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Abstract

Obtaining minimal surfaces by a Ribaucour transformation requires solving a sys-

tem of partial differential equations, which is a Darboux transformation. We consider

the system in complex variables for minimal surfaces parametrized by isothermal co-

ordinates and lines of curvature. We relate the data of the Enneper-Weierstrass

representation of minimal surfaces associated by Ribaucour transformations. The

system of equations is solved explicitly for a special class of surfaces, which include

important minimal surfaces. The class is characterized in terms of the Weierstrass

data. The application of these results to the helicoid provides a new family of com-

plete, minimal surfaces, of genus zero, immersed in R
3, with an infinite number of

embedded planar ends.

Key words: Minimal surfaces, Weierstrass representation, Ribaucour transforma-

tion, Darboux transformation.

Introduction

In the last two decades, the construction of new complete minimal surfaces in R3 has
been a very active topic of research (see for instance [CHM], [Co], [HM] and [JM]). The
main tool in such constructions has been the Enneper-Weierstrass representation. Recently,
the Ribaucour transformation was shown to be useful to provide new complete minimal
surfaces (see [CFT2]).

Ribaucour transformations for hypersurfaces, parametrized by lines of curvature, were
studied by Bianchi [Bi]. He showed that these transformations can be used to obtain
surfaces of constant Gaussian curvature or minimal surfaces from a given such surface.
Recently, Corro, Ferreira and Tenenblat, generalized the results of Bianchi to surfaces
with any parametrization and they used Ribaucour transformations to associate Dupin
hypersurfaces [CFT1] and linear Weingarten surfaces [CFT3].

Although the transformation for minimal surfaces is a classical result, it was applied,
for the first time, to Enneper’s surface and to the catenoid recently [CFT2]. New families
of complete minimal surfaces were obtained, of genus zero, immersed in R3, with a finite or
infinite number of planar ends and one or two nonplanar ends. Other results on Ribaucour
transformations can be found in [CFT3], [CT] and [W].

∗supported by CNPq
†partially supported by CNPq
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Applying Ribaucour transformations to minimal surfaces corresponds to solving a linear
system of partial differential equations. Although the system is integrable, finding its
solutions may be difficult.

In this paper we consider minimal surfaces in R3, with no umbilic points, parametrized
(without loss of generality) by isothermal coordinates and lines of curvature. For such
coordinates, we rewrite the system of differential equations in complex variables and we
relate the Weierstrass data of two minimal surfaces associated by a Ribaucour transforma-
tion. We explicitly solve the system of differential equations for a special class of minimal
surfaces. Such surfaces are characterized in terms of the Enneper-Weierstrass represen-
tation. This class of surfaces includes, important minimal surfaces such as the Bonnet’s
minimal surfaces, the helicoid, the catenoid and Enneper’s surface. We obtain new families
of complete minimal surfaces by applying the theory to the helicoid.

The paper is organized as follows: in section 1, we consider basic facts of Ribaucour
transformations for surfaces in R3. We recall the additional condition for such a transfor-
mation to associate minimal surfaces to a given minimal surface.

In section 2, we consider minimal surfaces parametrized by lines of curvature and
isothermal coordinates. We rewrite the system of differential equations in complex vari-
ables and we relate the Enneper-Weierstrass data of the minimal surfaces associated by a
Ribaucour transformation.

In section 3, we solve the system of differential equations for a special class of surfaces,
whose conformal factor satisfies a certain condition. This condition is shown to be equiva-
lent to requiring a special type of Weierstrass data (3.5). Moreover we restrict the theory
of section 2 to this class of surfaces.

In section 4, we apply these results to the helicoid and we provide a new family of
complete minimal surfaces of genus zero, immersed in R3, with infinitely many embedded
planar ends. We also obtain the Enneper-Weierstrass representation of the minimal sur-
faces, associated by a Ribaucour transformations to the catenoid and to Enneper’s surface.

Finally, we want to thank the referee, whose comments improved substantially the final
version of this paper.

1 Ribaucour transformations

In this section, we recall some basic facts on Ribaucour transformations. An important
result of this section, obtained by Corro–Ferreira–Tenenblat, states that the ends generated
by a Ribaucour transformation, applied to a minimal surface, are embedded planar ends.
For the proofs and more details, see [CFT1], [CFT2] and [CT].

Let M and M̃ be two orientable surfaces in R
3, with Gauss maps N and Ñ respectively.

Let e1, e2 be orthonormal principal vector fields on M . We say that M̃ is associated to M by
a Ribaucour transformation with respect to e1, e2 if, and only if, there exist a differentiable
function h : M → R and a diffeomorphism ψ : M → M̃ such that

a) p+ h (p)N (p) = ψ (p) + h (p) Ñ (ψ (p)) for all p ∈M,

b) the subset p+ h (p)N (p), p ∈M , is a surface,
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c) dψ (e1) and dψ (e2) are orthogonal principal directions on M̃.

We observe that either side of the equality in a) is the center of a sphere of radius h (p),

that is tangent to M an M̃ at p and ψ (p) respectively. When the radius h tends to infinity

when p → p0, one may have two possibilities: either the surface M̃ extends nicely to the
point ψ (p0) or else the new surface is not defined at that point. This is the case of the
planar ends produced on minimal surfaces (see more comments later in this section). So
one has to treat those points separately.

We say that M̃ is locally associated to M by a Ribaucour transformation with respect
to e1, e2 if for any p ∈ M̃ there exists a neighborhood Ṽ of p in M̃ and an open subset
V ⊂ M , such that Ṽ is associated to V , by a Ribaucour transformation with respect to
e1, e2. When the principal curvatures have multiplicity one, we do not need to refer to e1,
e2 and we say simply that M̃ is (locally) associated to M by a Ribaucour transformation.

This is the revised version of the classical definition of a Ribaucour transformation,
introduced in [CT]. It allows to extend the transformation to the case when there is an
open set of umbilic points. Actually, one shows in [CT] that generically any surface of R3

can be locally obtained by applying a Ribaucour transformation to an open subset of the
plane or to an open subset of the sphere, as long as one chooses the appropriate frame e1,
e2.

