
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting.
Both can be found through links on the ENTCS Web Page.

On Solving Nominal Disunification Constraints 1

Mauricio Ayala-Rincón†,‡, Maribel Fernández∗, Daniele Nantes-Sobrinho† and Deivid Vale† 2

†Departamentos de Matemática e ‡Ciência da Computação
Universidade de Braśılia, Braśılia-DF, Brazil

∗Department of Informatics, King’s College London, London, UK

Abstract

This paper proposes an extension of first-order disunification problems by taking into account binding operators according to the
nominal approach. In this approach, bindings are implemented through atom abstraction, and renaming of atoms is implemented
via atom permutations. In the nominal setting, unification problems consist of equational questions (s ≈α

? t) considered under
freshness constraints (a#?t) that restrict solutions by forbidding free occurrences of atoms in the instantiation of variables. In
addition to equational and freshness constraints, nominal disunification problems include also nominal disunification constraints
(s 6≈α

? t), and their solutions consist of a substitution and additional freshness constraints such that under these constraints the
instantiation of the equations, disequations and freshness constraints with the substitution hold. By re-using nominal unification
techniques, this paper shows how to decide whether two nominal terms can be made different modulo α-equivalence. This is done
by extending previous results on first-order disunification, and defining the notion of solutions with exceptions in the nominal
syntax. A discussion on the semantics of disunification constraints is also given.

Keywords: Nominal Logic, Nominal Semantics, Unification, Disunification

1 Introduction

Nominal techniques can be used to reason about systems with binders. The binding structure of these systems
always requires a method to deal with α-equivalence between objects in the system, i.e., objects (usually parse
tree representation of the concrete syntax) are considered equal if they differ only by the name of bound
variables. For instance, in the syntax of λ-calculus, terms like λx.x y and λz.z y should be considered equivalent,
despite their syntactical differences.

It is common in the literature to consider the α-equivalence relation as part of the syntactical structure of
terms of the language. One often says “terms are considered syntactically identical if they are α-convertible”.
This means that one considers the quotient of the set of terms by the α-equivalence relation. So one has the
problem of which representative of α-equivalence classes should be chosen. One of the most popular strategies
to solve this problem is called the “Barendregt Variable Convention”: choose representatives for which the
bound variables are mutually distinct and distinct from any free variable in the current context. This strategy
solves the problem for handwritten proofs and calculations, but not for implementations. Another treatment of
α-equivalence is to get rid of equivalence classes by considering de Bruijn indices instead of variable names.
Using de Bruijn indices, free and bound variables are indexed as naturals and thus all objects have unique
representations so that one does not need to worry about representatives of equivalence classes. This approach
facilitates the implementation of systems with binders but at the cost of readability.

The nominal approach diverges from those above in two important ways: first, one can reason about α-
equivalence in a readable way, very close to informal practice, while still remaining fully formal since α-renaming
is embedded in the nominal syntax; second, nominal α-equivalence is easy to implement in computer systems.

1 Work partially funded by CNPq
2 Email: deividvale@mat.unb.br, {dnantes,ayala}@unb.br, maribel.fernandez@kcl.ac.uk

c©2019 Published by Elsevier Science B. V.

http://entcs.org

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

Nominal terms have atoms (a, b, c . . .) used to represent object-level variables, and variables, or unknowns
(X,Y, . . .) used to express variables on the meta-level. Atoms can be abstracted by a binder operator but
cannot be instantiated by a substitution, whereas variables cannot be abstracted but can be instantiated by a
substitution. For instance, the nominal term [a] t represents the abstraction of atom a in t. To rename an atom
a to another atom b we make use of an atom permutation. Permutations are built as lists of atom swappings
of the form (a b). The action of π = (a b) over [a] t, denoted by π · t gives as result the term [b] t′ where t′ is
obtained by the replacement of all occurrences of a by b and all occurrences of b by a in t. The action of an
atom permutation π over a meta-variable X will be ‘suspended’ in X, written as π ·X, and will be ‘executed’
only when X is instantiated. The α-equivalence relation over nominal terms is built using permutations and a
freshness relation between atoms and terms, written as a#t, which means that a cannot occur free in t.

Nominal techniques have been widely explored and investigated for the last years [12,3,17]. Nominal unifica-
tion has also been developed [19,8], and more recently, works on unification modulo equational theories [1,2,4]
have also been developed. Unification is the problem of finding a substitution σ that makes two terms ‘equal’
i.e., sσ ≈α tσ. In the nominal setting, α-equality comes with freshness conditions for atoms, which should be
taken into account when dealing with nominal unification problems. For instance, the problem of unifying
λ [a]X and λ [b]Y reduces to the problem of unifying X ≈α? (b a) ·Y under the condition that a#Y . Therefore,
a solution to a nominal unification problem will be a pair 〈Γ, σ〉 consisting of a set of freshness constraints
Γ, and a substitution over variables σ. Several applications of nominal unification exist, for instance, in logic
programming, automatic deduction, theorem proving, among others.

This work is about nominal disunification, that is, the problem of solving nominal unification questions
enriched with disequations, i.e., constraints of the form s 6≈α? t. For example, consider the unification problem
λ [a]X ≈α? λ [b]Y as above, but imposing the condition that solutions can neither map X to the atom a nor Y
to the atom b. This condition may be given as a set of disequations, and solutions should be computed in such
a way that they (and therefore, their instances) satisfy the imposed restriction. The nominal disunification
constraint is then represented as:〈

λ [a]X ≈α? λ [b]Y || X 6≈α? a, Y 6≈α? b
〉

Imposing such conditions has some side-effects that need to be addressed in order to be able to formally state a
definition of solution. In a more general view, a nominal disunification problem is given as P = 〈∆ ` s1 ≈α?

t1, . . . , sn ≈α? tn | ∇ ` u1 6≈α? v1, . . . , um 6≈α? vm〉, and a solution to such problem is a pair 〈Γ, σ〉 of a context
Γ and a substitution σ, such that σ makes terms of each equation equal, but leaves those of the disequations
different, while satisfying the freshness constraints ∆ and ∇.

The strategy proposed by Buntine and Bürckert [6] to solve systems containing first-order equations and
disequations is followed in the current work. But its extension to the nominal setting is not straightforward
since the notions of equality and disequality are different and the freshness side conditions add extra constraints
to the problem. The standard nominal unification algorithm [19] can be reused to provide solutions to nominal
unification problems, and following Buntine and Bürckert’s approach, we show that nominal disequations can
be treated in a nominal term-algebra.

The main contributions of this paper can be summarized as follows.

(i) We extend first-order disunification problems to the nominal framework introducing nominal constraint
problems.

(ii) From the semantics point of view, we show that Birkhoff’s HSP Theorem (Theorem 2.14), as in the
first-order case, does not hold for nominal disequations (Example 2.16).

