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C-TOTALLY REAL SUBMANIFOLDS WITH
PARALLEL MEAN CURVATURE IN λ-SASAKIAN

SPACE FORMS

A. Brasil G. A. Lobos M. Mariano

Dedicated to Professor Manfredo do Carmo on the occasion of his 80th birthday

Abstract

In this paper, we prove a generalized integral inequality for an n-
dimensional oriented closed C-totally real submanifold M with parallel
mean curvature vector h in a (2m + 1)-dimensional closed λ-Sasakian
space form M̃(c) of constant ϕ-sectional curvature c with 0 < c ≤ λ,
n ≥ 2 and if a tensor φ related to h and the second fundamental form
satisfies a certain inequality. As a consequence we obtain that M is
totally umbilic or minimal with S = (n(c + 3λ) + (c − λ))/6, which
generalize the Theorem 3 of [10]. Finally, we prove that if M is f -
pseudo-parallel in a (2n + 1)-dimensional λ-Sasakian space form with
f ≥ (n(c+3λ)+(c−λ))/4n, then M is totally geodesic, which generalize
the Theorem 1 of [13], when λ = 1.

1 Introduction

Let M̃ be a (2m + 1)-dimensional manifold and Γ(M̃) the Lie algebra of

vector fields on M̃ . An almost contact structure on M̃ is defined by a (1,1)-

tensor ϕ, a vector field ξ and a 1-form η on M̃ such that for any p ∈ M̃ , we

have

ϕ2
p = −I + ηp ⊗ ξp, ηp(ξp) = 1,

where I denote the identity transformation of the tangent space TpM̃ at p.

Then ϕ(ξ) = 0 and η ◦ ϕ = 0. Manifolds equipped whit an almost contact

structure are called almost contact manifolds. A Riemannian manifold M̃ with

metric tensor 〈 , 〉 and an almost contact structure (ϕ, ξ, η) such that

〈ϕX,ϕY 〉 = 〈X,Y 〉 − η(X)η(Y ),
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or equivalently

〈X,ϕY 〉 = −〈ϕX, Y 〉 and 〈X, ξ〉 = η(X),

for all X,Y ∈ Γ(M̃), is an almost contact metric manifold. The existence of

an almost contact metric structure on M̃ is equivalent with the existence of a

reduction of the structural group to U(m)×1, i. e. all the matrices of O(2m+1)

of the form  A B 0
−B A 0

0 0 1

 ,

where A and B are real (n × n)-matrices. The fundamental 2-form Ψ of an

almost contact metric manifold (M̃, ϕ, ξ, η, 〈 , 〉) is defined by

Ψ(X,Y ) = 〈X,ϕY 〉,

for all X,Y ∈ Γ(M̃), and this form satisfies η ∧ Ψm 6= 0. When Ψ = 1
λdη,

λ 6= 0 the associated structure is a contact structure and M̃ is an almost λ-

Sasakian manifold. An almost λ-Sasakian manifold (M̃, ϕ, ξ, η, 〈 , 〉) is called

a λ-Sasakian manifold if

[ϕX,ϕY ] + ϕ2[X,Y ]− ϕ[X,ϕY ]− ϕ[ϕX, Y ] = −2dη(X,Y )ξ

for all X,Y ∈ Γ(M̃). A necessary and sufficient condition for an almost contact

metric manifold (M̃, ϕ, ξ, η, 〈 , 〉) to be a λ-Sasakian manifold is(
∇̃Xϕ

)
Y = λ{〈X,Y 〉ξ − η(Y )X}, (1.1)

for all X,Y ∈ Γ(M̃), where ∇̃ is the Levi-Civita connection of the Riemannian

metric 〈 , 〉. Moreover, a λ-Sasakian manifold satisfies:

∇̃Xξ = −λϕX, (1.2)

see [6]. If λ = 1 a λ-Sasakian manifold is a Sasakian manifold [4].