One can also show that, when the principal directions have multiplicities bigger than
one, by choosing different vector fields e1, e2, one gets different associated surfaces by such
a transformation (see Example 3.7 in [CT]). It would be interesting to find out if Ribaucour
transformations can be applied to a neighborhood of an isolated umbilic point.

The definition of Ribaucour transformation requires a diffeomorphism ψ. Examples,
that have been treated by such transformations, show that one may have two complete
surfaces in R

3, which are not homeomorphic, although locally they are associated by Ri-
baucour transformations. See for example in [CFT2] the catenoid and the minimal surfaces
associated to the catenoid, which are topologically either the sphere punctured at any finite
number of points or the sphere punctured at an infinite numbers of points.

Obtaining the Ribaucour transformation of a surface in R3 corresponds to solving a
second order nonlinear partial differential equation for h, where one needs h not to be a
radius of curvature (this is equivalent to condition (b) of the definition, see pg.144 [CFT1]).
However, this equation can be linearized by considering h = Ω/W . One can show the next
result (see [CFT1]).

Proposition 1.1 Let M be an orientable surface of R3. Assume that e1, e2 are orthonor-
mal principal vector fields on M , −λ1 and −λ2 the corresponding principal curvatures, i.e.,
dN (ei) = λiei. If a surface M̃ is locally associated to M by a Ribaucour transformation
with respect to e1, e2 then on a simply connected domain h = Ω/W , where Ω and W are



On Ribaucour transformations and minimal surfaces 4

functions which satisfy

dΩi (ej) = Ωjωij (ej) , for i 6= j, (1.1)

dΩ =
2∑

i=1

Ωiωi, (1.2)

dW = −
2∑

i=1

Ωiλiωi, (1.3)

where ωi are the dual forms of ei and ωij is the connection form.

The next result describes the surfaces M̃ , associated to M by a Ribaucour transforma-
tion in terms of the solutions of the system.

Theorem 1.2 Let M be an orientable surface of R3 parametrized by X : U ⊂ R2 → M .
Assume that ei, 1 ≤ i ≤ 2 are orthogonal principal directions , −λi the corresponding
principal curvatures and N is the Gauss map of M . A surface M̃ is locally associated to
M by a Ribaucour transformation with respect to ei if, and only if, there exist differentiable
functions W, Ω, Ω1, Ω2 : V ⊂ U → R, which satisfy the system (1.1) − (1.3), with

WS (W + λiΩ)
(
S − ΩT i

)
6= 0 i = 1, 2 (1.4)

where

S =

2∑

i=1

(Ωi)
2 +W 2, (1.5)

T i = 2

[
dΩi (ei) +

2∑

k=1

Ωkωki (ei) +Wλi

]
,

and X̃ : V ⊂ U → M̃ , is a parametrization of M̃ given by

X̃ = X − 2Ω

S

(
2∑

i=1

Ωiei −WN

)
. (1.6)

Moreover, the normal map of X̃ is given by

Ñ = N +
2W

S

(
2∑

i=1

Ωiei −WN

)
. (1.7)

In principle, Ribaucour transformations are local transformations determined by the
solutions of the system of equations (1.1) − (1.3) defined on a simply connected domain.
Even if the solution is globally defined on the universal covering of the surface M , a point
where h = Ω/W tends to infinity may not correspond to any point on the associated surface.
For example, this is how planar ends are produced on minimal surfaces by Ribaucour
transformations (see Theorem 1.4).
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A proof of Theorem 1.2 can be found in [CFT2] (see also [CT]). One can also show that

the parametrization X̃ given by (1.6) may extend regularly to points where W (W + λiΩ) =

0, whenever S (S − ΩT i) 6= 0. From now on, whenever we say that a surface M̃ is locally
associated to M by a Ribaucour transformation, we are assuming that there are differ-
entiable functions Ωi, Ω and W, locally defined, satisfying the system (1.1) − (1.3) and
S (S − ΩT i) 6= 0, i = 1, 2.

Bianchi [Bi] showed that, by requiring an additional algebraic condition

Ω2

1 + Ω2

2 +W 2 = 2cΩW, (1.8)

on the solution of the system (1.1) − (1.3), Ribaucour transformations can be used as
a method of constructing minimal surfaces. This is essentially the content of the next
theorem.

Theorem 1.3 Let M be an orientable minimal surface of R3, with no umbilic points,
parametrized by X : V ⊂ R2 → M ⊂ R3. Let e1, e2 be orthonormal principal vector fields
and −λ1, −λ2 the corresponding principal curvatures. Then, for any real constant c 6= 0,
the system of equations

dΩi = Ωjωij + [cW + (W − cΩ)λi]ωi, i 6= j,

dΩ =
2∑

i=1

Ωiωi, (1.9)

dW = −
2∑

i=1

λiΩiωi,

is integrable. Moreover, any solution of this system satisfies (1.8), on a simply connected

domain, if the given initial conditions satisfy (1.8). In this case, the surface X̃, associated
to X by a Ribaucour transformation, is a minimal surface, defined wherever S (S − ΩT i) 6=
0 and it is given by

X̃ = X − 1

cW
(Ω1e1 + Ω2e2 −WN) (1.10)

and its normal map Ñ by

Ñ = N +
1

cΩ
(Ω1e1 + Ω2e2 −WN) . (1.11)

We observe that (1.8), with the condition that Ωi 6= 0, defines dΩi (ei) as in (1.9)
(see the proof of Theorem 1.7 in [CFT2]), while (1.9) implies (1.8), as long as the initial
conditions for Ω1, Ω2, Ω and W satisfy (1.8) .

In section 4, we will need the following result on the points that annihilate S, where
S is given by (1.5). Such a point p0, generically, produces a planar embedded end on the

surface X̃. Moreover, the behavior of X̃ in a neighborhood of p0 is also described.

