
Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Uma Comparação do Método de Unificação de
Ordem Superior de Huet e Unificação via

Cálculos de Substituições Expĺıcitas

F. L. C. de Moura

Seminário de Computação - GTC/UnB

27 de abril de 2005

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Outline

• Introduction

• Unification Tree Notation

• The λσ-calculus

• The λse-calculus

• Comparing the λσ- and the λse-styles of unification

• Conclusion

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Motivation

I Higher-Order terms appear frequently in Mathematics, Logic,
Automated Reasoning, etc.

I Higher Order Unification (HOU) is a basic operation
extensively used in computational systems based on the
λ-calculus such as functional programming languages and
proof assistants.

I Explicit substitutions are a refinement of the λ-calculus in
which the substitution operation is not treated as a
meta-operation but as an operation of the calculus itself.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Simply typed λ-calculus in de Bruijn notation

Definition
The set ΛdB(X) of untyped λ-terms in de Bruijn notation:

a ::= n | X | (a b) | λ.a where n ∈ N and X ∈ X .

The syntax of simply typed λ-calculus in de Bruijn notation:

Types A ::= K | A → B
Contexts Γ ::= nil | A.Γ
Terms a ::= n | X | (a b) | λA.a where n ∈ N and X ∈ X .

The type of the term a is indicated by τ(a).

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Simply typed λ-calculus in de Bruijn notation

Definition

1. Every λ-term in β-normal form (β-nf) has the form

λA1 . . . λAn .(h e1 . . . ep)

where n, p ≥ 0, h is a variable (or a constant) called its head
and e1,. . ., ep are λ-terms in β-nf called its arguments.

2. A λ-term in β-nf is rigid if its head is a constant or a bound
variable. If it is a meta-variable, the term is flexible.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Simply typed λ-calculus in de Bruijn notation

3 Let a ∈ ΛdB(X) be a λ-term in de Bruijn notation of type
A1 → . . .→ Am → B with B atomic. The η-long form of a
β-nf term a, written a′, is inductively defined as follows:

I if a = λA.b then a′ = λA.b
′.

I if a = (n b1 . . . bq) then
a′ = λA1 . . . λAm .(n + m c1 . . . cq m′ . . . 1′), where cj (1 ≤ j ≤ q)
is the η-long form of the normal form of Um+1

0 (bj).
I if a = (X b1 . . . bq) then a′ = λA1 . . . λAm .(X c1 . . . cq m′ . . . 1′),

where cj (1 ≤ j ≤ q) is the η-long form of the normal form of
Um+1

0 (bj).

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Unification problems

Definition
A unification equation is an equation of the form a =? b where a
and b are λ-terms of the same type and under the same context.
A unification problem is a finite set of unification equations.

Examples:

I XA·nil
A =? 1A·nil

A

I Solution: X/1

I (XA·nil
A→A 1A·nil

A) =? (2A·nil
A→A(Y A·nil

A→A 1A·nil
A))

I Solutions: σ1 = {X/λA.(3 1),Y /λA.1}
σ2 = {X/λA.(3 2),Y /λA.1}

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Unification problems

Definition
A unification equation is an equation of the form a =? b where a
and b are λ-terms of the same type and under the same context.
A unification problem is a finite set of unification equations.

Examples:

I XA·nil
A =? 1A·nil

A

I Solution: X/1

I (XA·nil
A→A 1A·nil

A) =? (2A·nil
A→A(Y A·nil

A→A 1A·nil
A))

I Solutions: σ1 = {X/λA.(3 1),Y /λA.1}
σ2 = {X/λA.(3 2),Y /λA.1}

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Unification problems

Definition
A unification equation is an equation of the form a =? b where a
and b are λ-terms of the same type and under the same context.
A unification problem is a finite set of unification equations.

Examples:

I XA·nil
A =? 1A·nil

A

I Solution: X/1

I (XA·nil
A→A 1A·nil

A) =? (2A·nil
A→A(Y A·nil

A→A 1A·nil
A))

I Solutions: σ1 = {X/λA.(3 1),Y /λA.1}
σ2 = {X/λA.(3 2),Y /λA.1}

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Unification problems

Definition
A unification equation is an equation of the form a =? b where a
and b are λ-terms of the same type and under the same context.
A unification problem is a finite set of unification equations.