(iii) We extend the notion of substitution with exceptions to solution pairs that consist of a freshness context and
a substitution, with exceptions (Definition 3.5). In addition, a version of the Consistency Test Algorithm
(Algorithm 1) to deal with pairs with exceptions is proposed.

(iv) We propose a sound, complete, and terminating (provided nominal unification is finitary) procedure
(Algorithm 2) to solve nominal disunification constraints that reuses the nominal unification algorithm.

(v) We prove that the Representation Theorem holds in the nominal approach to disunification (Theorem 4.3).

Outline of the paper.
Section 2 establishes the main required notions on nominal syntax and semantics, equality and unification.

Section 3 introduces the nominal constraint problems as well as a generalized notion of instantiation and proves
some results on the consistency of pairs with exceptions. Section 4 shows how to solve nominal constraint
problems by reusing the nominal unification algorithm. Section 5 describes related work and Section 6 concludes.

2

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

2 Preliminaries

We assume the reader is familiar with nominal syntax and sets and recall the main concepts and notations that
are needed in the paper; for more details we refer the reader to [12,17].

2.1 Nominal Syntax

Fix countable disjoint sets of variables X = {X,Y, Z, . . . } and atoms A = {a, b, c, d, · · · }. Variables represent
meta-level unknowns and atoms object level variable symbols. Atoms are identified by their name, so it will be
redundant to say two atoms a and b are different. A signature Σ is a set of term-formers such that each f ∈ Σ
is assigned a unique non-negative integer n, called the arity of f , written as f : n.

A permutation π is a bijection A→ A with finite domain, i.e., the set supp(π) := {a ∈ A | π(a) 6= a} is finite.
Write id for the identity permutation. The composition of two permutations π and π′ will be denoted as π ◦ π′.

Definition 2.1 [Nominal Terms] Let Σ be a signature disjoint from A and X. The set T (Σ,A,X) of nominal
terms is inductively generated by the following grammar:

s, t, u, v ::= a | π ·X | [a] t | f(t1, . . . , tn)

where a is an atom term, π ·X is a moderated variable (or suspension), [a] t denotes the abstraction of the
atom a in the term t, and f(t1, . . . , tn), for f : n in Σ, is a function application.

Example 2.2 Let Σλ := {lam : 1, app : 2} be the signature for the λ-calculus (for a complete axiomatization
of the λ-calculus within the nominal syntax the reader is referred to [14]). If one consider λ-variables as atoms
λ-terms can be inductively generated by the grammar:

e ::= a | lam([a] e) | app(e, e)

To simplify notation, write app(s, t) as s t and lam([a] s) as λ [a] s. The following are examples of nominal terms:

(λ [a] a)X (λ [a] (λ [b] b a) c) d

Definition 2.3 [Action of permutations] The object-level action of a permutation π on a term t is defined
by induction on the structure of t, as follows:

π · a ≡ π(a) π · (γ ·X) ≡ (π ◦ γ) ·X π · [a] t ≡ [π · a] (π · t) π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

As usual, substitutions are defined as maps from variables to nominal terms with finite domain. We
inductively extend the action of a substitution from variables to terms, in the following way:

Definition 2.4 [Action of substitutions] The action of a substitution σ on a term t, denoted as tσ, is inductively
defined by:

aσ ≡ a (π ·X)σ ≡ π · (Xσ) ([a] t)σ ≡ [a] (tσ) f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

Substitutions are written in postfix notation: t(σγ) ≡ (tσ)γ.

2.2 Equality and Derivability

Equality in nominal terms corresponds in fact to α-equality and relies on the notion of “fresh variable”. Two
fundamental predicates are freshness, #, and alpha-equality, ≈α:
• a#t means that the atom a cannot occur free in t; • s ≈α t means that s is α-equivalent to t.
Constraints are generated by the grammar

P,Q,C := a#t | s ≈α t

The first constraint a#t is called a freshness constraint whereas s ≈α t is called an α-equality constraint. A
freshness constraint of the form a#X or a#a is called primitive. Validity of freshness and equality constraints
is specified via the natural deduction rules in Figures 1 and 2.

To define ≈α we use the difference set of two permutations

ds(π, γ) := {a ∈ A | π(a) 6= γ(a)}.

3

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

(#ab)
a#b

π−1(a)#X
(#X)

a#π ·X
(#a)

a# [a] t
a#t

(#b)
a# [b] t

a#t1 · · · a#tn
(#f)

a#f(t1, . . . , tn)

Fig. 1. Derivation rules for freshness

(#ab)a ≈α a
ds(π, γ)#X

(Ds)
π ·X ≈α γ ·X

t1 ≈α u1 · · · tn ≈α un (F)
f(t1, . . . , tn) ≈α f(u1, . . . , un)

t ≈α u (Abs-a)
[a] t ≈α [a]u

(b a) · t ≈α u b#t
(Abs-b)

[a] t ≈α [b]u

Fig. 2. Derivation rules for α-equivalence

In the rules defining ≈α below, ds(π, γ)#X denotes the set of constraints {a#X | a ∈ ds(π, γ)}.
A finite set of primitive freshness constraints is called a freshness context. Write ∆,Γ and ∇ for freshness

contexts. We say a context ∆ is consistent if it has no occurrence of a#a, for any atom a.

Definition 2.5 [Nominal judgment] Nominal algebra has two judgment forms:

(i) A freshness judgment form ∆ ` a#t is a pair with a context ∆ and a freshness constraint a#t.

(ii) An α-equality judgment form ∆ ` s ≈α t is a pair of a context ∆ and an α-equality constraint s ≈α t.
The judgment ∆ ` a#t (resp. ∆ ` s ≈α t) means that there exists a proof for a#t (resp. a ≈α t) using the
rules of Figure 1 (resp. Figure 2) and the constraints of ∆ as assumptions. We say that ∆ entails a#t (resp.
s ≈α t) or that the constraint is derivable from ∆. As usual, ∆ 6` C denotes that the constraint C cannot be
derived from ∆. The notion of derivability can be extended to sets of constraints as expected.

2.3 Simplification rules for nominal unification

Nominal unification is the problem of making two nominal terms, say s and t, α-equivalent, denoted as s ≈α? t.
Deciding this may require to decide whether an atom a is fresh for a term t, denoted as a#?t. Since t may
contain variables, a freshness context ∆ is necessary. The content of this section is taken from [12].

Definition 2.6 [Nominal Unification Problem] A nominal unification problem Pr is a pair 〈∆, P 〉 consisting of
a freshness context ∆ and a finite set P of freshness and α-equality constraints of the form a#?t and s ≈α? t,
respectively.

A sound and complete procedure for nominal unification was proposed in [19] and consists of applying the
Simplification Rules of Figure 3. For freshness contexts ∇ and ∇′ and a substitution σ, the instance ∇σ denotes
the set {a#Xσ | a#X ∈ ∇} and ∇ ` ∇′σ denotes ∇ ` a#Xσ, for all a#X ∈ ∇′.