Theorem 1.4 (Corro - Ferreira - Tenenblat) Let X̃ : D\ {p0} → R3 be a minimal
surface, locally associated by a Ribaucour transformation to a minimal surface X : D → R3

such that, the functions Ωi, Ω and W are defined on D. Let Ñ and N be the normal maps
of X̃ and X, respectively. If S (p0) = 0, Ω (p0) 6= 0 and S (p) 6= 0 for all p ∈ D\ {p0}, then
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(a) for any divergent curve γ : [0, 1) → D\ {p0} such that lim
t→1

γ (t) = p0 the length of

X̃ (γ) is infinite.

(b) The minimal surface X̃ has an embedded planar end at p0, and lim
p→p0

Ñ (p) = N (p0) .

The proof of this theorem can be found in [CFT2], Proposition 1.8.
We conclude this section by observing that the Ribaucour transformation of a minimal

surface, given in Theorem 1.3, is in fact a Darboux transformation (i.e. it transforms an
isothermic minimal surface into such a surface). This property was proved, although not
stated as a theorem, in [CFT2].

Theorem 1.5 (Corro - Ferreira - Tenenblat) The Ribaucour transformation of a min-
imal surface given in Theorem 1.3 is a Darboux transformation. Let X (z, z̄) be a local
parametrization of a minimal surface such that the fundamental forms are
I = ϕ2 (dx2 + dy2) and II = ` (dx2 − dy2), ` 6= 0, ` ∈ R. If X̃ (x, y) is a minimal surface

associated to X by a Ribaucour transformation, then the fundamental forms of X̃ are given
by Ĩ = ϕ̃2 (dx2 + dy2) and ĨI = ` (dx2 − dy2) where

ϕ̃ =

∣∣∣∣
`Ω

ϕW

∣∣∣∣ (1.12)

and Ω, W is a solution of (1.9), with a given initial condition satisfying (1.8) .

This result was obtained in the proof of Proposition 1.8 of [CFT2]. The expression
(1.12) also follows immediately by considering the formula (39) of [CFT3], with H = 0.

It would be interesting to relate the Ribaucour transformation of Theorem 1.3 with the
minimal Darboux transformation. In general, starting with a minimal surface one gets a
4-real parameter (4 initial conditions for (1.9) and c 6= 0, related by the condition (1.8))
family of minimal surfaces associated by Ribaucour transformations. This fact suggests
that this transformation may provide a larger family of minimal surfaces than the minimal
Darboux transformations.

2 A different approach

As we have seen in the previous section, applying Ribaucour transformations to minimal
surfaces corresponds to solving the system of equations (1.1) − (1.3). Although this is an
integrable system of differential equations, finding its solutions may be difficult.

In this section, we consider minimal surfaces in R3, parametrized by isothermal coor-
dinates and lines of curvature. For such coordinates, we rewrite the system of differential
equations in complex variables. Moreover, we relate the Enneper-Weierstrass data of two
minimal surfaces associated by a Ribaucour transformation.

Let M be a minimal surface with no umbilic points. Without loss of generality, we may
assume that M has an isothermal parametrization X (z, z̄), by lines of curvature, whose
quadratic forms are given by

I = ϕ2dzdz̄ and II = −1

2

(
dz2 + dz̄2

)
(2.1)
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where z = x+ iy ∈ U ⊂ C.
The data in the Enneper-Weierstrass representation of a minimal surface in such co-

ordinates is a meromorphic function g (z) and f = 1/g ′. The conformal factor ϕ and the
function g are related on a simply connected domain by

ϕ =
1 + |g|2
2 |g′| . (2.2)

Observe that g and its transformations
ag − b

bg + a
, |a|2 + |b2| > 0, provide all possibilities for

(2.2) to hold.
A straightforward computation provides a system of differential equations equivalent

to (1.1) − (1.3), given by the following result.

Proposition 2.1 Let M be an orientable minimal surface of R3, without umbilic points,
parametrized by X (z, z̄) such that its quadratic forms are given by (2.1). Then the system
of equations (1.1) − (1.3) is equivalent to the integrable system

Ωzz =
1

2
(W − cΩ) + 2Ωz

ϕz

ϕ
, (2.3)

Ωzz̄ =
cϕ2W

2
, (2.4)

Wz = −Ωz̄

ϕ2
(2.5)

with 0 6= c ∈ R and the initial conditions satisfying

(
4WzWz̄ +W 2 − 2cΩW

)
(z0) = 0, for some z0 ∈ U. (2.6)

Any solution of (2.3)−(2.5) with (2.6), defined on a simply connected domain, satisfies (2.6)

for all z ∈ U . Moreover the surface X̃, associated to X is a minimal surface parametrized
by

X̃ = X +
2

cW
(WzXz +Wz̄Xz̄) +

1

c
N (2.7)

and its normal map is given by

Ñ =

(
1 − W

cΩ

)
N − 2

cΩ
(WzXz +Wz̄Xz̄) . (2.8)

We will now show the relation between the meromorphic functions g (z) and g̃ (z) of
minimal surfaces associated by a Ribaucour transformation

Proposition 2.2 Let g (z) and f = 1/g′, be the data of a minimal surface M in R3, in
the Enneper-Weierstrass representation. Then the system of equations (2.3)− (2.5), where
c 6= 0 and ϕ is given by (2.2), is integrable. Any solution Ω, W of this system defined on
a simply connected domain, with initial condition satisfying (2.6), determines a minimal
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surface M̃ , locally associated to M by a Ribaucour transformation, whose Weierstrass data
is given by

g̃ (z) =
2g (cΩ −W ) +

(
|g|2 + 1

) (
Wzfg

2 −Wz̄f
)

2cΩ +W
(
|g|2 − 1

)
+
(
|g|2 + 1

) (
Wzfg +Wz̄fg

) (2.9)

and f̃ = 1/g̃ ′.

Proof. Let X (z, z̄) be a local parametrization of the minimal surface M , whose quadratic
forms are given by (2.1). Then, in terms of the g and f, the normal map of M is

N =

(
2Re g

|g|2 + 1
,

2Im g

|g|2 + 1
,
|g|2 − 1

|g|2 + 1

)

and

Xz =

(
1

4
f
(
1 − g2

)
,
i

4
f
(
1 + g2

)
,
fg

2

)
.