Examples:

I XA·nil
A =? 1A·nil

A

I Solution: X/1

I (XA·nil
A→A 1A·nil

A) =? (2A·nil
A→A(Y A·nil

A→A 1A·nil
A))

I Solutions: σ1 = {X/λA.(3 1),Y /λA.1}
σ2 = {X/λA.(3 2),Y /λA.1}

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Unification problems

I Let ∆ = A → A · A · nil be a context.
λA.(2

A·∆
A→A XA·∆

A) =? λA.(2
A·∆
A→A3

A·∆
A)

I Solution: X/2

I λA.X
A·Γ
A =? λA.1

A·Γ
A , where Γ is any context, does not have

solutions.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Unification problems

I Let ∆ = A → A · A · nil be a context.
λA.(2

A·∆
A→A XA·∆

A) =? λA.(2
A·∆
A→A3

A·∆
A)

I Solution: X/2

I λA.X
A·Γ
A =? λA.1

A·Γ
A , where Γ is any context, does not have

solutions.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Unification problems

I Let ∆ = A → A · A · nil be a context.
λA.(2

A·∆
A→A XA·∆

A) =? λA.(2
A·∆
A→A3

A·∆
A)

I Solution: X/2

I λA.X
A·Γ
A =? λA.1

A·Γ
A , where Γ is any context, does not have

solutions.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

The procedure SIMPL

INPUT: A unif. problem P with at least one rigid-rigid equation:

λA1 . . . λAr .(n e1
1 . . . e

1
p1

) =? λA1 . . . λAr .(m e2
1 . . . e

2
p2

) ∧ P ′

where r , p1, p2 ≥ 0 and n,m > 0.
WHILE there exists a rigid-rigid equation in P DO

If n 6= m then stop and report a failure status else let p = p1 = p2

and replace the selected equation by the conjunction

λA1 . . . λAr .e
1
1 =? λA1 . . . λAr .e

2
1∧. . .∧λA1 . . . λAr .e

1
p =? λA1 . . . λAr .e

2
p

in P and call the result P (the simplified version of P).
DONE.
If there exists a flexible-rigid equation in P then return P else stop
and report a success status.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Example of SIMPL

λA→A→AλA.(2A→A→A XA 1A) =? λA→A→AλA.(2A→A→A 3A (YA→A 1))

simplifies to

λA→A→AλA.XA =? λA→A→AλA.3A

∧

λA→A→AλA.1A =? λA→A→AλA.(YA→A 1)

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Example of SIMPL

λA→A→AλA.(2A→A→A XA 1A) =? λA→A→AλA.(2A→A→A 3A (YA→A 1))

simplifies to

λA→A→AλA.XA =? λA→A→AλA.3A

∧

λA→A→AλA.1A =? λA→A→AλA.(YA→A 1)

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Example of SIMPL

λA→A→AλA.(2A→A→A XA 1A) =? λA→A→AλA.(2A→A→A 3A (YA→A 1))

simplifies to

λA→A→AλA.XA =? λA→A→AλA.3A

∧

λA→A→AλA.1A =? λA→A→AλA.(YA→A 1)

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

The procedure MATCH

I Takes a flexible-rigid equation as argument and returns a
finite set of substitutions called Σ.

I Input: A flexible-rigid equation of the form:

λA1 . . . λAr .(X e1
1 . . . e

1
p1

) =? λA1 . . . λAr .(n e2
1 . . . e

2
p2

) (1)

where τ(X) = B1 → . . .→ Bp1 → C , where p1, p2, r ≥ 0,
n > 0 and C is atomic.

I The procedure MATCH is based on two rules named imitation
and projection.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

The procedure MATCH

I Takes a flexible-rigid equation as argument and returns a
finite set of substitutions called Σ.

I Input: A flexible-rigid equation of the form:

λA1 . . . λAr .(X e1
1 . . . e

1
p1

) =? λA1 . . . λAr .(n e2
1 . . . e

2
p2

) (1)

where τ(X) = B1 → . . .→ Bp1 → C , where p1, p2, r ≥ 0,
n > 0 and C is atomic.

I The procedure MATCH is based on two rules named imitation
and projection.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

The procedure MATCH

I Takes a flexible-rigid equation as argument and returns a
finite set of substitutions called Σ.

I Input: A flexible-rigid equation of the form:

λA1 . . . λAr .(X e1
1 . . . e

1
p1

) =? λA1 . . . λAr .(n e2
1 . . . e

2
p2

) (1)

where τ(X) = B1 → . . .→ Bp1 → C , where p1, p2, r ≥ 0,
n > 0 and C is atomic.

I The procedure MATCH is based on two rules named imitation
and projection.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

The imitation rule

The imitation substitution corresponds exactly to the η-long term
of the type of X , whose head corresponds to the head of the rigid
term:

X/λB1 . . . λBp1
.(p1 + n− r (X1 p1 . . . 1) . . . (Xp2 p1 . . . 1))

where X1, . . . ,Xp2 are meta-variables with appropriate type and all
sub-terms are in η-normal form.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Imitation example

Consider the equation:

λAλA.(XA→A 1A) =? λAλA.(3A→A(YA→A(4A→A 1A)))

Generated imitation substitution:

XA→A/λA.(2A→A (X1A→A
1A))

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

The projection rule

I A projection can be used in case the head of the rigid term is
a constant or a bound variable.

I The projection rule consists in “projecting” the head of the
flexible term onto one of its arguments which eventually
contains the index that corresponds to the head of the rigid
term.

