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Abstract—Permutation groups arise as important structures for 1 <i < j < n.
in group theory because many algebraic properties about tha

are well-known, which makes modeling natural phenomena by The effect of applying a reversal is to invert a piece of
permutations of practical interest. Usability of the involved

algebraic notions is illustrated by problems such as genome the genome of z?m o_rga_nls_m. The 59”_'”9 by reversals problem
rearrangement by reversals for which it is well-known that for  (MIN-SBR consists in finding the minimum number of rever-
the case of unsigned and signed sorting by reversals the time sals to transform a permutationin the permutation identity,
complexity is, respectively, N’P-hard and P. Reversal distance denoted asd. The reversal distance is the minimum number

isa partl_cular metric and in tr_us work more ge_neral metrics on ¢ reversals for an instance MIN-SBR It is a metric ons,,.
permutation groups are considered emphasizing on the Cayle Other metrics onsS,, are well-known, for instance the
distance. In particular, we point out an error in one of the n ’

polynomial reductions applied in Pinch’s approach attemping to Hamming distance/, distance,/, distance, Lee distance,
proof that the subgroup distance problem for Cayley distane is Kendall's tau distance, Ulam’s distance and Cayley distanc
NP-complete and following his approach we present a simplified [AJO8], [BCWO9].

and correct proof of this fact. Although, recently a shorter and The Subgroup Distance ProblefSDP) with respect to a
more general proof than Pinch’s one was given by Buchheim, - . . o

Cameron and Wu, we believe the correction of Pinch’s proof metric d 9” Sn is defined as: given a subgrou‘!b < Su a
presented in this paper is of great interest because it corly ~Permutationr € S, and a numbek € N*, determine whether
relates the Cayley distance problem with a maximal routing d(m, H) := minyepgd(m, o) < k.

problem giving an additional perspective in relation to Budhheim Note that, MIN-SBR is an instance ofSDP, just take

et al. recent proqf from which only.the usual logical satisfidility H = (id) and d as the reversal distance. For unsigned
perspective of distance problems is observable. reversalsMIN-SBRis N'P-hard [Cap97], whereas for signed
reversals, sorting by reversals is polynomial [BMYO01]. fuoe

other metrics mentioned abov@DPis N"P-complete [AJ08],

Among the variety of distance problems on permutatidBCWO09]. . .
groups, the subgroup distance problem is of great inteiest. Given two permutations ando € 5, the Cayley distance

|I. INTRODUCTION

this context, several metrics can be considered. is the minimum number of transpositions (cycles of length
A metric on the symmetric grougs,, is a functiond : S,, x ~ two) transformingr into 0. _
S, — R* such that, for everyr,oc andy € S,,, it satisfies: In this work a proof is given of the fact th&DP with

respect to the Cayley distance M¢P-complete. The proof
i) d(r.0) =0 if, and only if, = = o follows Pinch’s approach [Pin07] that is based on two poly-
’ ' ! ’ nomial reductions: fronBSAT into the problem of finding a
i) d(, ) < d(m,0) +d(o,¢). routing which respects a polarisation, of maximum cardiiypal

In the biological context several metrics 6p can be found b switching circuit and then, from the latter problem
giving rise to different instances of the genome rearraref®minto SPP for the Cayley distance. Although Pinch’s proof
problem. Take a class of operations that changes the ordeiygfs published ir2007, previous drafts were available since
genes of an organism, without modifying or destroying themgg2. The contribution of this work is to correct the first
The genome rearrangement problem consists in finding th)juction presented in Pinch’s proof in two ways: firstly, by
minimum number of these operations necessary to transfogating correct polarised switching circuits in the reduret
a genome into another one. We can consider the genes ordefd 3SATto these circuits, specifically for clauses with two
an organism represented by a permutation S, [BP96]. As  and three variables and secondly, by simplifying the width o
a class of operation one can consider, for instaneegrsals polarisation in the switching circuits used in the first retion.
that are permutations € 5., presented by permutation cycles As it will be showed, a simpler and more general proof
of the form of the A"P-completeness of the SDP which applies also to

the Cayley distance was presented in [BCWQ09]. This proof

j—i directly reduces satisfiability problems into SDP problems
[+1),  without the intermediate step which relates routing protde

i) d(m,0)>0;

j—i

(i DE+1 j=1).. i+

J+1 i+]




in switching circuits with SDP problems. (G,T) and a positive integek, determine the existence of
In the second Section, is is proved ti&DPfor the Cayley a routing which respect? and has at least cycles in the

distance isAP-complete. In the third Section it is madeassociated decomposition in cycles.