Definition 2.7 A solution for a nominal unification problem Pr = 〈∇, P 〉 is a pair of the form 〈Γ, σ〉 where Γ
is a consistent context and σ a substitution such that the following conditions hold:

(i) Γ ` ∇σ;

(ii) Γ ` a#tσ, for all a#?t ∈ Pr;
(iii) Γ ` tσ ≈α sσ, for all s ≈α? t ∈ Pr;
(iv) Xσ ≡ Xσσ.

If there is no such 〈Γ, σ〉 we say that Pr is unsolvable.

Let Pr be a unification problem as above. We write U (Pr) to denote the set of all solutions of Pr. Solutions
in U (Pr) are compared by the following partial order, called instantiation ordering.

Definition 2.8 Let Γ1,Γ2 be consistent contexts, and σ1, σ2 substitutions. Then 〈Γ1, σ1〉 ≤ 〈Γ2, σ2〉 when
there exists a substitution δ such that

for all X ∈ X, Γ2 ` Xσ1δ ≈α Xσ2 and Γ2 ` Γ1δ

In this case we say 〈Γ2, σ2〉 is an instance of the pair 〈Γ1, σ1〉 on X.

4

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

Definition 2.9 A principal (or most general) solution to a problem Pr is a least element of U (Pr).

a#?b, Pr =⇒ Pr

a#?π ·X,Pr =⇒ π−1(a)#?X,Pr π 6= id

a#? [a] t, Pr =⇒ Pr

a#? [b] t, Pr =⇒ a#?t, Pr

a#?f(t1, · · · , fn), P r =⇒ a#?t1, · · · , a#?tn, P r

a ≈α? a, Pr =⇒ Pr

π ·X ≈α? γ ·X,Pr =⇒ ds(π, γ)#X,Pr

f(s1, · · · , sn) ≈α? f(t1, · · · , tn), P r =⇒ s1 ≈α? t1, · · · , sn ≈α? tn, P r

[a] t ≈α? [a]u, Pr =⇒ t ≈α? u, Pr

[b] l ≈α? [a] r, Pr =⇒ (a b) · l ≈α? r, a#l, P r

π ·X ≈α? t, Pr
[X/π−1·t]

=⇒ Pr[X/π−1 · t], if X /∈ vars(t)

t ≈α? π ·X,Pr [X/π−1·t]
=⇒ Pr[X/π−1 · t], if X /∈ vars(t)

Fig. 3. Simplification rules for unification problems

The rules from Fig. 3 induce a reduction relation on problems by “running the derivation rules in reverse”,
in no particular order. Write Pr =⇒ Pr′ when Pr′ is obtained from Pr by the application of a simplification

rule from Fig. 3, and
∗

=⇒ for the transitive and reflexive closure of =⇒.
The nominal unification algorithm, called unify in the next sections, consists of applying the simplification

rules to a problem Pr = 〈∆, P 〉 until no more rules can be applied.

Lemma 2.10 ([12]) The relation =⇒ is strong normalizing and preserves solutions of problems, that is,
Pr =⇒ Pr′ implies U (Pr) = U (Pr′).

We say that an equality problem t ≈α? u is reduced when one of the following holds:

(i) t := a and u := b are distinct atoms

(ii) Precisely one of t and u is a moderated variable and the other mentions that variable.

(iii) t and u have different term constructors at the root and neither is a variable.

(iv) t and u are applications with different term-formers.

We call a reduced equation, as above, inconsistent. Also, a freshness problem a#?t is reduced if it is of the
form a#?X or a#?a. The former is called consistent and the latter inconsistent.

Normal forms are unique modulo renaming of variables, as in standard first-order unification. The normal
form of a unification problem Pr by =⇒ is defined as expected and denoted by 〈Pr〉nf. It consists of a set
of equations and freshness constraints in reduced form. Pr has a solution iff 〈Pr〉nf contains only consistent
reduced freshness constraints, i.e., freshness constraints of the form a#X.

Example 2.11 Consider the signature of lambda-calculus as in Example 2.2 and the problem below. We apply
the simplification rules from Fig. 3 to get:

{(λ [a]X)Z ≈α? (λ [b]Y)b} =⇒ {λ [a]X ≈α? λ [b]Y,Z ≈α? b}
[Z/b]
=⇒ {λ [a]X ≈α? λ [b]Y }
=⇒ {(b a) ·X ≈α? Y, b#?X}
[Y/(b a)·X]

=⇒ {b#?X}

Solution: 〈b#X, [Z/b, Y/(b a) ·X]〉

5

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

2.4 Semantic Notions

The semantics of solving equations is given by the nominal (universal) algebra. In [13], Gabbay gives an
interpretation for nominal equational theories in nominal sets, constructs the initial ground algebra 3 F(T,D)
for a nominal theory T = (Σ, Ax) consisting of a signature Σ, a set of axioms Ax of the form ∆ ` s = t and a
set of term-forms D disjoint from Σ, and proves a version of the HSP (Homomorphism, Subalgebra, Product)
theorem for nominal algebras. Roughly speaking, the (HSP) theorem states that nominal equational varieties
are closed under homomorphic images, subalgebras, products and atom abstraction. Basic definitions such as
nominal sets, support, equivariance, and so on, are assumed and can be found in [17]. Below we give some
semantic definitions and results taken from [15].

To start, derivations in a theory T = (Σ, Ax) are defined by the rules in Figures 1 and 4. We say Π is a
valid derivation in T when the following two conditions are satisfied:

• Π mentions only terms in the signature Σ.

• Π mentions only instances of (ax∆′`t=u) such that (∆′ ` t = u) ∈ Ax.

(refl)
∆ ` t = t

∆ ` t = u (symm)
∆ ` u = t

∆ ` t = u ∆ ` u = v (trans)
∆ ` t = v

∆ ` π(a)#π ·Xσ for every a#X ∈ ∆′
(ax∆′`t=u)

∆ ` π · tσ = π · uσ
∆ ` t = u (cong[])

∆ ` [a]t = [a]u
∆ ` t = u (congf)

∆ ` f(. . . , t, . . .) = f(. . . u . . .)

∆, a#X ` t = u (a /∈ t, u)
(fr)

∆ ` t = u

∆ ` a#t ∆ ` b#t
(perm)

∆ ` (a b) · t = t

Fig. 4. Derivation rules for equality

To obtain the correctness of nominal equational logic, a relation between the syntax and semantics (as in
Birkhoff’s Theorem) will be established. For more details, we address the reader to [13], some extra concepts
are included in the Appendix A.

For any nominal sets X and Y call a function f ∈ X→ Y equivariant when π · f(x) = f(π · x), for any x ∈ X
and π ∈ P.

Definition 2.12 [Σ-algebra] A Σ-algebra A consists of:

• A domain nominal set A = (AS , ·), i.e., AS is a set equipped with a P-group action · such that each x ∈ A
has finite support.