I The projections substitutions always have the form
λB1 . . . λBp1

.(i (X1 p1 . . . 1) . . . (Xk p1 . . . 1)), where
1 ≤ i ≤ p1.

I This gives at most p1 possible different projections, one for
each argument of X .

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

The projection rule

I A projection can be used in case the head of the rigid term is
a constant or a bound variable.

I The projection rule consists in “projecting” the head of the
flexible term onto one of its arguments which eventually
contains the index that corresponds to the head of the rigid
term.

I The projections substitutions always have the form
λB1 . . . λBp1

.(i (X1 p1 . . . 1) . . . (Xk p1 . . . 1)), where
1 ≤ i ≤ p1.

I This gives at most p1 possible different projections, one for
each argument of X .

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

The projection rule

I A projection can be used in case the head of the rigid term is
a constant or a bound variable.

I The projection rule consists in “projecting” the head of the
flexible term onto one of its arguments which eventually
contains the index that corresponds to the head of the rigid
term.

I The projections substitutions always have the form
λB1 . . . λBp1

.(i (X1 p1 . . . 1) . . . (Xk p1 . . . 1)), where
1 ≤ i ≤ p1.

I This gives at most p1 possible different projections, one for
each argument of X .

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

The projection rule

I A projection can be used in case the head of the rigid term is
a constant or a bound variable.

I The projection rule consists in “projecting” the head of the
flexible term onto one of its arguments which eventually
contains the index that corresponds to the head of the rigid
term.

I The projections substitutions always have the form
λB1 . . . λBp1

.(i (X1 p1 . . . 1) . . . (Xk p1 . . . 1)), where
1 ≤ i ≤ p1.

I This gives at most p1 possible different projections, one for
each argument of X .

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Simply typed λ-calculus in de Bruijn notation
The procedure SIMPL
The procedure MATCH

Projection example

Consider the equation:

λAλA.(XA→A 1A) =? λAλA.1A

Generated projection substitution:

XA→A/λA.1A

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Visualising the Tree
Formal Construction
Example

Unification Tree Notation

I The unification tree notation is obtained from the matching
tree of Huet by adding labels to the unification problems as
well as to the generated substitutions.

I These labels provide information about the position of the
unification problems and of the substitutions in the matching
tree.

I Facilitates the computation of the solutions.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Visualising the Tree
Formal Construction
Example

Visualising the Tree

σ1s

Pε

σ1 σ2 σr

P ε

PrP1 P2

σ11
σ12

P rP 2P 1

P11 P12 P1s

SIMPL(P1) SIMPL(P2)

SIMPL(Pε)

SIMPL(Pr)

1

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Visualising the Tree
Formal Construction
Example

Formal Construction

A unification tree, for a given unification problem P, is given by:

1. Label P with ε (the empty position) as a subscript, i.e., Pε.

2. For a node labeled with Pq, its sibling node is labeled with Pq

whenever the unification problem derives by applying the
procedure SIMPL. This step is represented by a curly line in
the unification.

3. For a node labeled with Pq containing a flexible-rigid equation,
call σq1, σq2, . . . , σqk the incremental substitutions generated
by an application of the procedure MATCH to this equation.

4. The sibling nodes of Pq, written Pq1, . . . ,Pqk are defined by
the composition Pqi := Pqσqi , for i = 1, . . . , k.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Motivation
Visualising the Tree
Formal Construction
Example

Example

Fail

solid lines denote projection steps

dashed lines denote imitation steps

SIMPL

λA.2(X1 3) =? λA.2(4 3)

SIMPL

λA.X1 3 =? λA.4 3

σ12 = {X1/λA.4(X2 1)}

λA.X2 3 =? λA.3

λA.4(X2 3) =? λA.4 3

σ122 = {X2/λA.1}

Success Success

σ121 = {X2/λA.3}

σ11 = {X1/λA.1}

SIMPL

λA.3 =? λA.4 3

Fail

λA.X 3 =? λA.2(43)

σ1 = {X/λA.2(X1 1)} σ2 = {X/λA.1}

λA.3 =? λA.2(4 3)

SIMPL

1

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The λσ-calculus

The syntax of typed λσ-calculus is given by

Types A ::= K | A → B

Contexts Γ ::= nil | A · Γ
Terms a ::= 1 | X | (a b) | λA.a | a[s]
Substitutions s ::= id | ↑ | a · s | s ◦ s

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The λσ-calculus

The typing rules:

(var) A.Γ ` 1 : A (lambda)
A.Γ ` a : B

Γ ` λA.a : A → B

(app)
Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B
(clos)

Γ ` s . Γ′ Γ′ ` a : A

Γ ` a[s] : A

(id) Γ ` id . Γ (shift) A.Γ `↑ .Γ

(cons)
Γ ` a : A Γ ` s . Γ′

Γ ` a.s . A.Γ′
(comp)