explicit the flaw in Pinch’s proof and presented a sketch of The width of a polarisationT is defined as the maximum

Bucheim’s et al. proof aboutP-completeness of SDP for number of vertices in a class @f. We call Width,,-Valency,-

different measures. Routingthe PSCRwith the width of T" restricted to be at most

w andd(v) of each vertex restricted to be at most.

I SD_PFOR THECAYLEY DISTANCE IS_NP_COMPLET!E The p(ro)of thatSDPis A'P-complete is made in two steps

We will present a correct and detailed proof of this fa%llowing [Pin07] approach, but correcting and improvitgt

pointing out the problems in Pinch’s work [Pin07]. first step, for which the original proposed width wainstead
Let S C S, be a set of permutations of the formy = 4 a5 presented here:

1 1 Tj Tj 4 9 i
(xﬂl'l yj) - | (25" v, r)] where allz; andy; are dr:ffer(_edntr.] V¥e 1) Prove thatWidth,-Valency-Routingis A'P-complete;
call 5 mVO utions wit D|510|n_t Support (IDS)The widt 0 2) Show the existence of an equivalence betwéédth,,-
an IDS is defined as the maximum numberegycles ;) in Valency-Routingand IDS,,-Subgroup-Distance
its permutations~;). The SDPwith the subgroupd := (v;) . .
generated by the elements of an IDS of widthw is called Applying both these results one obtains that |BS
Subgroup-Distance ig/P-complete from which one imme-

the IDS,-Subgroup-Distance diately concludes thaBDP is A'P-complete as well. In the

Additional definitions are necessary.stwitching circuitis a following subsections proofs of these results are pregente
directed graplz(V, E) such that for alb € V the cardinality wing su : P u b

of input and output edges coincide; for eack V, itsvalency A. Width,-Valency,-Routingis A"P-complete

denoted ag)(v), is the number of in-edges which equals the The first step in Pinch’s paper is in fact a attempt to prove
numbgr of out-edges. Each in and out-edge bés a dlfferent that 3SAT polynomially reduces taWidths-Valency-Routing
label in {1,...,0(v)}. The valency ofG is the maximum 1 one of the circuits presented is incorrect because i doe
among the valencies of its vertices. For any efge)) € E, ot satisfy the necessary properties as presented in detail
its output label, as an in-edge, and its input label, as an oy§.a. The current proof is in fact an improvement because in
edge are not related. Auting p for a switching circuit is a the first step we reduce the width of the routing problem.
choice of a permutatiop(v) € Sy(v), for each vertex € V. A polarised switching circuit G, T) is Booleanif every

For an example see Fig. 1. Note that, there is a correspoadefigriex has valency at most two. To each clagsof the
between routings of a switching circuit and decompositions po|arisationT a Boolean variable:(C) is associated, where
of the edge set into directed cycles Gf a(C) = 0 if, and only if, the permutation(v) = id € Sy
anda(C) = 1, if, and only if, p(v) = (1 2) € Sy, for all

v € C. There is a straightforward correspondence between
routing and designation of boolean values to the vertices of
(G, T). For a negated variablewe exchange the input labels

1 and2 in all the associated vertices.

The reduction in the first step of the proof is based on
a representation of unary, binary and tertiary clauses in a
formula, instance 0BSAT by corresponding switching circuits
that have a specific number of cycles exactly when the clauses
Fig. 1. The first circuit shows a decomposition in two dirdctycles with  hold. For Boolean variablegs, b and ¢, we consider the
routin = 1d for all vertices; the second circuit shows a decompositioQ,,, i+ ~n; ; ;
in thrgepcycles given by the r’outing(u) = plw) =p(z) = (1 2) gnd gWItCh!ng CII’CUItSI(a),E(a,b),F(a_, b) and A(a,b,g) Corre-.
p(v) = p(z) = ply) = id sponding to unary clauses, equality between variablesrin

and tertiary clauses, respectively. See Figs. 2 and 3.

