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LINKING INTEGRALS IN THE n-SPHERE

D. DeTurck H. Gluck

Abstract

Let K and L be disjoint closed oriented submanifolds of the n-sphere Sn,
with dimensions adding up to n − 1. We define a map from their join
K ∗ L to Sn whose degree up to sign equals their linking number, and
then use this to find the formula for the linking integral.

Here is our main result.

Theorem. Let Kk and Lℓ be disjoint closed oriented smooth submanifolds of

Sn with k + ℓ = n − 1. Then their linking number is given by the integral

Lk(Kk, Lℓ) =
1

volSn

∫

K×L

ϕk,ℓ(α)

sinn α
[x, dx,y, dy]

where

ϕk,ℓ(α) =

∫ π

β=α

sink(β − α) sinℓ β dβ,

and α = α(x,y) is the distance in Sn between x and y.

In this formula, x ∈ Kk and y ∈ Lℓ. We explain the notation [x, dx,y, dy]

in § 4, but simply mention here that it is an (n + 1) × (n + 1) determinant in

which x occupies one column, dx occupies k columns, y occupies one column,

and dy occupies ℓ columns.

The above integral is geometrically meaningful in the sense that its inte-

grand is invariant under orientation-preserving isometries of Sn.

The special case of this theorem for two disjoint simple closed curves in S3

appears as Example 2 in Section 6, and the resulting integral formula agrees

with those already in the literature.

AMS subject classifications: 57Q45; 57M25; 53C20
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To prove this theorem, we consider the join K ∗ L of the manifolds K and

L, which is obtained from the product K × L × [0, 1] by collapsing K × L × 0

to K and K × L × 1 to L.

Since each point x ∈ K is distinct from each point y ∈ L, it follows that the

points x and −y are not antipodal in Sn, and hence can be connected there by

a unique shortest geodesic arc. We define a map f : K ∗L → Sn by sending the

line segment {(x,y, u) | 0 ≤ u ≤ 1} connecting x and y in K ∗L proportionally

to the geodesic arc connecting x and −y in Sn. The degree of this map f is,

up to sign, the linking number Lk(K, L).

To evaluate this degree, and hence the linking number, we take the volume

form on Sn, pull it back via f to an n-form on K ∗ L, partially integrate this

n-form along the line segments {(x,y, u) | 0 ≤ u ≤ 1}, and obtain the formula

in the theorem above.

The anti-commutation rule

Lk(Kk, Lℓ) = (−1)(k+1)(ℓ+1) Lk(Lℓ, Kk)

is reflected in the form of the linking integral, since

[y, dy,x, dx] = (−1)(k+1)(ℓ+1)[x, dx,y, dy],

as a result of interchanging (k + 1) columns with (ℓ + 1) columns in these

determinants, while

ϕk,ℓ(α) = ϕℓ,k(α).

Suppose now that the submanifolds K and L of Sn are disjoint, not only

from one another, but also each from the antipodal image of the other. We

comment in the next section on the origin of this hypothesis. In such a case

we obtain the following

Corollary. Let Kk and Lℓ be closed smooth oriented submanifolds of Sn with

k + ℓ = n − 1, and with K disjoint from both L and its antipodal image −L.
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Then

Lk(Kk, Lℓ) + (−1)n Lk(Kk,−Lℓ) =
(−1)k

volSn

∫

K×L

sink ∗ sinℓ(α)

sinn α
[x, dx,y, dy]

where the convolution sink ∗ sinℓ is defined by

sink ∗ sinℓ(α) =

∫ π

β=0

sink(α − β) sinℓ β dβ.

In particular, if K and L are disjoint submanifolds lying in some open

hemisphere of Sn, then −L lies in the complementary hemisphere, and hence

Lk(K,−L) = 0. In such a case we get

Lk(Kk, Lℓ) =
(−1)k

volSn

∫

K×L

sink ∗ sinℓ(α)

sinn α
[x, dx,y, dy].

All the linking integrals presented above were obtained at the same time by

Clayton Shonkwiler and David Shea Vela-Vick (2008), using different methods,

as a special case of their more general higher-dimensional linking integrals. We

very much appreciate their help with the content and figures of the present

paper.