Γ ` s ′′ . Γ′′ Γ′′ ` s ′ . Γ′

Γ ` s ′ ◦ s ′′ . Γ′

(meta) Γ ` X : A, where Γ is any context.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The λσ-calculus

(Beta) (λ.a)b −→ a [b · id]

(App) (a b)[s] −→ (a [s]) (b [s])

(Abs) (λ.a)[s] −→ λ(a [1 · (s ◦ ↑)])
(Clos) (a [s])[t] −→ a [s ◦ t]

(VarCons) 1 [a · s] −→ a

(Id) a[id] −→ a

(Assoc) (s ◦ t) ◦ u −→ s ◦ (t ◦ u)

(Map) (a · s) ◦ t −→ a [t] · (s ◦ t)

(IdL) id ◦ s −→ s

(IdR) s ◦ id −→ s

(ShiftCons) ↑ ◦ (a · s) −→ s

(VarShift) 1· ↑ −→ id

(SCons) 1[s] · (↑ ◦ s) −→ s

(Eta) λ.(a 1) −→ b if a =σ b[↑]
F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

Unification in the λσ-calculus

Motivation:

I Reduce substitution to grafting.

I Remain closer to implementations.

I Development of a programming language based on ES that
includes HOU in a lower level.

I Possible drawback:
I Inclusion of a non-trivial equational theory (??).

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

Unification in the λσ-calculus

Motivation:

I Reduce substitution to grafting.

I Remain closer to implementations.

I Development of a programming language based on ES that
includes HOU in a lower level.

I Possible drawback:
I Inclusion of a non-trivial equational theory (??).

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

Unification in Explicit Substitutions Calculi

Precooking

Precooking−1

Unification Problem

Solutions

Solutions

Unification rules

Back translation

HOU-Problem

Language of the λ-calculus

substitution

Language of the explicit

substitutions calculus.
grafting

1

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The λσ-unification rules (part I)

The λσ-simplification rules:

Dec-λ
P ∧ λA.e1 =?

λσ λA.e2

P ∧ e1 =?
λσ e2

Dec-App
P ∧ (n e1

1 . . . e
1
p) =?

λσ (n e2
1 . . . e

2
p)

P ∧ e1
1 =?

λσ e2
1 ∧ . . . ∧ e1

p =?
λσ e2

p

Dec-Fail
P ∧ (n e1

1 . . . e
1
p1

) =?
λσ (m e2

1 . . . e
2
p2

)

Fail
, if m 6= n.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The SIMPLλσ procedure

INPUT: A unification problem Pq (in the language of the
λσ-calculus) with at least one rigid-rigid equation.
OUTPUT: A terminal (failure or success) status or an equivalent
unification problem Pq without rigid-rigid equations and containing
at least one flexible-rigid equation.

Assume that Dec-λ is applied eagerly.
WHILE there exists a rigid-rigid equation in Pq DO

1. Apply Dec-Fail, if possible.

2. Apply Dec-App, and if the resulting unification problem
contains a flexible-rigid equation, call it Pq and give Pq as
result, else stop and report a success status.

DONE.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The SIMPLλσ procedure

Theorem
The application of the procedure SIMPLλσ to any unification
problem P (in the language of the λσ-calculus) always terminates.

Proof.[Sketch] Applications of the simplification rules decrease the
size of the terms in the equations. �

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The SIMPL and SIMPLλσ correspondence

Theorem
If P is a unification problem in the pure λ-calculus and PF its
precooked image, then:

1. SIMPL(P) fails ⇔ SIMPLλσ(PF) fails.

2. SIMPL(P) stops and reports a success status ⇔
SIMPLλσ(PF) stops and reports a success status;

3. SIMPL(P) returns a unification problem containing at least
one flexible-rigid equation ⇔ SIMPLλσ(PF) returns a
unification problem containing at least one flexible-rigid
equation.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

Solved forms

Definition (DHK00)

A unification problem P is in λσ-solved form if all its
meta-variables are of atomic type and it is a conjunction of
nontrivial equations of the following forms:

I Solved: X =?
λσ a where the meta-variable X does not appear

anywhere else in P and a is in Eta-long form. Such an
equation is said to be solved in P and the variable X is also
said to be solved.

I Flexible-flexible: X [a1. · · · .ap. ↑n] =?
λσ Y [b1. · · · .bq. ↑m],

where X [a1. · · · .ap. ↑n] and Y [b1. · · · .bq. ↑m] are Eta-long
terms and the equation is not solved.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The λσ-unification rules (part II)

Exp-λ
P

∃Y : (A.Γ ` B),P ∧ X =?
λσ λAY

if (X : Γ ` A → B) ∈ T Var(P), Y 6∈ T Var(P),
and X is not a solved variable.

Normalise
P ∧ e1 =?

λσ e2

P ∧ e′1 =?
λσ e′2

if e1 or e2 is not in long form,

where e′1 (resp. e′2) is the long form of e1 (resp. e2)
if e1 (resp. e2) is not a solved variable and e1 (resp. e2)
otherwise.