A polarisation T' for a switching circuitG(V, E) is an
equivalence relation over the set of vertices such that
vertices belonging to the same class have the same valency.
The pair(G,T) is called a polarised switching circuit. Note:
that vertices having the same valency are not necessatitgin
same class. A routing is said to respect the polarisati@hif
p(x) = p(y), whenever vertices andy belong to the same
class. Routings in the Fig. 1 respect polarisation with @uai
equwalenc_e class (Flg_. 1 to the left) and _tVYO equalen%% 2. Switching circuits/(a), E(a,b) and F(a,b) for unary clauses,
classes (Fig. 1 to the right). Note that, for distinct labetsl equality between variables and binary clauses
routings, the decomposition into cycles changes.

The Polarised-Switching-Circuit-RoutinPSCR is defined Proposition 2.1: Properties of the switching circuifs F, F’
as the problem stated as: given a polarised switching tircand A




(E(b0))

Fig. 3. Switching circuitA(a, b, ¢) for tertiary clauses

1) the number of cycles fod(a) is 2 if « = 1 and 1

otherwise;

2) the number of cycles foF(a,b) is 2 if a = b and 1

otherwise;

3) the number of cycles foF'(a,b) is 1 if a =b=0 and

3 otherwise;
4) the number of cycles fof(a,b,c) is2ifa =b=c =0,
4 otherwise.
Proof: We will demonstrate the item, that uses iten2. All
other items are proved similarly by case analysis.

Notice that, according to the item 2, the circiitd, ¢) has
two cycles whenevér = ¢ and only one otherwise, as depicted
in Fig. 4. The right part of the circuitd(a, b, c) is exactly
E(b,¢) and consequently this sub circuit will have two cycles
if b # ¢ and one ifb = ¢. In order to conclude the proof of
item 4, we will proof the following:

« the left part ofA(a, b, ¢) has one circuititi = b = ¢ = 0. Fig. 6. Cycles of left circuit ofd(a, b,c) fora #b=canda =b=c=1
Observe this circuit in Fig. 5. Thusd(a,b,c) has two
circuits in this case.

« the left part ofA(a, b, c) has three circuits iti # b = ¢
ora = b = ¢ = 1. Observe this case in Fig. 6. Thus
A(a, b, ¢) has four circuits in this case.

« the left part of A(a,b,c) has two circuits ifb # c.
Observe this case in Fig. 7. Thu$(a, b, c) will have
four circuits. O

Fig. 7. Cycles of left circuit ofA(a, b, c) for b # ¢

a=1,b=0

Fig. 4. Cycles of circuitE(a, b) for a = b anda # b each of which is a disjunction of at most three variables or
their negations.

Theorem 2.2:There is a polynomial reduction fro+SAT  Firstly, one transforms into an equivalent formulg’ in
to Width,-Valency-Routing this way: for allz;, replace itsj** occurrence inp by a new

Proof: Let ¢ an instance 08-SATthat is a Boolean formula Variabley;. For allz; include the conjunction of clauség; =
over variablesri, ..., z,, that is a conjunction of: clauses y7)A.. ./\(yﬁ”*” = y;') where the variable; occursr; times



in . For example, ifp = (z1VZaVas)A(z2VZ3Vaa)A(Z1V  Of transpositions iny; is at mostw, since each equivalence
z3) theny' = (yivVad vy AW ViEVyi) A(GiVys)A(yi = class inT has at mostw vertices. Observe that there is
YDA =93 A (ya =y3) A (Y3 = v3). a correspondence between routings in the polarised circuit
Note that, in facty’ is equivalent tap. Thus, we have the and a cycle decomposition @f(V, E) and the cycles in a
same number of satisfying designations. Note also that egmrmutationry, wheren € H = ({;}). The correspondence
variable occurs at most three times ¢, and exactly once between the problems is understood, based on the observatio
in a disjunction. Therefore, the length ¢f is linear in the that a transposition can split a cycle permutation at mdst in
length of p. two cycles, from which one can conclude thatis within
Secondly, one will construct a polarised switching circuilistanced of the groupH if and only if there is a routing
¥ for the formulay’ as the forest consisting of the followingwith at leastn — d cycles.