1 Background

In a half-page paper dated January 22, 1833, Carl Friedrich Gauss gave without

proof an integral formula for the linking number of two disjoint closed curves

K = {x(s)} and L = {y(t)} in Euclidean 3-space,

Lk(K, L) =
1

4π

∫

K×L

dx

ds
×

dy

dt
·

x − y

|x − y|3
ds dt.

The correspondence (x,y) → (x−y)/|x−y| defines a map from the torus K×L

to the unit 2-sphere S2 in R3, whose degree up to sign is the linking number

Lk(K, L). The area 2-form ω on S2, when pulled back via this map to K × L,

integrated there and divided by 4π, gives Gauss’s formula. The mathematical

historian Moritz Epple (1998) believes that this was the argument Gauss had

in mind when he wrote the above formula.
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This degree-of-map derivation of Gauss’s linking integral works in Euclidean

3-space because the set of ordered pairs of distinct points in R3 deformation

retracts to a 2-sphere. But it fails on the 3-sphere because the set of ordered

pairs of distinct points in S3 deformation retracts to a 3-sphere, and therefore

all maps to it from the torus K × L are homotopically trivial.

Gauss undoubtedly knew another proof of his integral formula. Run a

steady current through the first loop, and calculate the circulation of the re-

sulting magnetic field around the second loop. By Ampère’s Law, this circula-

tion is equal to the total current “enclosed” by the second loop, which means

the current flowing along the first loop multiplied by the linking number of the

two loops. Then the Biot-Savart formula (1820) for the magnetic field leads

directly to Gauss’s linking integral.

To extend this line of thought, we developed in our (2005) paper a steady-

state version of classical electrodynamics on the 3-sphere and in hyperbolic

3-space, and used this to obtain explicit integral formulas for the linking number

of two disjoint curves in these spaces.

Greg Kuperberg, both in private correspondence and in his (2006) paper, in-

dependently used arguments completely different from ours to derive an equiv-

alent linking integral on the 3-sphere. His arguments apply just as well on the

n-sphere, and can be used to give another proof of our main theorem and its

corollary.

Returning to the degree-of-map derivation of Gauss’s linking integral, and

aware that it does not extend to the 3-sphere, one can seek limited circum-

stances under which such an extension is possible, as follows.

Suppose that K and L are two smooth closed curves in S3, disjoint from

one another and also each from the antipodal image of the other.

Then, following Gauss, we have a natural map of the torus K × L into the

set P of pairs (x,y) ∈ S3 × S3 such that x 6= y and x 6= −y. This set P

deformation retracts to the subset P0 of orthogonal pairs (x,y) ∈ S3 × S3,

which is just a copy of the unit tangent bundle US3.
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With that in mind, let ω be the SO(4)-invariant 2-form on US3 which

restricts to the area form on each fibre.

Let f : K × L → US3 be the natural map of K × L into P , followed by its

deformation retraction to P0 = US3.

Then the pullback of ω via f to K×L gives a 2-form which, when integrated

over this torus and divided by 4π, can be shown to be equal to the difference

of the linking numbers Lk(K, L) − Lk(K,−L).

Shonkwiler and Vela-Vick (unpublished) have demonstrated that the same

argument works on all odd-dimensional spheres (but not on the even-dimensional

ones), and the result is the formula given in the corollary to our main theorem.

Furthermore, they have shown how to deduce the formula for Sn from that on

Sn+1 to cover the even-dimensional case as well.

2 Orientations and signs of linking numbers

We discuss intersection and linking below in the combinatorial rather than

the smooth setting, because null-homologous submanifolds bound chains, but

not necessarily submanifolds, of one dimension higher. The definitions can be

transplanted to the smooth category via smooth triangulations.

Let Mn be an oriented n-dimensional combinatorial manifold, and let P p

and Qq be subchains with p + q = n. If we assume that P p is a subcomplex

of a given triangulation of Mn, and that Qq is a subcomplex of the Poincaré

dual cell complex, then it follows that P p and Qq meet transversally in finitely

many points, and we denote their intersection number by Int(P p, Qq).