An n-dimensional Riemannian manifold M isometrically immersed in M̃ is

said to be anti-invariant in M̃ if ϕTpM ⊂ TpM⊥ for each p of M , where TpM
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and TpM
⊥ denote respectively the tangent and the normal space to M at p .

Thus, for any vector X tangent to M , ϕX is normal to M . In this case, ϕ is

necessarily of rank 2m and hence n ≤ m + 1. An n-dimensional Riemannian

manifold M isometrically immersed in M̃ is said to be C-totally real if ξ is a

normal vector field to M . Recall that a direct consequence of this definition

is that M is a anti-invariant submanifold in M̃ and n ≤ m . A plane section

σ in TpM̃ of a λ-Sasakian manifold is called a ϕ-section if it is spanned by X

and ϕX, where X is a unit tangent vector field orthogonal to ξ. The sectional

curvature k̃(σ) with respect a ϕ-section σ is called a ϕ-sectional curvature. In

this paper a λ-Sasakian manifold M̃ complete simply connected with constant

ϕ-sectional curvature c is called a λ-Sasakian space form and is denoted by

M̃(c). The curvature tensor R̃ of M̃(c) is given by [9]:

R̃(X,Y )Z =
c+ 3λ

4
(X ∧ Y )Z +

c− λ
4
{η(X)η(Z)Y

− η(Y )η(Z)X + 〈X,Z〉η(Y )ξ − 〈Y,Z〉η(X)ξ
+ 〈ϕY,Z〉ϕX − 〈ϕX,Z〉ϕY − 2〈ϕX, Y 〉ϕZ},

(1.3)

where X ∧ Y is the operator defined by (X ∧ Y )Z = 〈Y,Z〉X − 〈X,Z〉Y .

Example 1.1. [4] Let R2m+1 be a Euclidean space with cartesian coordinates

(xi, yi, z). Then a 1-Sasakian structure on R2m+1 is defined by (ϕ0, ξ, η, g) such

that

ξ = 2
∂

∂z
, η =

1
2

(dz −
m∑
i=1

yidxi), g =
1
4

(η ⊗ η +
m∑
i=1

(
(dxi)2 + (dyi)2)

)
and the tensor field ϕ0 is given by matrix 0 δij 0

−δij 0 0
0 yj 0

 .

With such a structure, R2m+1 is of constant ϕ-sectional curvature −3 and

denoted by R2m+1(−3).

Example 1.2. [1] For θ ∈ (0, π/2), the immersion

F (u, v, w, s, t) = 2(u, 0, w, 0, v cos θ, v sin θ, s cos θs sin θ, t),
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defines a 5-dimensional submanifolds M in R9(−3). We consider on M the

induced almost contact structure (ϕ, ξ, η, g), where ϕ = (sec θ)T , T being the

tangential component of ϕ0. It can be checked that (∇Xϕ)Y = cos θ(g(X,Y )ξ−
η(Y )X), for any vector fields X,Y tangent to M , which means that M is a λ-

Sasakian manifold with λ = cos θ ∈ (0, 1).

For other examples, we refer to [2].

The purpose of present paper is to study n-dimensional C-totally real sub-

manifolds M , with parallel mean curvature in λ-Sasakian space form M̃(c).

It is we need consider Φ : TpM × TpM → TpM
⊥ a bilinear map defined as

follows: choose an orthonormal frame {en+1, ..., e2m+1} of TpM⊥ and for each

α = n+ 1, . . . , 2m+ 1, define maps Φα : TpM → TpM by

ΦαX = 〈h, eα〉X −AeαX, (1.4)

where h is the mean curvature vector and Aeα ’s are the shape operators. Then

Φ is given by

Φ(X,Y ) =
∑
α

〈ΦαX,Y 〉eα. (1.5)

Therefore both Φ and |Φ| not depend on the choice of {eα}, moreover, if S be

the squared norm of the second fundamental form of M , then

|Φ|2 =
∑
α

tr (Φα)2 = S − nH2, (1.6)

where H = |h|. We recall that |Φ|2 ≡ 0 if and only if M is totally umbilic;

H ≡ 0 if and only if M is minimal; and S ≡ 0 if and only if M is totally

geodesic. We remark that the immersion F in the example (1.2) defines a

5-dimensional minimal submanifold M in an 1-Sasakian space form R9(−3).