• An equivariant map atom : A→ AS to interpret atoms; we write the interpretation atom(a) as aA ∈ A.

• An equivariant map abs : A×AS → AS such that a#abs(a, x) always, to interpret abstraction.

• An equivariant map fA : AnS → AS for each term-former f : n ∈ Σ to interpret term-formers.

Σ-algebras are usually denoted by A,B.

As expected, a valuation ς in a Σ-algebra A maps unknowns X to elements ς(X) ∈ AS . Below we define a
equivariant function J·Kς to interpret nominal terms w.r.t. a valuation ς.

Definition 2.13 Let A be a nominal algebra. Suppose that t ∈ T (Σ,A,X) and consider a valuation ς in A.

The interpretation JtKAς , or just JtKς if A is understood, is defined inductively by:

JaKς = aA Jπ ·XKς = π · ς(X) J[a] tKς = abs(a, JtKς) Jf(t1, . . . , tn)Kς = fA(Jt1Kς , . . . , JtnKς)

We say a context interpretation J∆KAς is valid when a#ς(X) for each a#X ∈ ∆. In the same way, J∆ ` a#tKAς
is valid when J∆KAς implies a# JtKAς and J∆ ` t = uKAς when J∆KAς implies JtKAς = JuKAς .

3 F(T,D) is called free algebra in [13]

6

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

A model of T is a Σ-algebra A such that J∆ ` t = uKς is valid for every axiom ∆ ` t = u in Ax and every
valuation ς. If there is a derivation ending with ∆ ` t = u that uses the axioms of T and the derivation rules
from Fig. 4 we write ∆ `T t = u.

To obtain models for a nominal equational theory T , the initial ground algebra, F(T,D) is built. As in [13],
let D be a set of term-formers disjoint from Σ, they are called ‘extra term-formers’. Then the set of ground
nominal terms is generated by the grammar:

g ::= a | [a] g | f(g1, . . . , gn) | d(a1, . . . , am)

Here f : n ranges over elements of Σ and d : m ranges over elements of D (more details can be found in the
Appendix).

Note that the initial ground (nominal) algebra is the analogous in the nominal setting to the initial first-order
ground algebra T (Σ)/E, where E is a set of equational axioms. The main difference here is that we add
some new fresh term-formers from D to provide “enough ground terms” with non-empty support. A nominal
algebra variety V for a signature Σ is a collection of Σ-algebras closed under homomorphic images, subalgebras,
countable products, and atom-abstractions. We say a collection V of Σ-algebras is equational when there is
some theory T = (Σ, Ax) such that V is the collection of all models of T .

Theorem 2.14 (HSP Theorem, Theorem 9.3 in [13]) A collection of Σ-algebras V is equational if, and
only if, it is a variety.

We also consider the term-algebra T (Σ,A,X), as in the first-order case, this term-algebra is generic (see [6])
for solving existentially closed equations.

Corollary 2.15 Let φ be the existentially closed equational judgment:

φ ::= ∃X(∆ ` s =T t).

Then ∆ `F(T,D) φ if, and only if, ∆ `T (Σ,A,X) φ.

Example 2.16 Corollary 2.15 does not hold for disequations, to see this consider the theory T = (Σ, Ax) where
Σ = {f()} and Ax = {` f(X) = a,` [a] f(X) = a}. In T (Σ,A,X) one can derive ` f(b) = a and ` f(b) = b:

(ax∆′`f(X)=a)
` id · f(X)σ = aσ

` f(b) = a

(ax∆′`f(X)=a)
` (a b) · f(X)σ′ = (a b) · aσ′

` f(b) = b
(trans)` a = b

by taking σ = {X/b} in the left branch and σ′ = {X/a} in the right branch. The dashed lines in the derivation
above represent the result obtained after the application of substitutions σ and σ′, and the swapping of names
in the axiom ` f(X) = a. Therefore, every atom is in the same equivalence class modulo T .

Also, from the axioms of T one can derive ` f(t) = a and ` [b] f(u) = a for any pair of terms t and u. Hence
it is possible to derive ` t′ = u′ for any non-variable terms t′ and u′. The other equivalence classes are for
variables X,Y, Z

It follows that `T (Σ,A,X) ∃X.X 6= a. However, F(T,D) (with D = ∅) has only one equivalence class, i.e., the
class of all ground terms and atoms, therefore, 0F(T,D) ∃X.X 6= a since every ground term and atom are in the
same equivalence class modulo T .

3 Nominal Constraint Problems

In this section, we follow the approach proposed by Buntine and Bürckert [6] for solving a system of equations
and disequations. Our approach, as in the first-order case, depends on the unification type of a (nominal) theory
T . Fix the nominal algebra T (Σ,A,X) with the empty set of axioms, that is, terms are considered up to the
built-in α-equivalence. This theory is called CORE [15], and its deduction rules are given in Fig. 2. The results
in this section can be extended to any theory T provided unification is decidable and finitary for this theory;
CORE has been chosen to make examples and proofs easier to follow.

Definition 3.1 A (nominal disunification) constraint problem P is an ordered pair P = 〈E || D〉 where E
is a nonempty set of nominal equations-in-context ∆ ` s ≈α t and D is a (possible empty) set of nominal

7

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

disequations-in-context ∇ ` p 6≈α q, as follows:

E = {∆1 ` s1 ≈α? t1, · · · ,∆n ` sn ≈α? tn}
D = {∇1 ` p1 6≈α? q1, · · · ,∇m ` pm 6≈α? qm}

The sets ∆1, . . . ,∆n,∇1, . . . ,∇m are consistent contexts. We call them the initial freshness conditions that are
imposed on equations (disequations) in the problem P.

In the case any of the ∆i or ∇j of a problem is empty we may write an equation(disequation)-in-context

just as si ≈α? ti (pj 6≈α? qj) instead of ∅ ` s ≈α? t. We also may consider the equations and disequations of the
problems under the same context, ∆ := ∪∆i and ∇ := ∪∇j .

Remark 3.2 A constraint problem is equivalent to an existentially closed formula:

P := ∃X
((∧

∆i ` si ≈α ti
)
∧
(∧
∇j ` pj 6≈α qj

))
.

We solve these formulas in the nominal term-algebra T (Σ,A,X) (see [13,15]), this is the logical task of finding
witnesses/solutions for the variables in P , that is, a pair 〈Γ, σ〉 where σ is a substitution for the variables of the
formula such that under some (possible empty) consistent context Γ we have Γ ` Pσ.