circuits: This construction also helps to understand how to build a
« for each tertiary clause of the forfx v y Vv z) take a corresponding polarized switching circuit from an insead
circuit A(:c_, Y, 2); - theIDS,-Subgroup-Distanceroblem.
o for each binary clause of the forf v y) take a circuit 14 conclude the\P-completeness, it is necessary to prove
F(z,y); o that SDPrestricted to the Cayley distance isMP. For this,
« for each unary clause of the forfm) take a circuit/ (z)  gome remarks will be done.
and; . . . .
« for each clause of the forifx: = y) take a circuitE(z, y). Given two permu_tatlons, o € Sy, if the Cayley distance
The ¢l in th larised switchi — . betweens and o is k, denoted asd(m,0) = k, then
e classes in the polarised switching circuiitare given y,o o i 5 sequence @f transpositionsyr . . ., px, such that

. . ;
as the sets of vertices labeled by the same variable’of Tp1...pn = o) O equivalently,py ... pr = 7 lo. Thus,

;Lhen, th;;s polfrlsqn(k))llw W'_" /hagg exact&z]clfssei, V\I/herg Isth' calculating the Cayley distance between two permutations
ei n_umt_ ero _varl? gs P t s?rve_ a_tea:ccthc?ss mF Sando is equivalent to decompose the permutatiortc as a

polansation 1S INVolved In at most a circuit of the ot minimum product of transpositions.

or I and, in addition, in at most two circuits of the forf.

Therefore each class in the polarised switching cirdutas 1 eorem 2.4 ([Mac95]):A permutation inS, cannot be
at most4 vertices. Thus the size of is at mostin. that is. Written as the product of fewer than-r transpositions, where

the size of¥ is linear in the length of the formula’. r is the number of disjoint cycles in the permutation.

Thirdly, denote ass, f,i ande the number of circuits of  For example, consider the permutatior= (12)(345) € Ss;
typesA, F, I andE in ¥, respectively. Consider the numbeit consists of two disjoint cycles. Thus, by Theorem 2.4,
M = 4a + 3f + 2i + 2e. And finally, conclude observing at least three transpositions are necessary to represent th
that according to Proposition 2.1, there exists a routing feermutation. Namelyr = (12)(34)(35).
the polarised circuitt which gives a decomposition intd/ Proposition 2.5:Given a cycle(r ... ), one always can
cycles if, and only if, there exists an assignment of Booleatrite it as the product of — 1 transpositions.
values for the variables ip’ that satisfiesy’. Namely, notice |, fact observe thatry ... m) = (mime)(mims) ... (T1m).

that a satisfying assignment fgf corresponds to a routing in . . - -
. ying gn of po! 9 Consider a permutation € S,, consisting ofk disjoint
¥ which decomposes intd/ cycles and vice-versa. O o .
cycles; this is a permutatiom = m;...7,, Where each

B. Width,,-Valency;-Routing problem polynomially reduces;,1 < i < k, corresponds to a cycle in, and whenever
to IDS,,-Subgroup-Distance 1 €{1,...,n} isin cyclen;, this element is not in cycle,,

In Pinch’s work it is proved in fact a polynomial equivalencor j # i. Denote as;,1 < i < k, the length of cycler;.
between both problems. Note thatn; + ... + ni = n. By Proposition 2.5, each cycle
Theorem 2.3 ( [Pin07]):There is a polynomial equivalence™: of = can be decomposed as the productpf- 1 distinct
between theWidth,-Valency-Routing and IDS,,-Subgroup- transpositions. Thus, the permutatiertan be decomposed in
Distanceproblems. ny —1+4+...+nx —1 = n — k transpositions. By Theorem
To understand this equivalence, considél(V, E),T), a 2.4, this is the minimum number of transpositions in which

polarised switching circuit, where each vertex has valdngy can be written.