Replace
P ∧ X =?

λσ t

{X 7→ t}(P) ∧ X =?
λσ t

if X ∈ T Var(P),X 6∈ T Var(t) and

if t is a constant then t ∈ T Var(P).

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The λσ-unification rules (part III)

Exp-App P∧X [a1.··· .ap.↑n]=?
λσm(b1,...,bq)

P∧X [a1.··· .ap.↑n]=?
λσm(b1,...,bq)∧

∨
r∈Rp∪Ri

∃H1...∃Hk ,X=?
λσr(H1,...,Hk)

if X has an atomic type and is not solved.
where H1, . . . ,Hk are variables of appropriate types, not occurring
in P, with the contexts ΓHi = ΓX , Rp is the subset of {1, . . . , p}
such that r(H1, . . . ,Hk) has the right type, Ri =if m ≥ n + 1 then
{m − n + p} else ∅.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The procedure MATCHλσ

INPUT: A unification system Pq with at least one flexible-rigid
equation.
OUTPUT: A disjunction of equivalent unification systems, written
Pq1 ∨ . . . ∨ Pqk .
Assume that the rule Dec-λ is applied eagerly.

1. Apply Exp-λ and Replace as much as possible to the selected
equation and call P ′q the resulting unification system.

2. Apply Exp-App and Replace and Normalise to P ′q and call
Pq1 ∨ . . . ∨ Pqk the resulting unification problem.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The procedure MATCHλσ

Definition
Let X/a be a substitution generated in the pure λ-calculus by
Huet’s algorithm. We say that the equation Y =?

ξ b corresponds
(or is associated) to the substitution X/a if X and Y are two
meta-variables of the same type and the terms a and b have the
same headings, where ξ ∈ {λσ, λse}.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

Correspondence from MATCH to MATCHλσ

Theorem
Let
λA1 . . . λAr .(X e1

1 . . . e
1
p1

) =? λA1 . . . λAr .(n e2
1 . . . e

2
p2

) be a
flexible-rigid equation in η-long form in the pure λ-calculus where
p1, p2, r ≥ 0 and τ(X) = B1 → . . .→ Bp1 → B with B atomic.
Then, for each substitution generated by the procedure MATCH,
when applied to this equation, there exists a corresponding
equation in the λσ-calculus generated by the procedure MATCHλσ
to the precooked version of the given equation.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

Correspondence from MATCHλσ to MATCH

Theorem
For each new generated equation by the rule Exp-App, when
applied to a flexible-rigid equation which is in the image of the
precooking translation, there exists a corresponding substitution in
the pure λ-calculus in the following sense: for each element in Rp

there exists a corresponding substitution in the pure λ-calculus and,
if Ri 6= ∅ then there exists an imitation in the pure λ-calculus for
the inverse of the precooking translation applied to this equation.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The MATCH and MATCHλσ correspondence

Theorem
Let eq be a flexible-rigid equation in η-long form in the pure
λ-calculus and eqF its precooked image. Then, MATCH applied to
eq generates a substitution σ if and only if MATCHλσ applied to
eqF generates a substitution equivalent to σ.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

λσ-grammar and rules
λσ-unification
SIMPLλσ
MATCHλσ
The Main Procedure

The Main Procedure

INPUT: A unification system Pε.
OUTPUT: A success or a failure status and in the former case the
solutions are the solved equations whose left-hand side corresponds
to the meta-variables of the initial problem. If the initial problem is
non-unifiable the algorithm may not terminate.

1. If Pq contains a rigid-rigid equation, then apply SIMPLλσ and
go to the next step, else if Pq contains a non-solved flex-rig
equation then rename it to Pq and go to the next step.

2. Apply MATCHλσ to Pq and let Pq1 ∨ . . . ∨ Pqr be the
resulting unification problem.

3. If the current unification problem contains a unification
system not in solved form then select it and go to step 1, else
stop and report a success status.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

The λse -grammar and rules
λse -unification rules
SIMPLλse
MATCHλse
The Main Procedure

The λse-grammar

Terms of the λse-calculus are given by:

Λse ::= n | X | ΛseΛse | λ.Λse | Λseσ
jΛse | ϕi

kΛse ,
where n, j , i ≥ 1 , k ≥ 0 and X ∈ X .