To give some intuition on the construction of solution pairs, consider the constraint problem below:

P =
〈

(b a) ·X ≈α? Y || [a]X 6≈α? [b]Y
〉

(1)

The intended effect of a solution 〈Γ, σ〉 of P is that it needs to solve the equation (b a) · X ≈α? Y and

the disequation [a]X 6≈α? [b]Y where solving this disequation means Γ 0 [a]Xσ ≈α [b]Y σ, i.e., 〈Γ, σ〉 is
not a solution of the equation [a]X ≈α? [b]Y which will be called the associated equation to the problem

[a]X 6≈α? [b]Y . Notice that,
〈Γ, σ〉 = 〈∅, [Y/(b a) ·X]〉 (2)

solves the constraint problem P above. The main goal of this section is show how to construct these solutions.
In general, instantiation plays an important role in unification theory. It is by instances of more general

unifiers (instantiation closure) that one produces a finite representation of all other solutions of a unification
problem. Therefore, it is helpful to have the property of instantiation closure to solutions of constraints
problems as well. Unfortunately, this is not the case since we are solving constraints in the nominal term-algebra
T (Σ,A,X). For an example, let Q be the constraint problem:

Q =
〈
X ≈α? Y || X 6≈α? a

〉
The pair 〈Γ, σ〉 = 〈∅, [X 7→ (a b) · Z, Y 7→ (a b) · Z]〉 solves Q. However, if we instantiate this solution with
δ = [Z 7→ b] the instance 〈∅, [X/a, Y/a]〉 is not a solution of Q.

Example 3.3 Let 〈Γ, σ〉 = 〈∅, [Y/(b a) ·X]〉, as in (2). Consider the pair 〈Γ′, σ〉 = 〈b#X, [Y/(b a) ·X]〉. Notice
that 〈Γ, σ〉 ≤ 〈Γ′, σ〉, therefore 〈Γ′, σ〉 solves (b a) ·X ≈α? Y . In addition, 〈Γ′, σ〉 is a solution of the equation

[a]X ≈α? [b]Y associated to [a]X 6≈α? [b]Y . It can not solve (1) since it solves the equations and the associated
equation [a]X ≈α? [b]Y .

The reader may wonder if such an anomaly is caused by the context assumptions added on the initial
problem or, reasonable enough, even the α-equivalence embedded in the theory of nominal terms. Certainly,
context assumptions seem to cause some difficulties. Firstly, because that the notion of instantiation may
introduce new freshness constraints, as in Example 3.3. Secondly, freshness conditions on the equational part
of a constraint problem can interact with solutions and, as showed in the example below, even change the
solvability of a problem.

Example 3.4 Consider the following modification of the original problem (1):

P ′ =
〈
b#X ` (b a) ·X ≈α? Y || [a]X 6≈α? [b]Y

〉
8

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

Notice that P ′ does not have a solution: every time we solve b#X ` (b a) · X ≈α? Y we always solve the

equation [a]X ≈α? [b]Y associated to [a]X 6≈α? [b]Y .

We will work on this type of issues in the remaining of this paper. First, we define precisely what we mean
by a solution of nominal constraint problems. Keep in mind that our goal is the development of a nominal
generalization for the already established notion of instantiation of solutions (Definition 2.8), but this needs to
be done in such a way that instantiation closure still holds.

3.1 Generalized instantiation

In this subsection, some notions initially established in [6] will be extended into the nominal framework. The
main difference is the lifting of the notion of substitution with exceptions to pairs of the form 〈Γ, σ〉 consisting of
a consistent freshness context and a substitution, in addition of course, to the fact that α-equality is axiomatized
in nominal terms which adds some complexity when compared to syntactic equality. Besides, we have adapted
the Consistency Test Algorithm (Algorithm 1) to deal with pairs with exceptions.

Definition 3.5 A pair with exceptions, denoted as 〈Γ, σ〉 −Ψ, consists of a pair 〈Γ, σ〉 and an indexed family
of the form Ψ = {〈∇l, ψl〉 | l ∈ I}.

Pairs with exceptions will be used as a representation of solutions of a constraint problem that has restrictions
on how they can be instantiated. For instance, in the problem Q above, solutions of the equation X ≈α Y can
be instantiated in any way except for the instances where X is mapped to a.

Definition 3.6 [Pair instances]

• A pair 〈Γ, σ〉 is said to be an instance of a family Ψ = {〈∇l, ψl〉 | l ∈ I}, denoted by Ψ ≤ 〈Γ, σ〉, if and only if
each instance of 〈Γ, σ〉 is an instance of some 〈∇l, ψl〉 in Ψ.

• A pair 〈∆, λ〉 is an instance of a pair with exceptions 〈Γ, σ〉 −Ψ, written 〈Γ, σ〉 −Ψ ≤ 〈∆, λ〉, if and only if
〈∆, λ〉 is an instance of 〈Γ, σ〉 but not of Ψ.

Definition 3.7 A pair with exceptions 〈Γ, σ〉 −Ψ is consistent if and only if it has at least one instance.

For example, the pair with exceptions 〈b#X, [Y/(b a) ·X]〉 − {(b#X, [Y/(b a) ·X])} from Example 3.4 is
inconsistent. The following lemma is a useful characterization of consistency for pair with exceptions.

Lemma 3.8 (Inconsistency Lemma) A pair with exceptions 〈Γ, σ〉 −Ψ is inconsistent if and only if 〈Γ, σ〉
is an instance of Ψ.

Proof. (⇒) If 〈Γ, σ〉 is an instance of Ψ then all instances 〈∆, γ〉 ≤ 〈Γ, σ〉 is an instance of some 〈∇i, ψi〉 in Ψ,
so by Definition 3.6 〈Γ, σ〉 −Ψ has no instances hence it is inconsistent.

(⇐) Conversely, suppose 〈Γ, σ〉−Ψ is consistent and 〈Γ, σ〉 is an instance of Ψ. Then there exists an instance
〈∆, λ〉 of 〈Γ, σ〉 − Ψ. Hence 〈Γ, σ〉 ≤ 〈∆, λ〉. Since 〈Γ, σ〉 is an instance of Ψ we have 〈∇i, ψi〉 ≤ 〈Γ, σ〉, by
transitivity

〈∇i, ψi〉 ≤ 〈Γ, σ〉 ≤ 〈∆, λ〉
a contradiction with Definition 3.6. 2

Recalling Definition 2.13, we say that a pair with exceptions 〈Γ, σ〉 − ψ is inconsistent on a Σ-algebra A iff
instances(〈Γ, σ〉 −Ψ) = ∅ in A, where instances(〈∇, ρ〉) = {〈∇, ρ〉ς | for all valuation ς}.
Corollary 3.9 If 〈Γ, σ〉 − ψ is inconsistent on T (Σ,A,X) then it is inconsistent on the ground algebra
F(CORE,D).

Proof. If 〈Γ, σ〉 − ψ is inconsistent on T (Σ,A,X) then each instance 〈Γ′, σ′〉 of 〈Γ, σ〉 is in turn an instance of
some 〈∆l, ψl〉 ∈ Ψ, i.e., in terms of Definition 2.8, there exists δ such that

for all X ∈ X, Γ′ `T (Σ,A,X) Xσ
′ = Xψlδ and Γ′ ` ∆lδ.