and each equivalence class has width at modtet |E| =n Now, consider a permutation € S,,, a set of generators of
and associate a different number{ih,...,n} to each edge. a subgroupd of S,, and an integek. Non deterministically,
Construct a permutation as follows: for each edge, let v choose a permutatiom € H. Decompose the permutation
be the vertex such thatis an input edge in and definer(e) 7~ '¢ as it is done in the Proposition 2.5. This polynomial
as the edgeg’ out of v such that the labels of and f as an procedure checks whether the Cayley distance betwesnd
input and an output edge ofare equal. Construct an instancehe choosed permutation is smaller or equal thaRepeatedly
of the IDS problem fromG as follows: for each equivalenceapplication of this non-deterministic polynomial verifiica
class inT, C; = {v} | i = 1,...,7;}, lety; be a generator procedure is applied for computing the Cayley distances Thi
given as the product of transpositiofyy ¢;), wheref; and concludes the proof th&8DPrestricted to Cayley distance is
g, are the edges out the vertex. Notice that the number in N'P.



I1l. RELATED WORK . — N . — 0
Although Pinch’s proof was available since 1992, it was * ” * *
published only in 2007 and subsequently referenced by Buch-
heim et al. [BCW09] without any mention to the flaws reported ’

in this paper and detailed in Subsection IlI-A. Even, more a “ a “
recently, after the publication of the elegant proof depelb :

by Buchheim et al., that will be detailed in Subsection U U

[1I-B, other authors have referenced Pinch’s proof without
mentioning these flaws. Among the papers that referenced n
Pinch'’s proof attempt, one can mention [CW07] and [CW10], Q

whose main subject is th&/P-completeness of th&Veight

Problem restricted to several distances ov€, where the

Weight Problemwith respect to the distanc& consists in, a ”
given generators for a grou@ and an integerk, find an

elementg € G such thatd(g,e) = k, wheree is the u

identity permutation. In these two papers, as in [BCWO09], ®
the Hamming, Cayleylp' l~, Lee, Kendall's tau and Ulam Fig. 9. Possible decompositions in three cyclesFdfa, b) for the routing
distances are considered. a=b=1

Also, in Bogaerts’ Thesis [Bog09], Pinch’s work is refer-
enced. One of the main objectives of this work is, given a fixed ) . .
numbern and a distance, to study the maximum length of a _Changing the routing from =b=1t0a=b=0ineach
permutation code. Bogaerts asserts that several probleens® these cases gives the decomposition in cycles depicted in

related with decoding a permutation code, among them, thi§)- 10, from which the case§) and (ii), for which this
SDP problem. routing gives three cycles, are proved impossible. The sole

case that remains to be analysis is the third one.
A. Flaws in Pinch’s proof attempt

In Pinch’s proof thaBSATpolynomially reduces taVidth,- () . — N0
Valency-Routing it is incorrectly stated that the switching Q * * *
circuit F'(a,b) in Fig. 8 has 2 cycles whenever# b, 3 if

a=0b=1and 1 ifa=b=0. This switching circuit is given , ,
without edge labels and the following proposition estatgis “ “ a ”
that this is in fact impossible.

“ ® @

Fig. 8. Switching circuitF’ (a, b) ““

Proposition 3.1: There is no possible labeling for the edges (i")

of the switching circuitF’(a,b) satisfying: the number of Fig. 10. Cycle decompositions d'(a, b) for the routinga = b = 0
cycles in a routing forF’(a,b) is2if a #b,3ifa=b=1
andlif a=b=0. Finally, one observes that the decomposition in cycles for
Proof: In first place notice that for the routing = b = 1 the routingse # b for the third case gives in both cases a
if F'(a,b) admits in fact a decompositions into three cyclesinique cycle.
then, necessarily, one, and only one, of the red sub cyclesThis concludes the proof. O
illustrated in Fig. 9 should be in the decomposition. In seto
place, observe that for each case the other two cycles in Bre” general proof of\’P-completeness for SDP
decomposition in three cycles is univocally determined. A simpler and more general proof of téP-completeness