Let Kk and Lℓ be two disjoint cycles in Mn with k + ℓ = n − 1. Assume

that K and L are null-homologous in M , with Kk = ∂P k+1 and Lℓ = ∂Qℓ+1,

and that Kk and Qℓ+1 meet transversally as above, and likewise for P k+1 and

Lℓ. Then we define the linking number of K and L to be

Lk(Kk, Lℓ) = Int(Kk, Qℓ+1). (2.1)
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This definition can be seen to be independent of the choice of Qℓ+1, thanks to

the fact that K is null-homologous in Mn.

We note the inherent asymmetry in this definition, since one could equally

well define the linking number of Kk and Lℓ to be the intersection number of

P k+1 and Lℓ. The two definitions can be shown to differ by the sign (−1)k+1.

One can verify the anti-commutation rule,

Lk(Kk, Lℓ) = (−1)(k+1)(ℓ+1) Lk(Lℓ, Kk). (2.2)

We apply the definition (2.1) of linking number to the simplest possible

example.

Orient Euclidean space Rn+1, and then orient the unit sphere Sn ⊂ Rn+1

so that a basis A1, . . . ,An for its tangent space at the point p in Sn is positive

if and only if the basis p,A1, . . . ,An for Rn+1 is positive.

Assume that Rn+1 = Rk+1 ⊕Rℓ+1 is an orthogonal direct sum.

Let the positive x1, . . . , xk+1 axes in that order set the orientation for Rk+1,

and orient its unit sphere Sk as above. Likewise let the positive y1, . . . , yℓ+1

axes in that order set the orientation for Rℓ+1, and orient its unit sphere Sℓ

as above. Let the positive x1 . . . , xk+1, y1, . . . , yℓ+1 axes in that order set the

orientation for Rn+1, and then orient its unit sphere Sn as above.

Now Sk and Sℓ are oriented great subspheres of the oriented Sn, which link

once geometrically. Using the definition (2.1), one checks easily that

Lk(Sk, Sℓ) = +1. (2.3)

3 The degree of f : K ∗ L → Sn and the linking

number Lk(K, L)

Let Kk and Lℓ be disjoint closed oriented smooth submanifolds of Sn with

k + ℓ = n − 1. Let f : K ∗ L → Sn be the map, defined in the introduction,

which sends the line segment {(x,y, u) | 0 ≤ u ≤ 1} connecting x and y in

K ∗ L proportionally to the geodesic arc connecting x and −y in Sn.
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A little elementary geometry yields the explicit formula

f(x,y, u) = x cos(u(π − α)) −
y − x cosα

sin α
sin(u(π − α)), (3.1)

where α = α(x,y) is the geodesic distance on Sn between x and y.

If Kk and Lℓ are closed oriented smooth manifolds, then the join Kk ∗ Lℓ,

although not in general itself a manifold, resembles an oriented n-manifold in

the sense that it contains an n-cell as a dense open subset, and its top homology

group is isomorphic to the integers. Orienting the join has the effect of choosing

one or the other generator for its top homology, and we do this by orienting the

product Kk×Lℓ×[0, 1] in the usual way, and then let this induce an orientation

on Kk ∗ Lℓ under the collapsing map.

Now it makes sense to speak of the degree of the map f : Kk ∗ Lℓ → Sn

defined above, and we want to compare this degree to the linking number

Lk(Kk, Lℓ).

We try this out on the simplest possible example.

Let Kk = Sk be the unit sphere in the Rk+1 with coordinates x1, . . . , xk+1,

let Lℓ = Sℓ be the unit sphere in theRℓ+1 with coordinates y1, . . . , yℓ+1, and let

Sn be the unit sphere in the Rn+1 with coordinates x1, . . . , xk+1, y1, . . . , yℓ+1.

Assigning orientations as in the previous section, we noted there

that Lk(Sk, Sℓ) = +1.