The result follows from Corollary 2.15. Notice that the converse is not true in general. For instance, consider
the theory T as in Example 2.16, all pair with exceptions are inconsistent on F(T,D) since it has only one
equivalence class but this not happens in T (Σ,A,X). 2

Corollary 3.10 Let 〈Γ, σ〉 −Ψ be a pair with exceptions. If there is some 〈∇l, ψl〉 ∈ Ψ such that there exists a
substitution δ satisfying

Γ ` Xσ ≈α Xψlδ, for all X ∈ vars(P).

Then 〈Γ, σ〉 −Ψ is inconsistent if and only if Γ ⊇ 〈∇lδ〉nf.

9

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

Proof. Consider the pair with exceptions 〈Γ, σ〉 −Ψ as above. From assumption, σ is an instance of ψl over
the context Γ. By the inconsistency lemma this pair with exceptions is inconsistent iff 〈Γ, σ〉 is an instance of Ψ.
The result follows from the fact that Γ ` ∇lδ iff Γ ⊇ 〈∇lδ〉nf. 2

The above corollary enables us to algorithmically test if some pair with exceptions is consistent provided that
we have already solved the matching-in-context problem (Γ ` Xσ) ≈? (Γ ` Xψ) (for all variables X appearing
in the constraint problem) where Xσ is the pattern (see [12, Definition 45]). That is, for each ψl we solve the
unification problem

Γ ` X1σ ≈α? X1ψl, · · · , Xnσ ≈α? Xnψl

without instantiating variables of Xiσ, for all 1 ≤ i ≤ n. The solution of this matching problem (if it exists)
will be denoted by δ. In [7], the authors give an efficient implementation for the matching problem.

Algorithm 1 Consistency Test

input: 〈Γ, σ〉 − ψ a finite pair with exceptions.
output: true if the input is consistent false otherwise.
for each 〈∇l, ψl〉 ∈ Ψ do

if matching(Γ, X1σ ≈? X1ψl, · · · , Xnσ ≈? Xnψl) = δ then
if Γ ⊇ 〈∇lδ〉nf then

return false and stop
end

end
end
return true

4 Solving nominal constraints

Finally, we give the formal definition of a solution of a nominal constraint problem and also construct a finite
representation for the solution set.

Definition 4.1 Let P =
〈

∆ ` s1 ≈α? t1, · · · , sn ≈α? tn || ∇ ` p1 6≈α? q1, · · · , pm 6≈α? qm

〉
be a nominal dis-

unification constraint problem. A solution of P is a pair 〈Γ, σ〉 of a consistent context Γ and a substitution σ
satisfying the following conditions:

(i) 〈Γ, σ〉 is a solution of the equational part E of P.

(ii) 〈Γ, σ〉 satisfies the disequations in the disequational part D of P, that is:
(a) Γ 0 ∇σ, or

(b) Γ 0 pσ ≈α qσ, for all p 6≈α? q in D.

Algorithm 2 Construction of a complete representation of solutions of constraint problems

input: A disunification problem P = 〈E || D〉.
output: A finite set S of pairs with exceptions (possibly empty).
let 〈Γ, σ〉 := unify(E)
let Ψ :=

⋃
pi 6≈α?qi∈D

{〈∇i, ψi〉 = unify(∇i, pi ≈α? qi)}

if consistent(〈Γ, σ〉 −Ψ) then
return 〈Γ, σ〉 −Ψ

else
return ∅

end

Definition 4.2 We call a set S of pairs with exceptions a complete representation of the solutions of the
constraint problem P iff S satisfies the following conditions:

(i) If 〈Γ, σ〉 −Ψ ≤ (∆, λ) for some 〈Γ, σ〉 −Ψ in S then 〈∆, λ〉 solves P.

(ii) If 〈∆, λ〉 solves P then it is an instance of some 〈Γ, σ〉 −Ψ in S.

(iii) 〈Γ, σ〉 −Ψ is consistent for all 〈Γ, σ〉 −Ψ ∈ S.

10

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

Similar to nominal unification problems, we are interested in generating a complete finite representation for
the set of solutions to a constraint problem P . We use Algorithm 2 to compute such a representation in the form
of a pair with exceptions 〈Γ, σ〉−Ψ where 〈Γ, σ〉 is a solution for the equations in P and the family Ψ = {〈∆l, ψl〉}
is formed by taking each pair 〈∆l, ψl〉 as the solution of the associated equations ∆ ` pl ≈α? ql, 1 ≤ l ≤ m.
Termination of Algorithm 2 follows from the termination of unify, and correctness (soundness and completeness)
follows from the Representation Theorem below.

Theorem 4.3 (Representation Theorem) Let

P =
〈

∆ ` s1 ≈α? t1, · · · , sn ≈α? tn || ∇ ` p1 6≈α? q1, · · · , pm 6≈α? qm

〉
be a nominal constraint problem. Define the family

Ψ :=
⋃

p 6≈α?q∈D

U
(
∇, p ≈α? q

)
.

Then the set S = {〈Γ, σ〉 −Ψ | 〈Γ, σ〉 ∈ U (E) and Ψ 6≤ 〈Γ, σ〉} is a complete representation of solutions for the
constraint problem P.

Proof.

(i) Take 〈Λ, λ〉 an instance of some 〈Γ, σ〉 − Ψ in S. Then 〈Γ, σ〉 ≤ 〈Λ, λ〉 and it is not an instance of Ψ.
Since unification problems are closed by instantiation it follows that 〈Λ, λ〉 solves the equational part of P .
It remains to show that 〈Λ, λ〉 solves the disequational part of P. Suppose by contradiction that 〈Λ, λ〉
satisfies ∇ ` pl ≈α ql for some ∇ ` pl 6≈α ql in D. Therefore, 〈Λ, λ〉 is an instance of 〈∇l, ψl〉 (a solution
of the associated unification problem ∇ ` pl ≈α? ql in D) and every instance of 〈Λ, λ〉 is an instance of
〈∇l, ψl〉 then Ψ ≤ 〈Λ, λ〉, a contradiction.

(ii) Suppose 〈Λ, λ〉 solves P. Then, 〈Λ, λ〉 solves the equational (disequational) part of P. Consider 〈Γ, σ〉 ∈
U (E) a solution of E, then we conclude that 〈Γ, σ〉 ≤ 〈Λ, λ〉. In addition, 〈Λ, λ〉 solves the disequational
part of P as well, that is;

Λ 0 ∇λ or Λ 0 pλ ≈α qλ, for all p 6≈α? q ∈ D (3)

Assume 〈Λ, λ〉 is an instance of Ψ. Then all instances of 〈Λ, λ〉 is an instance of some 〈∇l, ψl〉 in Ψ. Hence,
there is some 〈∇l, ψl〉 in Ψ such that

〈∇l, ψl〉 ≤ 〈Λ, λ〉.
A contradiction with (3). Therefore, 〈Λ, λ〉 can not be an instance of Ψ and, we conclude that 〈Λ, λ〉 is an
instance of 〈Γ, σ〉 −Ψ, as required.