In third place, for each of these three possibilities, byecasf the SDP which applies also to the Cayley distance was
analysis, one can prove that for the routingg b anda = b = given in [BCWO09]. Here, it is important to stress that altgbu
0 the decomposition int@ and 1 cycles, resp., is impossible.this proof is simpler it relates SDP only with satisfiabilapnd



because of this it is relevant the result presented in thikwdHamming distance. For that distance one defifie= 6¢—4K.
establishing a correct relation of SDP with routing probdemLet, K’ = bg— (b—a) K and one can obtain, only by changing
To prove that the SDP restricted to the Cayley distancetlse parametera andb, proofs of A"P-completeness of SDP
NP-complete one reduces the problem of maximum SAT witior /,, Lee, Kendall's tau and Ulam distances. The proof
clauses of length twdyIAX-2-SATto it. MAX-2-SATis well- presented in this section for the Cayley distance, is obthin
known to be N"P-complete. Below the reduction from thissetting these parametersas= 1 andb = 3.
problem to SDP for the Cayley distance is sketched.
Consider an instance dfIAX-2-SAT given an integerk
and a formulap, in conjunctive normal form, consisting of A proof is presented of the fact that the problem of
variables,ui, ..., u, andq clausesgy, .. ., ¢,, each clause of computing the general distance of a given permutation from a
length two. The problem is to decide whether there existsSHbgroup of the symmetry grouss,, is N’P-complete. This
truth assignment for the variables such that, at ldgstjauses Proofis based on two time-polynomial reductions: firsthgrh

IV. CONCLUSION

are satisfied. 3SAT to Widths-Valencg-Routing and then, from the latter
Firstly, one constructs a permutatianon a domainX = Problem tolDS,-Subgroup-DistanceThe proof follows the

Ui=1.pX; U U= ,Y;, where: for each variable,, we as- approach originally proposed by Pinch in [Pin07], but after

sociate a set of sizéq + 2, X; = {zi1,...,Ti6q+2}. The detecting an error in the first reduction, that was originall

elements ofX; are swapped pairwise by. Thus, the factor Proposed for the probleriVidths-Valency-Routing in this
IL; j o (w zig), wherel < i < p; 4,k € {1,...6¢ + 2} Ppaper it is presented a reduction frad$AT to the simpler
and eachz; ; appears exactly once in the multiplicand, i§ase ofWidth,-Valency-Routingproblems.

in the cycle structure ofr. Additionally, for each clause The general subgroup distance problem is closely related
j =1.q,Y; = {aj1,...,aj¢}, such thatr acts onY; as With distances in other metrics as the one associated with

the permutation(a;; a;»)(a; s a;.4)(aj5 aj). Observe that the case of distance by reversion or other transformatiéns o

the size ofX, p(6q + 2) + 6¢, it is polynomial on the length biological interest. We believe that the formal study ofsie
of ¢. properties from the algebraic point of view will provide aye

Secondly, one defines the generators of graugs follows: strong insight in order to deal with open questions such as
for each variableu;, consider two permutations;(¢) and whether the reversion distance for unsigned permutattbas,
mi(f). Both, m;(t) and m;(f), agree with permutatiom on IS known to be\’P-hard, is or not\"P-complete.

X;. If u; appears positively in the first position of a clause

cj, then m;(t) exchangea;; with a;. and a;s with a;4; o8] Vik 4 and Pushiar S. Joalekar. Aldoritngiobi
. ) i H : e - AJ Vikraman Arvind and Pushkar S. Joglekar. Algoritienproblems
if appears posmvely in the second position, thﬁrﬂ(t) for metrics on permutation groups. IRroc. 34th Conference

exchangea;; with a;2 anda;s with a;¢. If a variablewu; on Current Trends in Theory and Practice of Computer Science
appears negated, the same is dOﬂGTW) instead ofwi(t)_ SOFSEM volume 4910 ofLecture Notes in Computer Science

L . ) ) pages 136-147, 2008.
The remaining elements of are fixed by;(¢) and (/). [BCWO09] Christoph Buchheim, Peter J. Cameron, and Taoyang @h the
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