?
C2k−1−1).

2. By Def. 5(3.a.ii), from epc ’s for π, (A0 · · ·A2k−1) and (A′0 · · ·A′2k′−1), we

build an epc for π, (A0 ?A
′
j · · ·A2k−1 ?A

′
2k′−1), for some 0 ≤ j ≤ 2k− 1 (the

case 0 ≤ j ≤ 2k
′ − 1 is analogous).

By i.h., there exist epc ’s for π2, (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1) for
(A0 · · ·A2k−1), and (B′0 · · ·B′2k′−1−1) and (C ′0 · · ·C ′2k′−1−1) for (A′0 · · ·A′2k′−1),

satisfying the conditions for σ, σ′ respectively. We can choose Bi, Ci, B
′
j , C

′
j

such that var(Bi, Ci) ∩ var(B′j , C ′j) = ∅. Then we have consider two cases:
– for a j even: take (B0 ? B

′
j
2

· · ·B2k−1−1 ? B
′
2k′−1+ j

2−1
) and

(C0 ? C
′
j
2

· · ·C2k−1−1 ? C2k′−1+ j
2−1

).

– for a j odd: (B0 ? C
′
j−1
2

· · ·B2k−1−1 ? C
′
2k′−1+ j−1

2 −1
) and

(C0 ? B
′
j−1
2

) · · ·C2k−1−1 ? B
′
2k′−1+ j−1

2 −1
).

Its straightforward to check that the conditions for these epc of π2 hold for
σ ∪ σ′.

3. By Def. 5(3.a.iii), from epc ’s for π, (A0 · · ·A2k−1) and (A′0 · · ·A′2k′−1), we

build the epc of π: (〈A0, A
′
j〉 · · · 〈A2k−1, A

′
2k′+j−1〉).

By i.h., there exist epc ’s for π2, (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1) for
(A0 · · ·A2k−1), and (B′0 · · ·B′2k′−1−1) and (C ′0 · · ·C ′2k′−1−1) for (A′0 · · ·A′2k′−1),

satisfying the conditions for σ, σ′ resp. Similarly to the previous case, one
can check that the result holds, depending on whether j is even or odd.

4. By Def. 5(3.a.iv), from (A0 · · ·A2k−1) an epc for π, one can build either
([e]A0 · · · [e]A2k−1) or (g A0 · · · g A2k−1). By i.h., there exist epc ’s for π2:
(B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1) and a substitution σ satisfying the
requirements. Its clear that ([e]B0 · · · [e]B2k−1−1) and ([e]C0 · · · [e]C2k−1−1)
are epc ’s in π2, for ([e]A0 · · · [e]A2k−1), and similarly, (g B0 · · · g B2k−1−1)
and (g C0 · · · g C2k−1−1) are epc ’s in π2, for (g A0 · · · g A2k−1).

5. By Def. 5(3.a.v), from (A0 · · ·A2k−1) and (a0 · · · a2l−1), resp. an epc and a
permutation cycle of π, we build ([aj]A0 · · · [a2l+j−1]A2k−1), another epc for
π. By i.h., we have for π2 epc ’s (B0 · · ·B2k−1−1) and (C0 · · ·C2k−1−1) and a
substitution σ satisfying the necessary conditions.
– Case l = 1, then (a0 · · · a2l−1) = (a b), take ([a]B0 · · · [a]B2k−1−1) and

([b]C0 · · · [b]C2k−1−1).
– Otherwise, (a0 a2 · · · a2l−2) and (a1 a3 · · · a2l−1) are permutation cycles

of π2, and the we take ([aj]B0 · · · [aj−2]B2k−1−1) and
([aj+1]C0 · · · [aj−1]C2k−1−1).

In both cases σ satisfy the necessary conditions.
ut

