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Dedicated to Professor Manfredo do Carmo on the occasion of his 80th birthday

Abstract

In this paper we introduce a local approach for the study of maximal
surfaces immersed into a Lorentzian product space of the form M2×R1,
where M2 is a connected Riemannian surface and M2 × R1 is endowed
with the product Lorentzian metric. Specifically, we establish a local
integral inequality for the squared norm of the second fundamental form
of the surface, which allows us to derive an alternative proof of our Calabi-
Bernstein theorem given in [1].

1 Introduction

Maximal surfaces in 3-dimensional Lorentzian manifolds, that is, spacelike sur-

faces with zero mean curvature, have become a research field of increasing in-

terest in recent years, both from mathematical and physical points of view. In

fact, one of the most relevant global results for maximal surfaces in Lorentzian

geometry is the well-known Calabi-Bernstein theorem, which states that the

only complete maximal surfaces in the 3-dimensional Lorentz-Minkowski space

R3
1 are the spacelike planes.

This result was firstly proved by Calabi [4] and extended later to arbitrary

dimension by Cheng and Yau [5]. After that, several extensions and generaliza-

tions of the Calabi-Bernstein theorem have been given, and several alternatives

proofs have been provided. In particular, in [3] the second author jointly with
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Palmer introduced a new approach to the Calabi-Bernstein theorem in the

Lorentz-Minkowski space R3
1 based on a local integral inequality for the Gaus-

sian curvature of a maximal surface in R3
1 which involved the local geometry

of the surface and the image of its Gauss map. As an application of it, they

provided a new proof of the Calabi-Bernstein theorem in R3
1. In this paper,

we generalize this local approach to the case of maximal surfaces in a product

space M2 × R, where M2 is a connected Riemannian surface and M2 × R is

endowed with the product Lorentzian metric

〈, 〉 = π∗M (〈, 〉M )− π∗R(dt2).

Here πM and πR stand for the projections from M2 × R onto each factor and

〈, 〉M is the Riemannian metric on M . For simplicity, we will simply write

〈, 〉 = 〈, 〉M − dt
2,

and we will denote by M2 × R1 the 3-dimensional Lorentzian product manifold

obtained in that way. Specifically, we will prove the following extension of [3,

Theorem 1].

Theorem 1 Let M2 be an analytic Riemannian surface with non-negative

Gaussian curvature, KM ≥ 0, and let f : Σ2→M2 × R1 be a maximal sur-

face in M2 × R1. Let p be a point of Σ and R > 0 be a positive real number

such that the geodesic disc of radius R about p satisfies D(p,R) ⊂⊂ Σ. Then

for all 0 < r < R it holds that

0 ≤
∫

D(p,r)

‖A‖2dΣ ≤ cr
L(r)

r log (R/r)
, (1)

where L(r) denotes the length of the geodesic circle of radius r about p, and

cr =
π2(1 + α2

r)2

4αr arctanαr
> 0.

Here

αr = sup
D(p,r)

cosh θ ≥ 1,

where θ denotes the hyperbolic angle between N and ∂t along Σ.
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In particular, when Σ is complete then the local integral inequality (1) provides

an alternative proof of the following parametric version of the Calabi-Bernstein

type result for complete maximal surfaces in Lorentzian product spaces given

by the authors in [1, Theorem 3.3].

Corollary 2 Let M2 be a (necessarily complete) analytic Riemannian surface

with non-negative Gaussian curvature, KM ≥ 0. Then any complete maximal

surface Σ2 in M2 × R1 is totally geodesic. In addition, if KM > 0 at some

point on M , then Σ is a slice M × {t0}, t0 ∈ R.

As another application of Theorem 1, at points of a maximal surface where

the second fundamental form does not vanish, we are able to estimate the

maximum possible geodesic radius in terms of a local positive constant.

Corollary 3 Let M2 be an analytic Riemannian surface with non-negative

Gaussian curvature and let f : Σ2→M2 × R1 be a maximal surface in M2 × R1

which is not totally geodesic. Assume that p ∈ Σ is a point with ‖A‖(p) 6= 0

and let r > 0 be a positive real number such that Dr = D(p, r) ⊂⊂ Σ. Then

R ≤ reCr

for every R > r with D(p,R) ⊂⊂ Σ, where

Cr =
crL(r)

r
∫

Dr
‖A‖2

> 0

is a local positive constant depending only on the geometry of f |D(p,r).