Therefore, it follows from Proposition 2.1 and Theorem 1.5, that the expression X̃ (z, z̄),
given by (2.7) parametrizes a minimal surface, whose fundamental forms satisfy (2.1). From
(2.8), we have

|g̃|2 − 1

|g̃|2 + 1
=

(
1 − W

cΩ

) |g|2 − 1

|g|2 + 1
− 2

cΩ
Re (Wzfg) ,

2Re g̃

|g̃|2 + 1
=

(
1 − W

cΩ

)
2Re g

|g|2 + 1
− 1

cΩ
Re
(
Wzf

(
1 − g2

))
,

2Im g̃

|g̃|2 + 1
=

(
1 − W

cΩ

)
2Im g

|g|2 + 1
− 1

cΩ
Re
(
iWzf

(
1 + g2

))
.

From the first equation we get

|g̃|2 + 1 =
2cΩ

(
|g|2 + 1

)

2cΩ +W
(
|g|2 − 1

)
+
(
|g|2 + 1

) (
Wzfg +Wz̄fg

)

and from the other two equations we have

2g̃ =
(
|g̃|2 + 1

){(
1 − W

cΩ

)
2g

|g|2 + 1
+

1

cΩ

(
Wzfg

2 −Wz̄f
)}

.

The last two equations prove (2.9) .

3 A special class of surfaces

In this section, we will consider a special class of surfaces in R3, parametrized by isothermal
coordinates, whose conformal factor ϕ satisfies the condition

ϕzz = A2ϕ, A ∈ C. (3.1)
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We will show that this condition implies that Kϕ4 is a real constant, where K is the
Gaussian curvature. By considering the minimal surfaces which belong to this special class
of surfaces, we will characterize such surfaces in terms of the meromorphic function g (z) of
the Enneper-Weierstrass representation. One can see that Enneper’s surface, the catenoid,
the helicoid and the Bonnet’s minimal surfaces (all lines of curvatures are planar) belong
to this class of surfaces. Moreover, we will provide explicitly all solutions of (2.3) − (2.6)
and we will restrict the theory of the previous section to this class of surfaces.

We start observing that ϕ satisfies (3.1) if, and only if,

ϕ =





a1e
2Re Az + a2e

−2Re Az + a3e
2iIm Az + ā3e

−2iIm Az, if A 6= 0,

a1 |z|2 + a3z + ā3z̄ + a2, if A = 0,
(3.2)

where a1, a2 ∈ R, a3 ∈ C.

Proposition 3.1 Let X (z, z̄) be a surface parametrized by isothermal coordinates, i.e.,
I = ϕ2dzdz̄. Assume ϕ satisfies (3.1). Then Kϕ4 is a real constant. If X is a minimal
surface whose fundamental forms are given by (2.1), then ϕ is given by (3.2), where

a1a2 − |a3|2 =





1

16 |A|2
, if A 6= 0,

1

4
, if A = 0,

(3.3)

where, without loss of generality, we may assume that a1 > 0. Moreover, ϕ satisfies

4 (ϕϕzz̄ − ϕzϕz̄) = 1. (3.4)

In that case, the Weierstrass data of the minimal surface is globally given by

g (z) =





4 |A|
(
a1e

2Az + ā3

)
, if A 6= 0,

2 (a1z + ā3) , if A = 0, z ∈ C.
(3.5)

Proof. Since X is parametrized by isothermal coordinates, the Gaussian curvature is
given by

K = − 4

ϕ4
(ϕzz̄ϕ− ϕz̄ϕz) . (3.6)

Equation (3.1), implies that ϕ is given by (3.2) and hence

Kϕ4 =





−16 |A|2
(
a1a2 − |a3|2

)
, if A 6= 0,

−4
(
a1a2 − |a3|2

)
, if A = 0.

For the minimal surface X, the principal curvatures are ±1/ϕ2, which implies that (3.3)
and (3.4) hold. A straightforward computation shows that g (z), given by (3.5), satisfies
(2.2). This concludes the proof.
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Proposition 3.2 Let ϕ (z) be a differential function that satisfies (3.2), (3.3) and (3.4).
Then Ω, W is a solution of (2.3) − (2.6) if, and only if,

Ω =
1

c

[
2ϕ2

(
F

ϕ

)

zz̄

+
F

ϕ

]
, (3.7)

W =
F

ϕ
, (3.8)

where

F =





b1e
Re βz + b2e

−Re βz + b3e
iIm βz + b̄3e

−iIm βz, if β 6= 0,

b1zz̄ + b3z + b̄3z̄ + b2, if β = 0,
(3.9)

β = 2ρ

√
A2 − c

2
, ρ = ±1, (3.10)

b1, b2 ∈ R, b3 ∈ C and b1b2 − |b3|2 = 0.

Proof. From (2.4) and (2.5) we have

Wzz = − c
2
W − 2Wz

ϕz

ϕ
. (3.11)

We consider F = ϕW . Then it follows from (3.1) and (3.11) that

Fzz =
β2

4
F, (3.12)

where β is given by (3.10). Therefore F satisfies (3.9). Hence W = F/ϕ, where ϕ is given
by (3.2) and (3.3). In order to conclude the proof, we observe that from (2.5) we have

Ωz = −ϕ2

(
F

ϕ

)

z̄

. (3.13)

Hence

Ωzz = −ϕ2

(
F

ϕ

)

z̄z

− 2ϕϕz

(
F

ϕ

)

z̄

. (3.14)

Since Ω has to satisfy (2.3), using (3.4), (3.13) and (3.14) we conclude that Ω is given by
(3.7) . Moreover, it follows from Proposition 2.1 that the identity

4ΩzΩz̄ + F 2 = 2cϕΩF

holds. From this equation, we conclude that

ϕ2 (FFzz̄ − FzFz̄) = F 2 (ϕϕzz̄ − ϕzϕz̄ − 1/4) .