The join of a k-sphere and an ℓ-sphere is a sphere of dimension

k + ℓ + 1 = n, and it is easy to check that the natural map Sk ∗ Sℓ → Sn,

which takes (x,y, t) 7→ x cos(π/2)t + y sin(π/2)t, has degree +1, provided we

give Sk ∗ Sℓ the orientation induced from that on the product Sk × [0, 1]× Sℓ.
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Our map f : Sk ∗ Sℓ → Sn differs from this natural map in two ways. First,

we orient Sk ∗ Sℓ via the product Sk × Sℓ × [0, 1] instead of Sk × [0, 1] × Sℓ,

which gives a sign change of (−1)ℓ in the orientation. Second, we take the line

segment {(x,y, u) | 0 ≤ u ≤ 1} to the geodesic arc (quarter circle in this case)

connecting x to −y, rather than connecting x to y. The antipodal map on Sℓ

has degree (−1)ℓ+1, and so we get exactly this sign change in the degree. The

net effect of these two sign changes is simply multiplication by −1, and so we

conclude that

deg(f : Sk ∗ Sℓ → Sn) = −1 = −Lk(Sk, Sℓ). (3.2)

We will see in a moment the universal character of this example.

K

K ′K ′

S
L

Figure 2

Proposition 3.3. Let Kk and Lℓ be disjoint closed oriented smooth subman-

ifolds of Sn with k + ℓ = n− 1, and let f : Kk ∗ Lℓ → Sn be the map described

above. Then

deg f = −Lk(Kk, Lℓ).

Proof. The simple idea of the proof is indicated in Figure 2, which shows a

2-component link in the 3-sphere. One component is a trefoil knot K and the

other is a circle L, with linking number Lk(K, L) = 2. Also shown in the figure
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is a Seifert surface S (a punctured torus) bounded by K, and pierced twice

transversally by L.

Let K ′ denote the union of the two small circles on S which surround the

punctures, let D′ denote the union of the two small disks on S which they

bound, and let S′ denote the remaining portion of S bounded by K and K ′.

We have Lk(K, L) = Lk(K ′, L) since S ∩ L = D′ ∩ L.

Also, the maps f : K ∗ L → S3 and f ′: K ′ ∗ L → S3 have the same degree,

since they have a common extension to a map F : S′ ∗ L → S3.

Keeping K ′ as is, if L were not already a circle, we could repeat this con-

struction by using a Seifert surface bounded by L to replace it with a union

L′ of small circles such that Lk(K ′, L) = Lk(K ′, L′) and such that the maps

f ′: K ′ ∗ L → S3 and f ′′: K ′ ∗ L′ → S3 have the same degree.

The higher-dimensional version of this argument replaces K by a union K ′

of small round k-spheres, and L by a union L′ of small round ℓ-spheres, so that

Lk(K, L) = Lk(K ′, L′)

and

deg(f : K ∗ L → Sn) = deg(f ′′: K ′ ∗ L′ → Sn).

We note in particular that if Kk and Lℓ are small round subspheres which

lie in disjoint balls in Sn , with n = k + ℓ+1, then Lk(Kk, Lℓ) = 0 , and at the

same time, the map f : K∗L → Sn is null-homotopic, so that its degree is zero.

Now our proposition follows from the special case given in (3.2), which is

clearly just as valid for small round subspheres as for great ones.

4 Proof of the main theorem

Let Kk and Lℓ be disjoint closed oriented smooth submanifolds of Sn with

k + ℓ = n − 1. Let f : K ∗ L → Sn be the map defined in the introduction and

given explicitly in (3.1). We saw in Proposition 3.3 that Lk(Kk, Lℓ) = − deg f ,

so our task is to find a good integral formula for the degree of f .
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To do this, we start with the volume form ω on Sn, pull it back via f to

an n-form on K ∗ L, partially integrate this n-form along the line segments

{(x,y, u) | 0 ≤ u ≤ 1} so as to leave us with an integral over K ×L, and finally

divide this integral by the volume of Sn to get the degree of f .

Let s = (s1, . . . , sk) be local coordinates on Kk, whose order gives the

orientation there, and likewise for t = (t1, . . . , tℓ) on Lℓ.

The volume form ω on Sn is given by

ωp(A1, . . . ,An) = det(p,A1, . . . ,An), (4.1)

according to our conventions about orientation in section 2.