Now, for any H ∈ R, we define the polynomial PH,c,λ by

PH,c,λ(x) =
3
2
x2 +

n(n− 2)√
n(n− 1)

Hx−
(
n(c+ 3λ) + c− λ

4
+ nH2

)
. (1.7)

Denoting by ϑH the square of the positive root of PH,c,λ(x) = 0, our results

can be stated as:
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Theorem 1.1. Let M be an n-dimensional oriented complete closed C-totally

real submanifold with parallel mean curvature vector in a closed λ-Sasakian

space form M̃(c), n ≥ 2 and 0 < c ≤ λ. If |Φ|2 ≤ ϑH on M , then∫
M

|Φ|2PH,c,λ(|Φ|)dM ≥ 0. (1.8)

As a consequence Theorem 1.1 , we get:

Theorem 1.2. Let M be an n-dimensional oriented complete closed C-totally

real submanifold with parallel mean curvature vector in a closed λ-Sasakian

space form M̃(c), n ≥ 2 and 0 < c ≤ λ. If |Φ|2 ≤ ϑH on M , then either M

is totally umbilical or m = n and M is minimal, non-totally geodesic. In this

case,

S =
1
6
{n(c+ 3λ) + c− λ}.

In particular, if c = λ = 1, then M is either a totally geodesic submanifold or

a Veronese surface.

A submanifold M is f -pseudo-parallel if its second fundamental form σ

satisfies the following condition

R(X,Y ) · σ = f X ∧ Y · σ,

for some real valued smooth function f on M and for any X and Y vectors

tangent toM , where R(X,Y ) is the curvature operator of the Van der Waerden-

Bortolotti connection ∇ of M , which with the operator X ∧ Y act on σ as a

derivation [3]. We prove a result that generalize the Theorem 1 of [13].

Theorem 1.3. Let M be an n-dimensional C-totally real submanifold with

parallel mean curvature vector in a (2n+1)-dimensional λ-Sasakian space form

M̃(c). If M is f -pseudo-parallel and f ≥ (n(c + 3λ) + c − λ)/4n, then M is

totally geodesic.

Finally, we get the following results for closed f -pseudo-parallel submani-

folds with parallel mean curvature vector in a λ-Sasakian space form.
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Theorem 1.4. Let M be an n-dimensional closed C-totally real submanifold

with parallel mean curvature vector in a (2m+1)-dimensional λ-Sasakian space

form M̃(c). If M is f -pseudo-parallel and f ≥ 0, then M is parallel, i.e.

∇σ = 0.

Corollary 1.1. Let M be an n-dimensional closed C-totally real submanifold

with parallel mean curvature vector in a (2n+1)-dimensional λ-Sasakian space

form M̃(c). If M is f -pseudo-parallel and f > 0, then M is totally geodesic.

2 Preliminaries

Let M̃(c) be a (2m+ 1)-dimensional λ-Sasakian space form with structure

(ϕ, ξ, η, 〈 , 〉) and M an n-dimensional C-totally real submanifold (n ≤ m). As

usual, ∇̃ (resp. ∇) be the Riemannian connection with respect to 〈 , 〉 (resp.