Since ϕ satisfies (3.4) , we have
FFzz̄ − FzFz̄ = 0, (3.15)

which is equivalent to saying that b1b2 − |b3|2 = 0.
Conversely, it is a straightforward computation to verify that Ω and W , that are given

respectively by (3.7) and (3.8), satisfy equations (2.3) − (2.5) and (2.6) for all z ∈ C.
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Remark 3.3 The function F given by (3.9), when β 6= 0, can be rewritten as

F (z, z̄) =





2 |b3| (σ cosh (Reβz + µ) + sin (Im βz + ν)) if |b3| > 0, σ = ±1,

b1e
Re βz if |b3| = b2 = 0,

b2e
−Re βz if |b3| = b1 = 0.

(3.16)

Theorem 3.4 Let M be an orientable minimal surface of R3, with no umbilic points,
parametrized by X (z, z̄) such that (2.1) holds. If the conformal factor satisfies (3.1), then

X̃ = X +
4

c
Re

[(
ln
F

ϕ

)

z

Xz

]
+

1

c
N (3.17)

is a three-parameter family of minimal surfaces defined on {z ∈ C;F (z) 6= 0}, locally
associated to X by a Ribaucour transformation, where c 6= 0 and ϕ, F are given respectively
by (3.2), (3.3) and (3.9).

If g (z) and f = 1/g′ are the data in the Enneper-Weierstrass representation of M ,
then g̃, given by

g̃ =

2gϕ

(
F

ϕ

)

zz̄

+ |g′|
[(

F

ϕ

)

z

fg2 +

(
F

ϕ

)

z̄

f

]

2ϕ

(
F

ϕ

)

zz̄

+ |g′|
[
F

ϕ
+

(
F

ϕ

)

z

fg +

(
F

ϕ

)

z̄

fg

] , (3.18)

and f̃ = 1/g̃ ′ provide a representation for X̃.

Proof. The parametrization (3.17) follows from Propositions 2.1, 3.1 and 3.2.
We observe that, due to equations (3.7), (3.13) and (3.15) the initial conditions Ω(z0),

Ωz(z0), Ωz̄(z0) and W (z0) of (2.3) − (2.5) are determined by choosing F (z0), Fz(z0) and
Fz̄(z0). This gives three real parameters which together with parameter c must satisfy

(2.6). Therefore, X̃ is a three-parameter family.
The expression of g̃ given by (3.18) follows from Propositions 2.2 and 3.2.

Remark 3.5 It follows from equations (1.12), (3.4), (3.15) and from Proposition 3.2

that the fundamental forms of X̃, given by (3.17), are of the form Ĩ = ϕ̃dzdz̄ and

ĨI = −1

2
(dz2 + dz̄2) where

ϕ̃ =
ϕ

2 |c|

(
4

∣∣∣∣
Fz

F
− ϕz

ϕ

∣∣∣∣
2

+
1

ϕ2

)
. (3.19)

4 Applications

In the previous section, we solved the system of differential equations which provides min-
imal surfaces locally associated by Ribaucour transformation to any surface of a special
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class of minimal surfaces. One can see that Enneper’s surface, the catenoid and the helicoid
are surfaces which belong to this class os surfaces.

In [CFT2], one can find the properties (number of ends, completeness, total curvature,
symmetries) of the minimal surfaces associated to Enneper’s surface and to the catenoid,
according to the value of c, the constant of the algebraic condition (1.8).

In this section, we provide similar results for the helicoid, we obtain a new family of
minimal surfaces of genus zero, immersed in R3. Moreover, we show that such surfaces
are complete, have an infinite number of planar ends and have infinite total curvature.
We conclude this section providing a Weierstrass representation for the minimal surfaces
locally associated by Ribaucour transformations to Enneper’s surface, to the catenoid and
to the helicoid.

We observe that the usual Weierstrass representation of the helicoid, given by
f (z) = e−z and g (z) = −iez, does not determine a parametrization by lines of curva-
ture. In order to apply the theory of section 3 in the following proposition we will consider
another Weierstrass representation for the helicoid.

Proposition 4.1 Let X (z, z̄) be a parametrization of the helicoid given by the

Weierstrass data g (z) = −ie
√

iz and f = 1/g′, where
√
i = eiπ/4. Excluding the heli-

coid, a minimal surface is locally associated to X by a Ribaucour transformation as in
Theorem 1.3 if, and only if, it belongs to a three-parameter family of minimal surfaces
given by (3.17), where c 6= 0 is a real constant, ϕ = cosh

(
Re

√
iz
)

and

F (z, z̄) = σ cosh (Re βz + µ) + sin (Im βz + ν) (4.1)

for µ, ν ∈ R, σ = ±1 and
β = ρ

√
i− 2c, ρ = ±1. (4.2)

Any surface of the family X̃ (z, z̄) is defined for z ∈ C\ {zk}, where

zk =
−ρ

√
2m2

1 +m4

[(
m− i

m

)
µ+

(
1

m
+ im

)(
ν + σ

π

2
− 2kπ

)]
(4.3)

for k ∈ Z, and

m =

√
−2c+

√
4c2 + 1. (4.4)

Proof. The first and second fundamental forms of X are given by (2.1), where
ϕ = cosh

(
Re

√
iz
)
. Moreover, it is easy to see that, ϕ satisfies (3.1), for A =

√
i/2. Hence,

the helicoid satisfies the hypothesis of Theorem 3.4. Thus, X̃ is given by (3.17). Therefore,
it follows from β 6= 0 and Theorem 3.4, that F is given by (3.16), where b1b2 − |b3|2 = 0.

If b1b2 = |b3| = 0, then F = e±Re βz. In this case, one can show that there exists a real
constant a 6= 0, such that ϕ̃ (z) = ϕ

(
z +

√
−ia

)
. Moreover, due to (1.12) the function

h =
Ω

W
= ϕϕ̃ 6= 0. It follows that X̃ is the helicoid.

If b1b2 = |b3| 6= 0, without loss of generality (see (3.17)), we can choose b1b2 = |b3| = 1/2
and we obtain (4.1).