The typing rules:

(var) A.Γ ` 1 : A (varn)
Γ ` n : B

A.Γ ` n + 1 : B

(app)
Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B
(lambda)

A.Γ ` a : B

Γ ` λA.a : A → B

(sigma)
Γ≥i ` b : B Γ<i .B.Γ≥i ` a : A

Γ ` aσib : A
(phi)

Γ≤k .Γ≥k+i ` a : A

Γ ` ϕi
ka : A

(meta) Γ ` X : A, where Γ is any context.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

The λse -grammar and rules
λse -unification rules
SIMPLλse
MATCHλse
The Main Procedure

(σ-generation) (λ.a) b → a σ1 b

(σ-λ-transition) (λ.a)σib → λ.(aσi+1b)

(σ-app-transition) (a1 a2)σ
ib → (a1σ

ib)(a2σ
ib)

(σ-destruction) nσib →

 n− 1 if n > i
ϕi

0 b if n = i
n if n < i

(ϕ-λ-transition) ϕi
k(λ.a) → λ.(ϕi

k+1a)

(ϕ-app-transition) ϕi
k(a1 a2) → (ϕi

ka1)(ϕ
i
ka2)

(ϕ-destruction) ϕi
kn →

{
n + i− 1 if n > k
n if n ≤ k

(Eta) λ.(a 1) → b if a =se ϕ
2
0b

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

The λse -grammar and rules
λse -unification rules
SIMPLλse
MATCHλse
The Main Procedure

(σ-σ-transition) (aσib)σj c→(a σj+1 c)σi (b σj−i+1 c)if i ≤ j

(σ-ϕ-transition 1) (ϕi
k a)σj b→ϕi−1

k a if k < j < k + i

(σ-ϕ-transition 2) (ϕi
k a)σj b→ϕi

k(a σ
j−i+1 b) if k + i ≤ j

(ϕ-σ-transition) ϕi
k(a σ

j b)→(ϕi
k+1 a)σj (ϕi

k+1−j b) if j ≤ k + 1

(ϕ-ϕ-transition 1) ϕi
k (ϕj

l a)→ϕj
l (ϕi

k+1−j a) if l + j ≤ k

(ϕ-ϕ-transition 2) ϕi
k (ϕj

l a)→ϕj+i−1
l a if l ≤ k < l + j

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

The λse -grammar and rules
λse -unification rules
SIMPLλse
MATCHλse
The Main Procedure

λse-unification rules (part I)

Dec-λ
P ∧ λA.e1 =? λA.e2

P ∧ e1 =? e2

Dec-App
P ∧ n(e1

1 , . . . , e
1
p) =? n(e2

1 , . . . , e
2
p)

P ∧ e1
1 =? e2

1 ∧ . . . ∧ e1
p =? e2

p

App-Fail
P ∧ n(e1

1 , . . . , e
1
p1

) =? m(e2
1 , . . . , e

2
p2

)

Fail
, if m 6= n.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

The λse -grammar and rules
λse -unification rules
SIMPLλse
MATCHλse
The Main Procedure

λse-unification rules (part II)

Exp-λ
P

∃Y : (A.Γ ` B),P ∧ X =?
λσ λAY

if (X : Γ ` A → B) ∈ T Var(P), Y 6∈ T Var(P),
and X is not a solved variable.

Replace
P ∧ X =?

λse
t

{X/t}(P) ∧ X =?
λse

t
if X ∈ T Var(P),X 6∈ T Var(t)

and if t ∈ X ⇒ t ∈ T Var(P).

Normalise
P ∧ e1 =?

λse
e2

P ∧ e ′1 =?
λσ e ′2

if e1 or e2 is not in long form.

where e ′1 (resp. e ′2) is the long form of e1 (resp. e2),
if e1 (resp. e2) is not solved and e1 (resp. e2) otherwise.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

The λse -grammar and rules
λse -unification rules
SIMPLλse
MATCHλse
The Main Procedure

λse-unification rules (part III)

Exp-App
P∧ψjp

ip
...ψ

j1
i1

(X ,a1,...,ap)=?
λse

m(b1,...,bq)

P∧ψjp
ip
...ψ

j1
i1

(X ,a1,...,ap)=?
λσm(b1,...,bq)∧

∨
r∈Rp∪Ri

∃H1...∃Hk ,X=?
λse

r(H1,...,Hk)

if ψ
jp
ip
. . . ψj1

i1
(X , a1, . . . , ap) is the skeleton of a λse normal term,

and X has an atomic type and is not solved, where H1, . . . ,Hk are
meta-variables of appropriate types, not occurring in P, with the
contexts ΓHi

= ΓX , Rp is the subset of {i1, . . . , ip} of superscripts
of the σ operator such that r(H1, . . . ,Hk) has the right type,
Ri =

⋃p
k=0 if ik ≥ m + p − k − Σp

l=k+1jl > ik+1 then
{m + p − k − Σp

l=k+1jl} else ∅, where i0 = ∞ and ip+1 = 0.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

The λse -grammar and rules
λse -unification rules
SIMPLλse
MATCHλse
The Main Procedure

SIMPLλse

INPUT: A unification problem Pq with at least one rigid-rigid
equation.
OUTPUT: A terminal (failure or success) status or an equivalent
unification problem Pq without rigid-rigid equations and containing
at least one flexible-rigid equation.