Then the degree of f is given by

deg f =
1

vol Sn

∫

K∗L

f
∗
ω

=
1

vol Sn

∫

K∗L

f
∗
ω

(

∂

∂s1

, . . . ,
∂

∂sk

,
∂

∂t1
, . . . ,

∂

∂tℓ

,
∂

∂u

)

ds1 · · · dsk dt1 · · · dtℓ du.

(4.2)

We postpone integrating, and pay attention to the integrand,

f∗ω

(

∂

∂s1
, . . . ,

∂

∂sk
,

∂

∂t1
, . . . ,

∂

∂tℓ
,

∂

∂u

)

= ωf

(

∂f

∂s1
, . . . ,

∂f

∂sk
,
∂f

∂t1
, . . . ,

∂f

∂tℓ
,
∂f

∂u

)

= det

(

f,
∂f

∂s1
, . . . ,

∂f

∂sk
,

∂f

∂t1
, . . . ,

∂f

∂tℓ
,
∂f

∂u

)

= (−1)n−1 det

(

f,
∂f

∂u
,

∂f

∂s1
, . . . ,

∂f

∂sk
,

∂f

∂t1
, . . .

∂f

∂tℓ

)

.

(4.3)

We pay the price (−1)n−1 to move the ∂f/∂u column adjacent to the f col-

umn because it will be computationally convenient when we assess their joint

contribution to the value of this determinant.

To that end, we take formula (3.1) for f(x,y, u), differentiate it with respect

to u, and get

∂f

∂u
= −(π −α)

(

sin(u(π − α))x(s) + cos(u(π − α))
y(t) − cosαx(s)

sin α

)

. (4.4)



LINKING INTEGRALS IN Sn 243

We then compute that

f ∧
∂f

∂u
= −

π − α

sin α
x(s) ∧ y(t). (4.5)

The advantage of this preliminary computation is that when we compute

∂f/∂si and ∂f/∂tj, we can discard terms containing either x(s) or y(t), since

they will disappear in the calculation of the determinant in (4.3) because of its

alternating character. We signal this discard below with the symbol ∼.

With this in mind, we compute that

∂f

∂si
∼
(

cos(u(π − α)) +
cosα

sin α
sin(u(π − α))

) ∂x

∂si
=

A

sin α

∂x

∂si
(4.6)

and
∂f

∂tj
∼ −

(

sin(u(π − α))

sin α

)

∂y

∂tj
= −

B

sinα

∂y

∂tj
, (4.7)

where we introduce for convenience the abbreviations

A = sin α cos(u(π − α)) + cosα sin(u(π − α)) and B = sin(u(π − α)).

Then, referring back to the last line of (4.3), we use (4.5), (4.6) and (4.7) to

write

det

(

f,
∂f

∂u
,

∂f

∂s1
, . . . ,

∂f

∂sk
,
∂f

∂t1
, . . . ,

∂f

∂tℓ

)

= −
π − α

sin α

(

A

sin α

)k (
−B

sin α

)ℓ

det

(

x,y,
∂x

∂s1
, . . . ,

∂x

∂sk
,
∂y

∂t1
, . . . ,

∂y

∂tℓ

)

= (−1)n π − α

sinn α
AkBℓ det

(

x,
∂x

∂s1
, . . . ,

∂x

∂sk
,y,

∂y

∂t1
, . . . ,

∂y

∂tℓ

)

,

(4.8)

since the cost of moving the y column to its new location in the determinant

is (−1)k.
Putting this all together, we have by (4.2), (4.3) and (4.8) that

deg f

=
1

vol Sn

∫

K∗L

(−1)n−1 det
(

f,
∂f

∂u
,

∂f

∂s1

, . . . ,
∂f

∂sk

,
∂f

∂t1
, . . . ,

∂f

∂tℓ

)

ds1 · · · dskdt1 · · · dtℓ du

=
−1

vol Sn

∫

K∗L

π − α

sinn α
A

k
B

ℓ det
(

x,
∂x

∂s1

, . . . ,
∂x

∂sk

,y,
∂y

∂t1
, . . . ,

∂y

∂tℓ

)