〈 , 〉|M ) and ∇⊥ the connection in the normal bundle on M . These connections

are related by the Gauss and the Weingarten formulas

∇̃XY = ∇XY + σ(X,Y ),

∇̃XN = −ANX +∇⊥XN,
(2.1)

for any X,Y vectors tangent to M and any N vector normal to M , where AN

is the shape operator (which is auto-adjunt) in the direction N and σ is the

second fundamental form on M . The shape operator and second fundamental

form are related by

〈ANX,Y 〉 = 〈σ(X,Y ), N〉. (2.2)

Let R, R̃ and R⊥ the curvature tensors of ∇, ∇̃ and ∇⊥, respectively. Then,

the Gauss and the Ricci equations are given by

〈R(X,Y )Z,W 〉 = 〈R̃(X,Y )Z,W 〉+ 〈σ(X,W ), σ(Y,Z)〉

−〈σ(X,Z), σ(Y,W )〉,
(2.3)

〈R⊥(X,Y )N1, N2〉 = 〈R̃(X,Y )N1, N2〉+ 〈[AN1 , AN2 ], Y 〉. (2.4)
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The Codazzi-Mainardi equation is

(∇σ)(X,Y, Z) = (∇σ)(X,Z, Y ), (2.5)

where ∇σ is the first covariant derivative of σ is defined by

(∇σ)(X,Y, Z) = (∇Zσ)(X,Y )

= ∇⊥Z [σ(X,Y )]− σ(∇ZY,X)− σ(Y,∇ZX),
(2.6)

and the second covariant derivative is defined by

(∇2
σ)(X,Y, Z,W ) = (∇W∇Zσ)(X,Y )

= ∇⊥W [(∇Zσ)(X,Y )]− (∇Zσ)(∇WX,Y )

−(∇Zσ)(X,∇WY )− (∇∇WZσ)(X,Y ).

(2.7)

Then, we have

R⊥(X,Y )[σ(Z,W )] = (∇X∇Y σ)(Z,W )− (∇Y∇Xσ)(Z,W )

+σ(R(X,Y )Z,W ) + σ(Z,R(X,Y )W ).
(2.8)

In this work we use the following convention of index:

1 ≤ A,B,C, · · · ≤ 2m+ 1,

1 ≤ i, j, k, · · · ≤ n, i∗ = m+ i,

n+ 1 ≤ α, β, γ, · · · ≤ 2m+ 1.

As M is a C-totally real submanifold, we can choose a local orthonor-

mal frame {e1, ..., en, en+1, ..., em, e1∗ = ϕe1, ..., e(n+1)∗ = ϕen+1, ..., em∗ =

ϕem, e2m+1 = ξ} in M̃(c) such that {ei} at each point of M span the tan-

gent space of M .

Let {ωA} be the dual of {eA} and let {ωAB} be the connection 1-forms of

M̃(c). Then the structure equations of Cartan are given by

dωA = −
∑
B

ωAB ∧ ωB , ωAB + ωBA = 0, (2.9)



90 A. BRASIL G. A. LOBOS M. MARIANO

dωAB =
∑
C

ωAC ∧ ωCB +
1
2

∑
C,D

R̃ABCD ωC ∧ ωD. (2.10)

The (ωAB) is a real representation of a skew-Hermitian matrix. Hence

ωi∗j = ωj∗i. (2.11)

Moreover,

ωij = ωi∗j∗ and ωi∗ = −ωi(2m+1). (2.12)

Thus, we have along M that

ωα = 0,

which implies 0 = dωα = −
∑
i ωαi ∧ ωi along M . From Cartan’s Lemma, we

write

ωαi =
∑
j

hαijωj , hαij = hαji, (2.13)

where hαij denoted the components of second fundamental form σ, that is

hαij = 〈Aeαei, ej〉 = 〈σ(ei, ej), eα〉. (2.14)

Therefore, from (2.11) and (2.2) we have

hi
∗

jk = hj
∗

ik = hk
∗

ij , h
2m+1
ij = 0. (2.15)

From (1.3), we get

R̃ijkl =
c+ 3λ

4
(δikδjl − δilδjk), (2.16)

and

R̃αβkl =


c− λ

4
(δikδjl − δilδjk), if α = i∗, β = j∗;