Assume that Dec-λ is applied eagerly.
WHILE there exists a rigid-rigid equation in Pq DO:

1. Apply Dec-App-λ or App-Fail.

2. Apply Dec-App and, if the resulting unification problem
contains a flexible-rigid equation, call it Pq and give Pq as
result, else stop and report a success status.

DONE.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

The λse -grammar and rules
λse -unification rules
SIMPLλse
MATCHλse
The Main Procedure

MATCHλse

INPUT: A unification system Pq with at least one flexible-rigid
equation.
OUTPUT: A disjunction of equivalent unification systems, written
Pq1 ∨ . . . ∨ Pqk .
Assume that Dec-λ is applied eagerly.

1. Apply Exp-λ and Replace as much as possible to the selected
flexible-rigid equation and call P ′q the resulting unification
system.

2. Apply Exp-App and Replace and Normalise to P ′q and call
Pq1 ∨ . . .Pqr the resulting unification problem.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

The λse -grammar and rules
λse -unification rules
SIMPLλse
MATCHλse
The Main Procedure

The Main Procedure

INPUT: A unification system Pε.
OUTPUT: A success or a failure status and in the former case the
solutions are the solved equations whose left-hand side corresponds
the meta-variables of the initial problem. If the initial problem is
non-unifiable the algorithm may not terminate.

1. If Pq contains a rigid-rigid equation then apply SIMPLλse to
it, else if Pq contains a non-solved flexible-rigid equation then
rename it to Pq and go to the next step.

2. Apply MATCHλse to Pq and let Pq1 ∨ . . . ∨ Pqr be the
resulting unification problem.

3. If the current unification problem contains a unification
system not in solved form then select it and go to step 1, else
stop and report a success status.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

Corresponding equations

Definition
Let X =?

λσ a and X =?
λse

a′ be two flexible-rigid equations in the
λσ- and λse-calculus respectively. These equations are said to be
corresponding (or associated) if a and a′ have the same heading.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

Translating λse-terms into λσ-terms

Definition
The operator T : Λλse → Λλσ is defined inductively as:

1. T (X) = X

2. T (n) = 1[↑n−1]

3. T (a b) = T (a) T (b)

4. T (λ.a) = λ.T (a)

5. T (aσib) =T (a)[1.2. · · · .i− 1.T (b)[↑i−1].↑i−1], where i ≥ 1.

6. T (ϕi
k(a)) = T (a)[1.2. · · · .k. ↑k+i−1], where k ≥ 0 and i ≥ 1.

If r = 0 in the list 1. · · · .r, then it is to be interpreted as the
empty list. In addition, ↑0= id .

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

Preservation of types by T

Theorem
Let Γ be a context, A a type and a a term in the language of the
λse-calculus such that Γ ` a : A. Then Γ ` T (a) : A.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

λse-skeleton

Definition (Ayala & Kamareddine 2001)

Let t be a λse-normal term whose root operator is either σ or ϕ
and let X be its leftmost innermost meta-variable. Denote by ψjk

ik
the k-th operator following the sequence of operators σ and ϕ,
considering only left arguments of the σ operators, in the
innermost outermost ordering. Additionally, if ψjk

ik
corresponds to

an operator ϕ then jk and ik denote its superscripts and subscripts,
respectively, and if ψjk

ik
corresponds to an operator σ then jk = 0

and ik denote its superscript. Let ak denote the corresponding
right argument of the k-th operator if ψjk

ik
= σik and the empty

argument if ψjk
ik

= ϕjk
ik
. The skeleton of t, written as sk(t), is

ψ
jp
ip
. . . ψj1

i1
(X , a1, . . . , ap).

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

Correspondence from MATCHλse to MATCHλσ

Theorem
Let
ψ

jp
ip
. . . ψj1

i1
(X , a1, . . . , ap) =?

λse
(m b1 . . . bq) be a flexible-rigid

equation in the λse-calculus, where X has atomic type. Then, for
each equation generated by the rule Exp-Appλse there exists a
corresponding equation in the λσ-calculus generated by the rule
Exp-Appλσ for the equation

T (ψ
jp
ip
. . . ψj1

i1
(X , a1, . . . , ap)) =?

λσ T (m b1 . . . bq)

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

Example

Consider the unification problem
ϕ4

1(((ϕ
3
7X)σ5a)σ3b) =?

λse
(6 b1 . . . bq)

The Exp-Appλse rule generates the equation X =?
λse

(4 H1 . . .Hq).
The λσ-normal form of T (ϕ4

1(((ϕ
3
7X)σ5a)σ3b)) is computed by:

T (ϕ4
1(((ϕ

3
7X)σ5a)σ3b)) =

T (((ϕ3
7X)σ5a)σ3b)[1. ↑4] =

T ((ϕ3
7X)σ5a)[1.2.T (b)[↑2]. ↑2][1. ↑4] →∗σ

T ((ϕ3
7X)σ5a)[1.5.T (b)[↑5]. ↑5] =

T (ϕ3
7X)[1.2.3.4.T (a)[↑4]. ↑4])[1.5.T (b)[↑5]. ↑5] →∗σ

T (ϕ3
7X)[1.5.T (b)[↑5].6.T (a)[↑6]. ↑6] =

X [1.2.3.4.5.6.7. ↑9][1.5.T (b)[↑5].6.T (a)[↑6]. ↑6] →∗σ
X [1.5.T (b)[↑5].6.T (a)[↑6].7.8. ↑10]

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

Example

The rule Exp-Appλσ generates the corresponding equation
X =?