ds1 · · · dsk dt1 · · · dtℓ du.
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As promised, we now partially integrate over the u variable to reduce the

above integral over K ∗ L to an integral over K × L.
We compute that

∫

1

u=0

(π − α)Ak
B

ℓ
du

=

∫

1

u=0

(π − α)
(

sin α cos(u(π − α)) + cos α sin(u(π − α))
)k (

sin(u(π − α))
)ℓ

du

=

∫ π

β=α

sink(β − α) sinℓ
β dβ

= ϕk,ℓ(α),

thanks to the substitution β = π − u(π − α).
This leaves us with

deg f =
−1

vol Sn

∫

K×L

ϕk,ℓ(α)

sinn α
det
(

x,
∂x

∂s1

, . . . ,
∂x

∂sk

,y,
∂y

∂t1
, . . . ,

∂y

∂tℓ

)

ds1 · · · dsk dt1 · · · dtℓ .

Recalling from Proposition 3.3 that Lk(Kk, Lℓ) = − deg f , and introducing

the abbreviation

[x, dx,y, dy] = det

(

x,
∂x

∂s1
, . . . ,

∂x

∂sk
,y,

∂y

∂t1
, . . . ,

∂y

∂tℓ

)

ds1 · · · dsk dt1 · · ·dtℓ,

we get

Lk(Kk, Lℓ) =
1

volSn

∫

K×L

ϕk,ℓ(α)

sinn α
[x, dx,y, dy],

completing the proof of our theorem.

5 Proof of the corollary

We begin with the result of our main theorem,

Lk(Kk, Lℓ) =
1

volSn

∫

K×L

ϕk,ℓ(α)

sinn α
[x, dx,y, dy], (5.1)

where

ϕk,ℓ(α) =

∫ π

β=α

sink(β − α) sinℓ β dβ.
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Putting −L in place of L, we get

Lk(Kk,−Lℓ) =
1

volSn

∫

K×L

ϕk,ℓ(π − α)

sinn(π − α)
[x, dx,−y,−dy]

=
(−1)ℓ+1

volSn

∫

K×L

ϕk,ℓ(π − α)

sinn α
[x, dx,y, dy].

(5.2)

The orientation on L is transferred via the antipodal map of Sn to give the

orientation on −L.

We compute the value of ϕk,ℓ(π − α) to be

ϕk,ℓ(π − α) = (−1)k

∫ α

β=0

sink(β − α) sinℓ β dβ.

It follows that

ϕk,ℓ(α) + (−1)kϕk,ℓ(π − α) =

∫ π

β=0

sink(β − α) sinℓ β dβ

= (−1)k

∫ π

β=0

sink(α − β) sinℓ β dβ

= (−1)k sink ∗ sinℓ(α).

(5.3)

Assembling (5.1), (5.2) and (5.3), we get

Lk(Kk, Lℓ) + (−1)n Lk(Kk,−Lℓ) =
(−1)k

volSn

∫

K×L

sink ∗ sinℓ(α)

sinn α
[x, dx,y, dy],

completing the proof of the corollary.

6 Examples

Example 1. Great subspheres Sk and Sℓ in Sn.

Our linking integral in this case is

Lk(Sk, Sℓ) =
1

volSn

∫

Sk×Sℓ

ϕk,ℓ(α)

sinn α
[x, dx,y, dy].

The geodesic distance α(x,y) from each point x ∈ Sk to each point y ∈ Sℓ is
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π/2. Therefore, sinn α ≡ 1, and

ϕk,ℓ(α) = ϕk,ℓ(π/2) =

∫ π

β=π/2

sink(β − π/2) sinℓ β dβ

=

∫ π/2

θ=0

sink θ cosℓ θ dθ.

Then

Lk(Sk, Sℓ) =
1

volSn

(

∫ π/2

θ=0

sink θ cosℓ θ dθ

)

∫

Sk×Sℓ

[x, dx,y, dy]

=
1

volSn

(

∫ π/2

θ=0

sink θ cosℓ θ dθ

)

∫

Sk

[x, dx]

∫

Sℓ

[y, dy]

=
1

volSn

(

∫ π/2

θ=0

sink θ cosℓ θ dθ

)

(volSk)(vol Sℓ)

= 1.

