NP-completeness of sorting unsigned permutations by reversals

Thaynara Arielly de Lima and Mauricio Ayala-Rincón Departamento de Matemática, Universidade de Brasília

September 17, 2013

Abstract

Since it is well-known that the problem of sorting unsigned permutations by bounded reversals is \mathcal{NP} -hard but no proof of the fact that this problem is in \mathcal{NP} is available in the literature, here a standard proof of this fact is given.

MIN-SBP is in \mathcal{NP}

It is well-known that the problem of genome rearrangement by reversals corresponds to sorting permutations by bounded reversals in the symmetric group S_n , denoted as *MIN-SBR*. This problem consists in finding the minimum number of reversals needed to transform a permutation into the identity permutation. Almost twenty years ago A. Caprara showed that *MIN-SBR* is an \mathcal{NP} -hard problem ([2]), but to the best of our knowledge there is no explicit proof in the literature of the fact that the associated decision problem belongs to \mathcal{NP} , despite the fact that this is mentioned in several papers. Here, we present a standard proof of this fact following standard techniques as those presented in textbooks on complexity and combinatorics as [1].

Optimization Problems

In general, an *Optimization Problem* is the problem of finding the *best* solution from all feasible solutions.

Definition 1 ([1]). An optimization problem \mathfrak{P} is characterized by the quadruple of objects $\langle I_{\mathfrak{P}}, SOL_{\mathfrak{P}}, m_{\mathfrak{P}}, goal_{\mathfrak{P}} \rangle$, where:

- 1. $I_{\mathfrak{P}}$ is the set of instances of \mathfrak{P} ;
- 2. $SOL_{\mathfrak{P}}$ is a function that associates to any input instance $x \in I_{\mathfrak{P}}$ the set of feasible solutions of x;
- 3. $m_{\mathfrak{P}}$ is a measure function that associates to any pair (x, y) such that $x \in I_{\mathfrak{P}}$ and $y \in SOL_{\mathfrak{P}}$ a positive number called the value of the feasible solution y;
- 4. $goal_{\mathfrak{P}} \in \{MIN, MAX\}$ specifies whether \mathfrak{P} is a maximization or a minimization problem.

Example 1. Given a permutation $\pi \in S_n$, MIN-SBR consists in finding the minimum number of reversals needed to transform π into the identity permutation. Formally, this problem is defined as follows:

- 1. $I_{MIN-SBR} = \{ \pi \mid \pi \in S_n \};$
- 2. $SOL_{MIN-SBR}(\pi) = \{\rho = \rho_1, \rho_2, \dots, \rho_k \mid k \in \mathbb{N}, \rho_i \text{ reversal in } S_n \text{ for } 1 \le i \le k \text{ and } \pi\rho_1 \dots \rho_k = id\};$
- 3. $m_{MIN-SBR}(\pi, \rho) = |\rho|;$
- 4. $goal_{MIN-SBR} = MIN.$

One can note that any optimization problem \mathfrak{P} has an associated decision problem \mathfrak{P}_D . So, given an optimization problem \mathfrak{P} and an instance x, denote by :

- 1. $SOL^*_{\mathfrak{P}}(x)$ the set of optimal solutions of x relative to goal (MIN or MAX);
- 2. for every $y^*(x) \in SOL^*_{\mathfrak{P}}(x)$, $m_{\mathfrak{P}}(x, y^*(x)) = goal_{\mathfrak{P}}\{v \mid v = m_{\mathfrak{P}}(x, z) \text{ and } z \in SOL_{\mathfrak{P}}(x)\};$
- 3. $m_{\mathfrak{B}}^*(x)$ the value of any optimal solution $y^*(x)$ of x.

The decision problem \mathfrak{P}_D associated to an optimization problem \mathfrak{P} is formally defined as below.