λσ 4(Y1 . . .Yq) which corresponds to the selection of the de
Bruijn index 6 inside the explicit substitution
[1.5.T (b)[↑5].6.T (a)[↑6].7.8. ↑10].

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

Translating λσ-terms into λse-terms

Definition
The operator L : Λλσ−terms → Λλse is defined inductively as:
L(X) = X
L(1[↑m−1]) = m, where m ∈ N
L(a b) = L(a) L(b)
L(λ.a) = λ.L(a)
L(a[a1.a2.· · ·.ap. ↑n]) =
σ1. . . σp−1σpϕn+1

p (L(a), L(ap), L(ap−1),. . ., L(a2), L(a1)), where
a1.a2.· · ·.ap. ↑n is a substitution in λσ-normal form, and n, p ≥ 0.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

Preservation of types by L

Theorem
Let Γ be a context, A a type and a a term in the language of the
λσ-calculus such that Γ ` a : A. Then Γ ` L(a) : A.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

Correspondence from MATCHλσ to MATCHλse

Theorem
Let X [a1. · · · .ap. ↑n] =?

λσ (m b1 . . . bq) be a flexible-rigid equation
in the λσ-calculus, where X has atomic type and a1. · · · .ap. ↑n is a
λσ-normal substitution. Then, for each equation generated by the
rule Exp-Appλσ there exists a corresponding equation in the
λse-calculus generated by the rule Exp-Appλse for the equation

L(X [a1. · · · .ap. ↑n]) =?
λse (m L(b1) . . . L(bq))

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

Correspondence between MATCHλse and MATCHλσ

Theorem
Let P be a unification problem in the simply typed λ-calculus, and
Pξ its precooking translation to the ξ-calculus of explicit
substitutions, where ξ ∈ {λσ, λse}. Then Pλσ is unifiable if and
only if Pλse is unifiable. Moreover, whenever unifiers exist, they are
associated.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Corresponding equations
Translating λse -terms into λσ-terms
Translating λσ-terms into λse -terms
Correspondence from MATCHλσ to MATCHλse
Correspondence between MATCHλse and MATCHλσ

λσ and λse correspondence

Corollary

Let Pλσ be a unification problem in the λσ-calculus of explicit
substitutions, and L(Pλσ) its translation to the λse-calculus of
explicit substitutions. Then Pλσ is unifiable if and only if L(Pλσ) is
unifiable. Moreover, whenever unifiers exists, they are associated.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Conclusion

I In this work we compared the λσ- and the λse-styles of
unification.

I To do so, we presented the unification tree notation which
allows a clear presentation of the Huet’s algorithm in de
Bruijn notation.

I This notation was applied to unification problems in de Bruijn
notation, but it can be applied to λ-terms with names with
minor modifications.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Conclusion

I We compared the classical method of Huet for HOU and the
one of Dowek, Hardin and Kirchner for the λσ-calculus.

I We described the counterpart of the procedures SIMPL and
MATCH, called SIMPLλσ and MATCHλσ.

I We concluded that there exists a correspondence between the
substitutions generated by Huet’s algorithm and the graftings
generated by the λσ-HOU algorithm for unification problems
which are in the image of the precooking translation.

I This comparison was extended to the λse-HOU algorithm.

F.L.C. de Moura HOU a la Huet and a la ES

Introduction
Unification Tree Notation

The λσ-calculus
The λse -calculus

Comparing the λσ- and the λse -styles of unification
Conclusion

Conclusion

I We concluded that the λσ- and the λse-HOU algorithms
generate associated graftings.

F.L.C. de Moura HOU a la Huet and a la ES

	Introduction
	Motivation
	Huet's Algorithm
	Simply typed -calculus in de Bruijn notation
	The procedure SIMPL
	The procedure MATCH

	Unification Tree Notation
	Motivation
	Visualising the Tree
	Formal Construction
	Example

	The -calculus
	-grammar and rules
	-unification
	SIMPL
	MATCH
	The Main Procedure

	The se-calculus
	The se-grammar and rules
	se-unification rules
	SIMPLse
	MATCHse
	The Main Procedure

	Comparing the - and the se-styles of unification
	Corresponding equations
	Translating se-terms into -terms
	Translating -terms into se-terms
	Correspondence from MATCH to MATCHse
	Correspondence between MATCHse and MATCH

	Conclusion