Since X (z, z̄) is defined for all z ∈ C, it follows from (3.17) that X̃ (z, z̄) is defined

for all z ∈ C\ {zk|F (zk, z̄k) = 0}, which implies that X̃ is defined on C punctured at the
points zk satisfying (4.3).
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In the following result we describe the ends of the minimal surfaces locally associated
to the helicoid by a Ribaucour transformation.

Proposition 4.2 Any minimal surface X̃ (z, z̄), defined by (3.17) for z ∈ C\ {zk}, has

an infinite number of planar embedded ends zk, given by (4.3). The Gauss map Ñ of X̃
satisfies,

lim
z→zk

Ñ (z) = N (zk, z̄k) ,

where N is the Gauss map of X.

Proof. The result is a consequence of Theorem 1.4.

Remark 4.3 Considering the ends zk of any surface of the family X̃ as points of R2, we
conclude that all points zk = (xk, yk) , given by (4.3), are on the intersection of the straight
line

y = m2x + σρ
√

2mµ, (4.5)

with the straight lines

y =
−1

m2
x+

ρ
√

2

m

(
ν + σ

π

2
− 2kπ

)
, k ∈ Z.

Corollary 4.4 Any surface locally associated by a Ribaucour transformation to the helicoid
has infinite total curvature.

Proof. In Proposition 4.1 we saw that, excluding the helicoid, the minimal surfaces as-
sociated to the helicoid by a Ribaucour transformation are defined on C\ {zk}, where the
points zk are given by (4.3). Each minimal surface corresponds to an immersion of the
sphere punctured at a pole and at the points corresponding to the points zk. Since the
points zk are on a line of R2, then the corresponding points are on a circle on the sphere
and accumulate at the pole. Therefore, any surface of the family X̃ corresponds to an im-
mersion of the unit sphere punctured at an infinite number of points. Therefore, it follows
from Huber’s Theorem (see [HU]) that the surfaces have infinite total curvature.

Figure 1: Minimal surface associated to helicoid in a neighborhood of the end z0,
with c = ρ = σ = 1 and µ = ν = 0.
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Figure 2: Minimal surface associated to helicoid in a neighborhood of the ends z0 and z1
with c = ρ = σ = 1 and µ = ν = 0.

Figure 3: Minimal surface associated to helicoid in a neighborhood of the ends z0 and z1
with c = ρ = σ = 1, µ = 0 and ν = π/2.

The illustrations above show examples of the minimal surfaces associated to the
helicoid by a Ribaucour transformation. In Figures 1 and 2 we chose c = ρ = σ = 1
and µ = ν = 0 and in Figure 3 we chose c = ρ = σ = 1, µ = 0 and ν = π/2. Moreover, we
observe that the figures were obtained by considering polar coordinates on neighborhoods
of the points z0 and z1, which generate two planar ends.

The surfaces locally associated to the catenoid and to Enneper’s surface by a Ribaucour
transformation are complete, as it was proved in [CFT2]. We will now show that the
surfaces, associated to the helicoid by a Ribaucour transformation, are also complete.

In order to do so, we need to show that any divergent curve on the surface X̃ has
infinite length. Considering that X̃ is defined on C\ {zk}k∈Z

, it follows from Remark 4.3
that any divergent curve α (t) = (x (t) , y (t)) satisfies one of the following conditions when
t → ∞ : a) (x (t) , y (t)) → zk for some k; b) x2 + y2 → ∞ and for t sufficiently large
(x (t) , y (t)) ∈ C\T , where T is an open strip that contains the straight line (4.5); c)
x2 + y2 → ∞ and ∀t0 ∃t ≥ t0 such that α (t) ∈ T . We will show that a divergent curve
satisfying any of the above conditions has infinite length, by adapting to our case the
arguments used in [CFT2].
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Lemma 4.5 Let U be a subset of R2 endowed with a conformal metric

ds2 = ϕ̃2 (x, y)
(
dx2 + dy2

)
.

Assume that there are a, b, r, δ ∈ R, with δ > 0, such that the strip

D =
{
(x, y) ∈ R

2| − δ ≤ y − ax− b ≤ δ
}

is contained in U and ϕ̃ (x, y) ≥ r > 0, for all (x, y) ∈ D. Then the length of any regular
curve α joining two points in distinct components of R2\D satisfies

` (α) ≥ 2rδ√
1 + a2

.

Proof. The line R1 : ay + x = 0 is orthogonal to D and R1 ∩ ∂D = {P1, P2} hence

|P1 − P2| =
2δ√

1 + a2
.

Setting D+ = {(x, y) ∈ R2|y − ax− b > δ} and D− = {(x, y) ∈ R2|y − ax− b < −δ}, if
α : [0, 1] → U ⊂ R2 is a curve such that α (0) ∈ D+ and α (1) ∈ D−, there exists an interval
[t0, t1] ⊂ [0, 1], such that α (t0) ∈ D ∩ ∂D+, α (t1) ∈ D ∩ ∂D− and α (t) ∈ D, ∀ t ∈ [t0, t1].
Therefore,

` (α) ≥
∫ t1

t0

ϕ̃ (α (t)) |α′ (t)| dt ≥
∫ t1

t0

r |α′ (t)| dt ≥ r

∫ t1

t0

|α′ (t)| dt ≥ r
2δ√

1 + a2
.

Theorem 4.6 Any surface locally associated to the helicoid by a Ribaucour transformation
as in Proposition 4.1 is complete.