A similar estimate for stable minimal surfaces in 3-dimensional Riemannian

surfaces with non-negative Ricci curvature was given by Schoen in [6]. See also

[2] for another similar estimate given by the second author and Palmer for the

case of non-flat spacelike surfaces with non-negative Gaussian curvature and

zero mean curvature in a flat 4-dimensional Lorentzian space.
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2 Preliminaries

A smooth immersion f : Σ2→M2 × R1 of a connected surface Σ2 is said to be

a spacelike surface if the induced metric via f is a Riemannian metric on Σ,

which as usual is also denoted by 〈, 〉. Observe that

∂t = (∂/∂t)(x,t), x ∈M, t ∈ R,

is a unitary timelike vector field globally defined on the ambient spacetime

M2 × R1. This allows us to consider the unique unitary timelike normal field

N globally defined on Σ which is in the same time-orientation as ∂t, so that

〈N, ∂t〉 ≤ −1 < 0 on Σ.

We will refer to N as the future-pointing Gauss map of Σ, and we will denote by

Θ : Σ→(−∞,−1] the smooth function on Σ given by Θ = 〈N, ∂t〉. Observe that

the function Θ measures the hyperbolic angle θ between the timelike future-

pointing vector fields N and ∂t along Σ, since cosh θ = −Θ.

Let ∇ and ∇ denote the Levi-Civita connections in M2 × R1 and Σ, re-

spectively, and let A : TΣ→TΣ stands for the shape operator (or second fun-

damental form) of Σ with respect to its future-pointing Gauss map N . It is

well known that the Gauss and Weingarten formulae for the spacelike surface

f : Σ2→M2 × R1 are given by

∇XY = ∇XY − 〈AX,Y 〉N (2)

and

AX = −∇XN, (3)

for any tangent vector fields X,Y ∈ TΣ. The mean curvature of a spacelike

surface f : Σ2→M2 × R1 is defined by H = −(1/2)trA, and f : Σ2→M2 × R1

is said to be a maximal surface when H vanishes on Σ.

The Gauss equation of a spacelike surface Σ describes its Gaussian curvature

K in terms of the shape operator and the curvature of the ambient space and
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it is given by

K = K − detA, (4)

where K denotes the sectional curvature in M2 × R1 of the plane tangent to

Σ. On the other hand, if R stands for the curvature tensor of the Lorentzian

product M2 × R1, then the Codazzi equation of Σ describes the tangent com-

ponent of R(X,Y )N , for any tangent vector fields X,Y ∈ TΣ, in terms of the

derivative of the shape operator. Specifically, it is given by

(R(X,Y )N)> = (∇XA)Y − (∇Y A)X, (5)

where ∇XA denotes the covariant derivative of A, that is,

(∇XA)Y = ∇X(AY )−A(∇XY ).

In the particular case where f : Σ2→M2 × R1 is a maximal surface, it is

not difficult to see that the Gauss (4) and Codazzi (5) equations for Σ become

K = κMΘ2 +
1
2
‖A‖2 (6)

and

(∇XA)Y = (∇Y A)X + κMΘ(〈X, ∂>t 〉Y − 〈Y, ∂>t 〉X), (7)

for any tangent vector fields X,Y ∈ TΣ, respectively. Here ‖A‖2 = tr(A2)

and κM stands for the Gaussian curvature of M along the surface Σ, that

is, κM = KM ◦ Π ∈ C∞(Σ) where KM is the Gaussian curvature of M and

Π = πM ◦ f : Σ→M denotes the projection of Σ onto M . Here and in what

follows, Z> ∈ TΣ denotes the tangential component of a vector field Z along

the immersion f : Σ2→M2 × R1, that is

Z = Z> − 〈N,Z〉N.

Thus, in particular,

∂>t = ∂t + ΘN, (8)
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(for the details see [1]). Taking norms in the last expression we get

‖∂>t ‖2 = Θ2 − 1. (9)

It is well known that a spacelike surface f : Σ2→M2 × R1 is locally a space-

like graph over M (see for instance [1, Lemma 3.1]), that is, for any given point

p ∈ Σ, there exists an open subset Ω on M containing Π(p), Π(p) ∈ Ω ⊂ M ,

and a function u ∈ C∞(Ω) such that the surface Σ is locally given in a neigh-

borhood of p by Σ(u) = {(x, u(x)) : x ∈ Ω} ⊂M2 × R1. Therefore, the metric

induced on Σ(u) from the Lorentzian metric on the ambient space is given by

〈, 〉 = 〈, 〉M − du
2. (10)

The condition that Σ(u) is spacelike becomes |Du|2 < 1 on Ω ⊂M , where Du

denotes the gradient of u in M and |Du| denotes its norm. Finally, it is not

difficult to see that the mean curvature function H of Σ(u) is given by

2H = Div

(
Du√

1− |Du|2

)
,

on Ω, where Div stands for the divergence operator on M with respect to

the metric 〈, 〉M . In particular, a spacelike immersion f : Σ2→M2 × R1 is a

maximal surface if and only if it is locally given as the graph of a function u

satisfying the following partial differential equation,

Div

(
Du√

1− |Du|2

)
= 0, |Du|2 < 1. (11)

3 Proof of the results

The proof of Theorem 1 is inspired by the ideas in [3], and it is an application

of the following intrinsic property.