2

Remark 4.4

(i) Note that any ground instance of a pair with exception representing a solution of a constraint problem P
is also a solution of P. We can restrict solutions to ground instances, but this does not mean that if a
problem is solvable in the term-algebra T (Σ,A,X) it is also solvable in the ground algebra F(CORE,D),
as discussed earlier in Example 2.16.

(ii) If one wants to solve a disunification problem in the initial ground algebra, by Lemma 3.8, one needs to
test if all ground instances of the solutions to the equational part E are an instance of the exceptions ψ.
For some nominal theories this is not an easy task.

(iii) We have a restricted instantiation closure, it is not transitive. In fact, 〈∅, [X/Z]〉 is an instance of the pair
with exception 〈∅, [X/Y]〉 − 〈∅, [X/a]〉. Note that 〈∅, [X/Z]〉 ≤ 〈∅, [X/a]〉 but the latter is not an instance
of 〈∅, [X/Y]〉 − 〈∅, [X/a]〉.

Example 4.5 Consider the constraint problem P below:

P =
〈
λ [a]X ≈α? λ [b]Y || X 6≈α? Y,X 6≈α? a

〉
.

First apply unif to the equational part of the problem obtaining as result:

〈Γ, σ〉 = 〈b#X, [Y/(b a) ·X]〉 (4)

11

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

Then solve the associated equations of the disequational part to combine them as a family of pairs with exception:

Ψ = {〈∅, [X/Y]〉, 〈∅, [X/a]〉} (5)

Finally form the pair with exception 〈Γ, σ〉 −Ψ by the combination of (4) and (5). We can check consistency of
〈Γ, σ〉 −Ψ using Algorithm (1).

5 Related Work.

Disunification problems have been studied extensively in the first-order framework [9,10,6,11,5,18] and also in
the higher-order one [16].

Buntine and Bürckert [6] solve systems of equations and disequations in equational theories with a finitary
unification type; they investigate E-disunification problems with two main applications in mind: the first
application is to give a generalization for logic programming to include negation clauses in such a way that
solution to queries can be expressed as substitutions other than the limited form of negation, called negation as
failure.

The second applications is related with the use of E-disunification as a mechanism to drastically reduce
the solution space of the unification algorithm for some equational theories. For instance, they showed that
associative-commutative unification problems (a.k.a. AC-unification problems) are in fact a kind of so called
AC1-disunification problems (associative-commutative functions with a unity 1) that have a solution space
considerably smaller than the solution space of standard AC-problems. Differently, Comon and Lescanne [10,9]
consider more general problems, called equational problems, which include universally and existentially quantified
variables in the algebra of rational trees or in the quotient term-algebra T (F,X) by a congruence =E . They
propose a set of transformation rules on equational problems of the form ∃w∀y : P1 ∧ . . . ∧ Pn, where Pi, for
i = 1..n, is a called a system, that is, an equation of the form s = t or >, or a disequation s 6= t or ⊥, or a
disjunction Pi1 ∨ . . .∨Pini of systems. Their strategy consists of applying transformation rules to the equational
problem until a kind of solved form is reached. These problems have applications in sufficient completeness for
algebraic specifications defined by sets of rewriting rules.

In [11], Fernández shows that E-disunification is semi-decidable when the theory E is presented by a ground
convergent rewrite system, and gives a sound and complete E-disunification procedure based on narrowing.
Baader and Schulz [5] show that solvability of disunification problems in the free algebra of the combined theory
E1 ∪ . . . ∪En is decidable if solvability of disunification problems with linear constant restrictions in the free
algebras of the theories Ei(1 ≤ i ≤ n) is decidable. Lugiez [16] introduces higher-order disunification problems
and gives some decidable cases for which equational problems can be extended to higher-order systems.

6 Conclusions and Future Work

In this work, we have provided a method to deal with nominal equations constrained by equality constraints
in the form of nominal disequations. The approach adapts Buntine and Bürckert’s first-order method to
solve disequations taking into account the particularities of nominal syntax and semantics. To the best of our
knowledge, this is the first work that deals with disequations in the nominal setting. The main result, Theorem
4.3, establishes the soundness and completeness of the proposed approach.

As future work, we intend to investigate more specific applications of nominal constraint problems; inspired
from Buntine and Bürkert’s work we could seek some direct extensions to nominal logic programming with
negated equations and apply our results to more general unification theories (for instance, AC and AC1-nominal
unification problems). Also, the more general approach to disunification followed by Comon and Lescane [10]
using quantified variables will be investigated.

References

[1] Ayala-Rincón, M., W. de Carvalho Segundo, M. Fernández and D. Nantes-Sobrinho, On solving nominal fixpoint equations, in:
Proc. 11th International Symposium on Frontiers of Combining Systems, FroCoS, Lecture Notes in Computer Science 10483
(2017), pp. 209–226.
URL https://doi.org/10.1007/978-3-319-66167-4_12

[2] Ayala-Rincón, M., W. de Carvalho Segundo, M. Fernández and D. Nantes-Sobrinho, Nominal c-unification, in: 27th International
Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR 2017, Revised Selected Papers, Lecture Notes in
Computer Science 10855 (2018), pp. 235–251.
URL https://doi.org/10.1007/978-3-319-94460-9_14

[3] Ayala-Rincón, M., M. Fernández and D. Nantes-Sobrinho, Nominal narrowing, in: D. Kesner and B. Pientka, editors, 1st
International Conference on Formal Structures for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto,
Portugal, LIPIcs 52 (2016), pp. 11:1–11:17.
URL https://doi.org/10.4230/LIPIcs.FSCD.2016.11

12

https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.4230/LIPIcs.FSCD.2016.11

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

[4] Ayala-Rincón, M., M. Fernández and D. Nantes-Sobrinho, Fixed-point constraints for nominal equational unification, in:
H. Kirchner, editor, 3rd International Conference on Formal Structures for Computation and Deduction, FSCD 2018, July
9-12, 2018, Oxford, UK, LIPIcs 108 (2018), pp. 7:1–7:16.
URL https://doi.org/10.4230/LIPIcs.FSCD.2018.7

[5] Baader, F. and K. U. Schulz, Combination techniques and decision problems for disunification, Theor. Comput. Sci. 142
(1995), pp. 229–255.
URL https://doi.org/10.1016/0304-3975(94)00277-0

[6] Buntine, W. L. and H.-J. Bürckert, On solving equations and disequations, J. ACM 41 (1994), pp. 591–629.
URL http://doi.acm.org/10.1145/179812.179813

[7] Calvès, C. and M. Fernández, Matching and alpha-equivalence check for nominal terms, Journal of Computer and System
Sciences 76 (2010), pp. 283 – 301.
URL https://doi.org/10.1016/j.jcss.2009.10.003

[8] Cheney, J., Equivariant unification, Journal of Automated Reasoning 45 (2010), pp. 267–300.
URL https://doi.org/10.1007/s10817-009-9164-3

[9] Comon, H., Disunification: a Survey, in: J.-L. Lassez and G. Plotkin, editors, Computational Logic: Essays in Honor of Alan
Robinson, MIT Press, 1991 pp. 322–359.