Proof. We will exclude from our proof the helicoid, which is complete. The other surfaces
locally associated to the helicoid by a Ribaucour transformation are given by (3.17), whose
first fundamental form is ds2 = ϕ̃2dzdz̄ given by (3.19), where

ϕ = cosh
(
Re

√
iz
)
, (4.6)

F and β are given by (4.1) and (4.2) respectively. Hence

ϕ̃ =
ϕ

2 |c|


4

∣∣∣∣∣
Fz

F
−

√
2 (1 + i)

4
tanh

(
Re

√
iz
)∣∣∣∣∣

2

+
1

ϕ2


 (4.7)

=
ϕ

2 |c|

[
4

∣∣∣∣
Fz

F

∣∣∣∣
2

− 2
√

2 (ReFz + ImFz)

F
tanh

(
Re

√
iz
)

+ 1

]

≥ ϕ

2 |c|

[
4

∣∣∣∣
Fz

F

∣∣∣∣
2

− 2
√

2 (ReFz + ImFz)

F
+ 1

]
. (4.8)
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Since β is given by (4.2) we have that

β =
ρ√
2

(
m+

i

m

)
, ρ = ±1. (4.9)

where m is given by (4.4). We introduce the following notation

H = cosh (Reβz + µ) − σ sin (Im βz + ν) (4.10)

θ± = m± 1

m
(4.11)

From (4.1), (4.9) and (4.11) we have that

|(ReFz + ImFz)| =
1

2
√

2
|σ (θ+) sinh (Reβz + µ) − (θ−) cos (Im βz + ν)|

≤ 1

2
√

2
[(θ+) cosh (Re βz + µ) + |θ−| |cos (Im βz + ν)|]

thus

ϕ̃ ≥ ϕ

|c|

[
H

4σF

(
θ2

+ − 2
)

+
1

2
− σθ+

2σF
cosh (Re βz + µ) − |θ−|

2σF
|cos (Im βz + ν)|

]
(4.12)

Claim 1 There are real numbers r1 > 0 and δ1 > 0 such that ϕ̃ (z) ≥ r1, ∀ z ∈ C\T,
where

T = {z ∈ C| − δ1 < Re βz + µ < δ1} . (4.13)

Indeed, consider ε1 such that

ε1 > max

{
0,

4 (θ+ − 2σ − θ−)

θ2
+ − 2σθ+

}
. (4.14)

Consider also δ1 > 0 given by
cosh (δ1) = 1 + ε1 (4.15)

and T the region of the complex plane limited by the lines Re βz + µ = ±δ1, i.e. T given
by (4.13). If z /∈ T we have that

cosh (Re βz + µ) ≥ cosh (δ1) = 1 + ε1, (4.16)

hence, from (4.12) we get

|c| ϕ̃
ϕ

≥ H

4σF

(
θ2

+ − 2
)

+
1

2
− σθ+

2F
cosh (Re βz + µ) − σ |θ−|

2F
.

It follows from (4.1) that

|c| ϕ̃
ϕ

≥ H

4σF

[
θ2

+ − σθ+ − 2
]
+

1

2
− σθ+

4
− σ |θ−|

2F
.
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Recall from (4.4) that m > 0 and m 6= 1. Moreover, the expression above is invariant

under the transformation m → 1

m
. In fact, this transformation keeps θ+ invariant and it

changes the sign of θ−. Hence, we only need to consider 0 < m < 1, i.e., 0 < θ+ + θ− < 2.
Observe also that for these values of m, we have θ+ > 2 and θ− < 0.

From (4.10) we get

|c| ϕ̃
ϕ

≥ H

4σF

(
θ2
+ − σθ+ − 2

)
+

1

2
− σθ+

4
+
σθ−
2F

≥ H

4σF

(
θ2
+ − 2σθ+

)
+
σθ−
2F

− σθ+ − 2

2F
sin (Im βz + ν)

Thus

|c| ϕ̃
ϕ

≥ 1

4σF

[
H
(
θ2

+ − 2σθ+

)
+ 2 (2σ − θ+ + θ−)

]
.

Since z ∈ T , it follows from (4.16) and (4.10) that

H
(
θ2

+ − 2σθ+

)
≥ ε1

(
θ2

+ − 2σθ+

)
.

Hence,

|c| ϕ̃
ϕ

≥ 1

4σF

[
H
θ2
+ − 2σθ+

2
+
ε1

(
θ2
+ − 2σθ+

)

2
+ 2 (2σ − θ+ + θ−)

]
.

As a consequence of (4.14), ε1 satisfies the relation

ε1

(
θ2
+ − 2σθ+

)

2
+ 2 (2σ − θ+ + θ−) > 0.

Therefore, it follows from (4.10) that

ϕ̃

ϕ
≥ (cosh (Re βz + µ) − 1)

(
θ2
+ − 2σθ+

)

8σ |c|F .

From (4.16) we have

1 − 1

cosh (Re βz + µ)
≥ 1 − 1

1 + ε1

=
ε1

1 + ε1

.

Thus,
ϕ̃

ϕ
≥ θ2

+ − 2σθ+

16 |c|

(
1 − 1

cosh (Reβz + µ)

)
≥
(
θ2
+ − 2σθ+

)
ε1

16 |c| (1 + ε1)
= r1 > 0.

Hence, we get ϕ̃ ≥ r1.

Claim 2 There are real numbers r2 > 0 and δ2 > 0 such that ϕ̃ (z) ≥ r2, ∀ z ∈ T ∩ D,
where D =

⋃
k∈Z

Dk with

Dk =
{
z ∈ C| − δ2 < Im βz + ν +

σπ

2
− 2kπ < δ2

}
. (4.17)
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In fact, let zk ∈ C be a planar end of X̃. Then F (zk, z̄k) = 0 i.e., cosh (Re βz + µk) = 1
and sin (Im βz + νk) = −σ. Then zk belongs to the lines Re βz + µ = 0 and
Im βz + ν = −σ π

2
+ 2kπ which are orthogonal (see Remark 4.3). Consider ε2 ∈ R, such

that

0 < ε2 < min

{
1,
θ2
+ − 2θ+

4 |θ−|

}
. (4.18)

Let δ2 be a real number such that 0 < δ2 < π/2, sin δ2 = ε2 and let Dk be a region of the
complex plane bounded by the lines Im βz + ν = −σπ

2
+ 2kπ± δ2, i.e., Dk given by (4.17).

If z ∈ Dk, then Im βz + ν ∈
(
−σπ

2
+ 2kπ − δ2,−σπ

2
+ 2kπ + δ2

)
.