To go from the first line to the second in this chain of equalities, we used

the fact that the (n + 1) × (n + 1) determinant [x, dx,y, dy] consists of a

(k + 1)× (k + 1) block in the upper left, an (ℓ + 1)× (ℓ + 1) block in the lower

right, and zeros elsewhere.

To go from the third line to the fourth, we used the fact that the region be-

tween Sk and Sℓ in Sn is filled by hypersurfaces of the form

Sk(sin θ) × Sℓ(cos θ), whose volumes may be integrated from θ = 0 to π/2

to give the volume of Sn.

Example 2. Two curves in S3.

Our linking integral in this case is

Lk(K1, L1) =
1

volS3

∫

K×L

ϕ1,1(α)

sin3 α
[x, dx,y, dy].

We compute that

ϕ1,1(α) =

∫ π

β=α

sin(β − α) sin β dβ

=
1

2
((π − α) cosα + sin α),
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and, using the fact that volS3 = 2π2, get the formula

Lk(K1, L1) =
1

4π2

∫

K×L

(π − α) cosα + sin α

sin3 α
[x, dx,y, dy],

which is equivalent to formula (2) on page 2 of our (2004) paper, and appears

as formula 6 on page 7 of Greg Kuperberg’s (2006) paper.

Example 3. A curve and a surface in S4.

Our linking integral in this case is

Lk(K1, L2) =
1

volS4

∫

K×L

ϕ1,2(α)

sin4 α
[x, dx,y, dy].

We compute that

ϕ1,2(α) =

∫ π

β=α

sin(β − α) sin2 β dβ

=
1

3
(1 + cosα)2,

and, using the fact that volS4 = 8π2/3, get the formula

Lk(K1, L2) =
1

8π2

∫

K×L

(1 + cosα)2

sin4 α
[x, dx,y, dy].

Example 4. The Corollary for two curves in S3.

We illustrate the corollary in the case that K1 and L1 are closed curves in

S3, disjoint from one another, and each from the antipodal image of the other.

The formula from the corollary in this case is

Lk(K1, L1) − Lk(K1,−L1) =
−1

volS3

∫

K×L

sin ∗ sin(α)

sin3 α
[x, dx,y, dy].

We compute that

sin ∗ sin(α) =

∫ π

β=0

sin(α − β) sin β dβ

= −
π

2
cosα,
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and, once again using the fact that volS3 = 2π2, get the formula

Lk(K1, L1) − Lk(K1,−L1) =
1

4π

∫

K×L

cosα

sin3 α
[x, dx,y, dy].

When K1 and L1 are orthogonal great circles in S3, then −L1 = L1 with

the same orientation, so the left side of the formula directly above is zero.

At the same time, the integrand on the right side is identically zero, since

cosα = cosπ/2 = 0.

Example 5. The Corollary for two surfaces in S5.

We illustrate the corollary once more, this time in the case that K2 and

L2 are closed surfaces in S5, disjoint from one another, and each from the

antipodal image of the other.

The formula from the corollary in this case is

Lk(K2, L2) − Lk(K2,−L2) =
1

volS5

∫

K×L

sin2 ∗ sin2(α)

sin5 α
[x, dx,y, dy].

We compute that

sin2 ∗ sin2(α) =

∫ π

β=0

sin2(α − β) sin2 β dβ

=
π

8
(1 + 2 cos2 α),

and, using the fact that volS5 = π3, get the formula

Lk(K2, L2) − Lk(K2,−L2) =
1

8π2

∫

K×L

1 + 2 cos2 α

sin5 α
[x, dx,y, dy].

When K2 and L2 are orthogonal great 2-spheres in S5 with linking number 1,

then −L2 = L2 but has the opposite orientation, so the left side of the formula

directly above has the value 2. To check the right side, we have α = π/2, so

the fraction in the integrand is identically 1. Therefore the right side equals

1

8π2
(areaS2)(areaS2) =

1

8π2
(4π)(4π) = 2,

a reassuring consistency check.
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