[10] Comon, H. and P. Lescanne, Equational problems and disunification, Journal of Symbolic Computation 7 (1989), pp. 371 –
425, unification: Part 1.
URL http://www.sciencedirect.com/science/article/pii/S0747717189800173

[11] Fernández, M., Narrowing based procedures for equational disunification, Appl. Algebra Eng. Commun. Comput. 3 (1992),
pp. 1–26.
URL https://doi.org/10.1007/BF01189020

[12] Fernández, M. and M. J. Gabbay, Nominal rewriting, Information and Computation 205 (2007), pp. 917 – 965.
URL https://doi.org/10.1016/j.ic.2006.12.002

[13] Gabbay, M. J., Nominal Algebra and the HSP Theorem, Journal of Logic and Computation 19 (2008), pp. 341–367.
URL https://doi.org/10.1093/logcom/exn055

[14] Gabbay, M. J. and A. Mathijssen, The lambda-calculus is nominal algebraic, in: C. Benzmüller, C. Brown, J. Siekmann and
R. Statman, editors, Reasoning in simple type theory: Festschrift in Honour of Peter B. Andrews on his 70th Birthday, Studies
in Logic and the Foundations of Mathematics 17, College Publications, 2008 pp. 271–302.
URL http://www.gabbay.org.uk/papers/lamcna.pdf

[15] Gabbay, M. J. and A. Mathijssen, Nominal (Universal) algebra: equational logic with names and binding 19 (2009), pp. 1455–
1508.
URL https://doi.org/10.1093/logcom/exp033

[16] Lugiez, D., Higher order disunification: Some decidable cases, in: First International Conference on Constraints in
Computational Logics, CCL, Lecture Notes in Computer Science 845 (1994), pp. 121–135.
URL https://doi.org/10.1007/BFb0016848

[17] Pitts, A. M., “Nominal Sets: Names and Symmetry in Computer Science,” Cambridge University Press, New York, NY, USA,
2013.

[18] Ravishankar, V., K. A. Gero and P. Narendran, Asymmetric unification and disunification, CoRR abs/1706.05066 (2017).
URL http://arxiv.org/abs/1706.05066

[19] Urban, C., A. M. Pitts and M. Gabbay, Nominal unification, Theor. Comput. Sci. 323 (2004), pp. 473–497.
URL https://doi.org/10.1016/j.tcs.2004.06.016

A More on Nominal Semantics

As in [13], let D be a set of term-formers disjoint from Σ, they are called ‘extra term-formers’. Then the set of
ground nominal terms is generated by the grammar:

g ::= a | [a] g | f(g1, . . . , gn) | d(a1, . . . , am)

Here f : n range over elements of Σ and d : m ranges over elements of D (More details can be found in the
Appendix).

Definition A.1 If g ∈ F(Σ,D) write [g]T for the set of g′ ∈ F(Σ,D) such that there exists a derivation
`T g = g′. Write F(T,D) for the nominal set such that:

• F(T,D)S = {[g]T | g ∈ F(Σ,D)} is the underlying set.

• π · [g]T = [π · g]T .

13

https://doi.org/10.4230/LIPIcs.FSCD.2018.7
https://doi.org/10.1016/0304-3975(94)00277-0
http://doi.acm.org/10.1145/179812.179813
https://doi.org/10.1016/j.jcss.2009.10.003
https://doi.org/10.1007/s10817-009-9164-3
http://www.sciencedirect.com/science/article/pii/S0747717189800173
https://doi.org/10.1007/BF01189020
https://doi.org/10.1016/j.ic.2006.12.002
https://doi.org/10.1093/logcom/exn055
http://www.gabbay.org.uk/papers/lamcna.pdf
https://doi.org/10.1093/logcom/exp033
https://doi.org/10.1007/BFb0016848
http://arxiv.org/abs/1706.05066
https://doi.org/10.1016/j.tcs.2004.06.016

M. Ayala-Rincón, M Fernández, D. Nantes-Sobrinho, and D. Vale

Definition A.2 Let T = (Σ, Ax) and suppose D is a set of term-formers disjoint from Σ. The initial ground
algebra of T over D, denoted by F(T,D), is the Σ-algebra with:

• Underlying nominal set F(T,D)S , as defined in Definition A.1.

• Interpretation of atoms defined as aA = [a]T
• Interpretation of abstraction abs(a, x) = [[a] g]T for some g ∈ x.

• fA(x1, . . . , xn) = [f(g1, . . . , gn)]T for some g1 ∈ x1, . . . , gn ∈ xn, for each term-former f : n ∈ Σ.

For Σ-algebras A and B, a Σ-algebra homomorphism from A to B is an equivariant function AS → BS
that preserves the interpretation for atoms, abstraction, and function symbols. If φ : A → B is a surjective
homomorphism onto B then we say B is a homomorphic image of A.

Theorem A.3 For any nominal equational theory T , F(T,D) is a Σ-algebra and F(T,D) is a model of T .

Theorems A.4 and A.5 are technical and used in the proof of the HSP theorem. The first states that every
element of a variety V is a homomorphic image of some sufficiently large initial ground algebra. The second
states that given a collection V of Σ-algebras, the theory T generated by V induces an injective Σ-algebra
homomorphism θ : F(T,D)→ ΠAi∈VAi, into the product algebra ΠAi∈VAi.

Theorem A.4 Fix a signature Σ, a nominal theory T , and V, the variety of T . If A ∈ V then the exists some
(sufficiently large) set of term-formers D such that there exists a Σ-algebra homomorphism θ from F(T,D) to A
such that θ is surjective.

Theorem A.5 Suppose V is a collection of Σ-algebras. Let T be the theory generated by V. Suppose D is any
set of term-formers, so (Σ ∩ D) = ∅. Then there exists some indexing set I and algebras Ai ∈ V for i ∈ I such
that there exists a Σ-algebra homomorphism θ from F(T,D) to Πi∈IAi such that θ is injective.

14

	Introduction
	Preliminaries
	Nominal Syntax
	Equality and Derivability
	Simplification rules for nominal unification
	Semantic Notions

	Nominal Constraint Problems
	Generalized instantiation

	Solving nominal constraints
	Related Work.
	Conclusions and Future Work
	References
	More on Nominal Semantics