If σ = ±1, we get

cos
(
−σπ

2
+ 2kπ ∓ δ2

)
< cos (Im βz + ν) < cos

(
−σπ

2
+ 2kπ ± δ2

)
,

which implies that
− sin δ2 < cos (Im βz + ν) < sin δ2. (4.19)

Therefore, for any value of σ we get |cos (Im βz + ν)| < ε2 and σ sin (Im βz + ν) < 0. It
follows from (4.12) that

|c| ϕ̃
ϕ

≥ H

4σF

(
θ2

+ − 2
)

+
1

2
− θ+

2σF
cosh (Re βz + µ) − |θ−|

2σF
|cos (Im βz + ν)| .

Using (4.10) we have

|c| ϕ̃
ϕ

≥ H

4σF

(
θ2

+ − 2
)

+
1

2
− θ+

2σF
cosh (Reβz + µ) − |θ−|

2σF
|cos (Im βz + ν)|

≥ 1

4σF

(
θ2
+ − 2θ+ − 2

)
cosh (Reβz + µ) − σ

4σF

(
θ2
+ − 2

)
sin (Im βz + ν) +

+
1

2
− |θ−|

2σF
|cos (Im βz + ν)| .

However,
σ

4σF

(
4 − θ2

+

)
sin (Im βz + ν) > 0,

since θ+ > 2 and σ sin (Im βz + ν) < 0

ϕ̃

ϕ
≥ 1

4 |c|σF
[
θ2

+ − 2θ+ − 2 |θ−| |cos (Im βz + ν)|
]
.

Since z ∈ Dk, then |cos (Im βz + ν)| < ε2, and

ϕ̃

ϕ
≥ 1

4 |c| σF
[
θ2
+ − 2θ+ − 2 |θ−| ε2

]
. (4.20)

From (4.18), we have that
θ2
+ − 2θ+

2
− 2 |θ−| ε2 > 0
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Since z ∈ T we get σF ≤ 2 cosh (Re βz + µ) < 2 cosh (δ1) = 2 (1 + ε1), from (4.15).
It follows from (4.20) that

ϕ̃

ϕ
≥ θ2

+ − 2θ+

32 |c| (1 + ε1)
= r2 > 0

hence ϕ̃ ≥ r2 > 0.

Claim 3 Any divergent curve on the surface X̃ given by (3.17) has infinite length.
Indeed, let α (t) = (x (t) , y (t)) be a divergent curve such that lim

t→∞
α (t) = zk, for some

k ∈ Z. Then the length of X̃ (α) is infinite, as a consequence of Theorem 1.4.
If α (t) = (x (t) , y (t)), t ∈ [0,∞) is a regular curve such that x2 + y2 → ∞, when

t→ ∞, then the length `
(
X̃ (α (t))

)
= ∞. In fact, consider r1, r2, δ1, δ2 given by Claim 1

and Claim 2 and r = min {r1, r2}. If there exists t1 > 0 such that ∀ t ≥ t1, α (t) /∈ T , then
it follows from Claim 1 that ∀ t ≥ t1 we get ϕ̃ (α (t)) ≥ r, thus

`
(
X̃c (α (t))

)
≥
∫ ∞

t1

rdt = ∞.

On the other hand, if ∀ t1, there exists t ≥ t1 such that α (t) ∈ T , since x2 + y2 → ∞,
when t → ∞, the curve α crosses an infinite number of strips Dk. But, by Claim 1,
we get ϕ̃ ≥ r in Dk for all k ∈ Z, since the width of each strip Dk, is 2δ2m

2/
√

1 +m4,
we conclude the proof of Claim 3, by using Lemma 4.5. This completes the proof of
Theorem 4.6.

Proposition 4.7 Consider the helicoid with the Weierstrass data g (z) = −ie
√

iz,
f = 1/g′ and the corresponding parametrization X (z, z̄). Excluding the helicoid, any

surface of the family X̃ (z, z̄) locally associated to X by a Ribaucour transformation as

in Proposition 4.1, has a Weierstrass data g̃ given by (3.18) and f̃ = 1/g̃ ′, where ϕ =
cosh

(
Re

√
iz
)

and F (z, z̄) is given by (4.1).

Proof. The result is a consequence of Theorem 3.4.

In [CFT2], one can find more details on the minimal surfaces associated to the catenoid
and to Enneper’s surface. As an application of section 3, we will present a Weierstrass
representation of these surfaces.

Proposition 4.8 Let X (z, z̄) be a parametrization of Enneper’s surface given by the
Weierstrass data g (z) = z and f = 1/g ′. Excluding Enneper’s surface, any surface of

the family X̃ (z, z̄) , locally associated to X by a Ribaucour transformation as in Theorem

3.4, has Weierstrass data g̃ given by (3.18) and f̃ = 1/g̃ ′, where ϕ = (1 + zz̄) /2 and

F (z, z̄) = σ cosh
(
Re ρ

√
−2c z + µ

)
+ sin

(
Im ρ

√
−2c z + ν

)

where c 6= 0 is a real number, and µ, ν ∈ R, σ, ρ = ±1.
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Proof. The result is a consequence of Theorem 3.4.

Proposition 4.9 Let X (z, z̄) be a parametrization of the catenoid given by the Weier-
strass data g (z) = −ez and f = 1/g′. Excluding the catenoid, any surface of the family

X̃ (z, z̄) , locally associated to X by a Ribaucour transformation as in Theorem 3.4, has

Weierstrass data g̃ given by (3.18) and f̃ = 1/g̃ ′, where ϕ = cosh (Re z) and

F (z, z̄) = σ cosh
(
Re ρ

√
1 − 2c z + µ

)
+ sin

(
Im ρ

√
1 − 2c z + ν

)

with µ, ν ∈ R, σ, ρ = ±1 if c 6= 1/2 and

F (z, z̄) = b1zz̄ + b3z + b̄3z̄ + b2

with b1 6= 0, b2 ∈ R, b3 ∈ C and b1b2 = |b3|2 if c = 1/2.

Proof. The result is a consequence of Theorem 3.4.
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