Lemma 4 [3, Lemma 3] Let Σ be an analytic Riemannian surface with non-

negative Gaussian curvature K ≥ 0. Let ψ be a smooth function on Σ which

satisfies

ψ∆ψ ≥ 0
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on Σ. Then for 0 < r < R∫
Dr

ψ∆ψ ≤ 2L(r)
r log (R/r)

sup
DR

ψ2,

where Dr denotes the geodesic disc of radius r about a fixed point in Σ, Dr ⊂
DR ⊂⊂ Σ, and L(r) denotes the length of ∂Dr, the geodesic circle of radius r.

Proof of Theorem 1. Observe that since M is analytic and Σ is locally

given by the maximal surface equation (11), then Σ, endowed with the induced

metric, is also an analytic Riemannian surface. Besides, from (6) we also know

that the Gaussian curvature of Σ is non-negative, K ≥ 0. Therefore, we may

apply Lemma 4 to an appropriate smooth function ψ. Let us consider ψ =

arctan Θ.

Since ∂t is parallel on M2 × R1 we have that

∇X∂t = 0 (12)

for any tangent vector field X ∈ TΣ. Thus,

X(Θ) = 〈∇XN, ∂t〉 = −〈AX, ∂>t 〉 = −〈X,A∂>t 〉

for every X ∈ TΣ, and then the gradient of Θ on Σ is given by

∇Θ = −A∂>t . (13)

Therefore, from (13) and (9) we obtain

‖∇Θ‖2 =
1
2
‖A‖2(Θ2 − 1), (14)

since for a maximal surface it holds A2 = (1/2)‖A‖2I.

On the other hand, taking into account (8), and using Gauss (2) and Wein-

garten (3) formulae, (12) also yields

∇X∂
>
t = −ΘAX (15)
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for every X ∈ TΣ. Therefore, using Codazzi equation (7) and equations (9)

and (15) we get

∇X∇Θ = −(∇XA)(∂>t )−A(∇X∂
>
t )

= −(∇∂>t
A)(X)− κMΘ

(
〈X, ∂>t 〉∂>t − ‖∂>t ‖2X

)
+ ΘA2X

= −(∇∂>t
A)(X) + κMΘ

(
(Θ2 − 1)X − 〈X, ∂>t 〉∂>t

)
+ ΘA2X,

for every X ∈ TΣ. Thus, the Laplacian of Θ is given by

∆Θ = Θ(κM (Θ2 − 1) + ‖A‖2), (16)

since

tr(∇∂>t
A) = ∇∂>t

(trA) = 0.

Using (16) and (14) we can compute

∆ψ =
∆Θ

1 + Θ2
− 2Θ‖∇Θ‖2

(1 + Θ2)2
=

2Θ
(1 + Θ2)2

‖A‖2 +
(Θ2 − 1)Θ

1 + Θ2
κM ,

and therefore, taking into account that Θ arctan Θ ≥ 0, Θ ≤ −1 and κM ≥ 0,

we obtain

ψ∆ψ =
2Θ arctan Θ
(1 + Θ2)2

‖A‖2 +
(Θ2 − 1)Θ arctan Θ

1 + Θ2
κM ≥ φ(Θ)‖A‖2, (17)

where

φ(s) =
2s arctan s
(1 + s2)2

.

Observe that the function φ(s) is strictly increasing for s ≤ −1. Since −αr ≤
Θ ≤ −1 on D(p, r), we get

φ(Θ) ≥ φ(−αr) =
2αr arctanαr

(1 + α2
r)2

on D(p, r),

which, jointly with (17), yields

ψ∆ψ ≥ 2αr arctanαr

(1 + α2
r)2

‖A‖2 on D(p, r).

Integrating now this inequality over D(p, r) and using Lemma 4 we conclude

that

0 ≤ 2αr arctanαr

(1 + α2
r)2

∫
D(p,r)

‖A‖2dΣ ≤
∫

D(p,r)

ψ∆ψ ≤ π2

2
L(r)

r log (R/r)
,
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which yields (1).

�

Proof of Corollary 2. Since Σ is complete, then R can approach to infinity

in (1) for a fixed arbitrary p ∈ Σ and a fixed r, which gives∫
D(p,r)

‖A‖2dΣ = 0.

Therefore, ‖A‖2 = 0 and Σ must be totally geodesic. From (13), this implies

that Θ = Θ0 ≤ −1 is constant on Σ, and then (16) implies that, when KM > 0

somewhere in M , it must be Θ0 = −1. Finally, by (9) we conclude that Σ must

be a slice.

�

Corollary 3 is a direct consequence of Theorem 1.
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