Definition 2 (Decision Problem (\mathfrak{P}_D) associated to \mathfrak{P} [1]). Given an optimization problem \mathfrak{P} and an instance $x \in I_{\mathfrak{P}}$ and $k \in \mathbb{N}$, decide whether $m_{\mathfrak{P}}^*(x) \geq k$ (if $goal_{\mathfrak{P}} = MAX$) or whether $m_{\mathfrak{P}}^*(x) \leq k$ (if $goal_{\mathfrak{P}} = MIN$).

By analogy with the class \mathcal{NP} of decision problems, one can define the class \mathcal{NPO} of optimization problems.

Definition 3 (The class \mathcal{NPO} of decision problems [1]). An optimization problem $\mathfrak{P} = \langle I_{\mathfrak{P}}, SOL_{\mathfrak{P}}, m_{\mathfrak{P}}, goal_{\mathfrak{P}} \rangle$ belongs to the class \mathcal{NPO} iff

- 1. the set of instances $I_{\mathfrak{P}}$ is recognizable in polynomial time;
- 2. there exists a polynomial q such that, given an instance $x \in I_{\mathfrak{P}}$, for any $y \in SOL_{\mathfrak{P}}(x), |y| \leq q(|x|)$ and, besides, for any y such that $|y| \leq q(|x|)$, it is decidable in polynomial time whether $y \in SOL_{\mathfrak{P}}(x)$;
- 3. the measure function $m_{\mathfrak{P}}$ is computable in polynomial time.

It is well-known that given any permutation $\pi \in S_n$, the minimum number of reversals needed to sort π is at most n-1. So, in the following, for any $\pi \in S_n$, it will be required that $|\rho| \leq n-1$ for every $\rho \in SOL_{MIN-SBR}(\pi)$.

Example 2. MIN-SBR belongs to \mathcal{NPO} . Indeed,

- 1. given a permutation π , one can recognize in linear time whether $\pi \in S_n$ (e.g., check wheter π is to a bijective function on $\{1, \ldots, n\}$);
- 2. consider the polynomial $q(n) = n^2$. If $\rho \in SOL_{\mathfrak{P}}(\pi)$ then $|\rho| \leq n-1 < q(n)$. Moreover, for any sequence $\rho = \rho_1, \ldots, \rho_k, 1 \leq k < n$, testing if each ρ_i is a reversion takes linear time and if ρ is a feasible solution requires testing if $\pi \rho_1 \ldots \rho_k = id$, which can be clearly performed bounded by quadratic time (e.g., explicitly building $\pi \rho_1$ takes linear time at most, and so on);
- 3. finally, given a feasible solution ρ , the measure function (size of ρ), is trivially computable in linear time.

The following theorem is the key result applied to conclude that $MIN-SBR_D$ belongs to \mathcal{NP} .

Theorem 1 ([1]). For any optimization problem \mathfrak{P} in \mathcal{NPO} , the corresponding decision problem \mathfrak{P}_D belongs to \mathcal{NP} .

Proof. Assume q is the polynomial for \mathfrak{P}_D as in Def. 3. Given an instance $x \in I_{\mathfrak{P}}$ and a natural k, we can solve \mathfrak{P}_D by performing the following non-deterministic algorithm:

- 1. guess any string y such that $|y| \le q(|x|)$ in time q(|x|);
- 2. check if y belongs to $SOL_{\mathfrak{P}}(x)$ in polynomial time;
- 3. if the previous test is positive, compute $m_{\mathfrak{P}}(x, y)$, in polynomial time;

- 4. answer YES if $m_{\mathfrak{P}}(x, y) \leq k$;
- 5. answer NO otherwise.

Corollary 1. MIN-SBR_D belongs to \mathcal{NP} .

Proof. The statement follows from Theorem 1 and Example 2. \Box

References

- G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi, P. Crescenzi, and V. Kann. Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1999.
- [2] A. Caprara. Sorting by reversals is difficult. In *RECOMB*, pages 75–83, 1997.