0, otherwise,

(2.17)

where 〈ei, ej〉 = δij . Using (2.16) in (2.3), we obtain

Rijkl =
c+ 3λ

4
(δikδjl − δilδjk) +

∑
α

(
hαikh

α
jl − hαilhαjk

)
, (2.18)

and subtituting (2.17) in (2.4), we get
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R⊥αβkl =


c− λ

4
(δikδjl − δilδjk) +

∑
r

(
hαrkh

β
rl − h

α
rlh

β
rk

)
, if α = i∗, β = j∗;∑

r

(
hαrkh

β
rl − h

α
rlh

β
rk

)
, otherwise.

(2.19)

Let S be the squared norm of second fundamental form, h denote the mean

curvature vector field and H the mean curvature of M , that is

S =
∑
α,i,j

(hαij)
2, h =

1
n

∑
α

(∑
i

hαii

)
eα, H = |h|. (2.20)

The Ricci curvature tensor {Rkl} and the scalar curvature K are expressed,

respectively, as follows:

Rkl =
c+ 3λ

4
(n− 1)δkl +

∑
α

(∑
i

hαii

)
hαkl −

∑
α,i

hαkih
α
il, (2.21)

K =
c+ 3λ

4
n(n− 1) + (n2H2 − S). (2.22)

The components of the covariant derivative of σ are given by

hαijk =
〈(
∇ekσ

)
(ei, ej), eα

〉
= ∇ekhαij , (2.23)

hence, the square of the length of third fundamental form of M is given

|∇σ|2 =
∑
α,i,j,k

(
hαijk

)2
. (2.24)

The components of the second covariant derivative of σ are given by

hαijkl =
〈(
∇el∇ekσ

)
(ei, ej), eα

〉
= ∇elhαijk = ∇el∇ekhαij . (2.25)

Hence, we get∑
k

hαijkωk = dhαij −
∑
r

hαjrωri −
∑
r

hαirωrj +
∑
β

hβijωαβ , (2.26)
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∑
l

hαijklωl =dhαijk −
∑
r

hαrjkωri −
∑
r

hαirkωrj

−
∑
r

hαijrωrk +
∑
β

hαijkωαβ .
(2.27)

From (2.5), we have

hαijk − hαikj = 0, (2.28)

and by (2.8), we obtain the following Ricci formula

hαijkl − hαijlk =
∑
r

hαrjRrikl +
∑
r

hαriRrjkl −
∑
β

hβijR
⊥
αβkl. (2.29)

From (2.12), (2.11) and (2.26), we get

h2m+1
ijk = −hk

∗

ij . (2.30)

The Laplacian 4hαij of hαij is defined by 4hαij =
∑
k h

α
ijkk =

∑
k h

α
kijk. Using

(2.28) and (2.29), we obtain

∆hαij =
∑
k,r

hαkrRrijk +
∑
kr

hαriRrkjk −
∑
k,β

hβkiR
⊥
αβkj

=
∑
k,r

(hαkrR̃rijk + hαriR̃rkjk) +
∑
k,β

hβkiR̃αβkj

+
∑
r,k,α

(hβrih
β
rjh

β
kk + 2hαkrh

β
rjh

β
ik − h

α
krh

β
krh

β
ij

− hαrih
β
krh

β
kj − h

α
rjh

β
kih

β
kr).

(2.31)

Since
1
2

∆S =
∑
α,i,j

hαij∆h
α
ij +

∑
α,i,j,k

(
hαijk

)2
, (2.32)

we have

1
2

∆S =
∑
α,i,j,k

(
hαijk

)2 +
∑

α,i,j,k,r

(hαijh
α
krR̃rijk + hαijh

α
rjR̃rkik)

+
∑

α,β,i,j,k

hαijh
β
kiR̃αβkj −

∑
α,β,i,j,k,r

hαijh
α
krh

β
ijh

β
kr

+
∑

α,β,i,j,k,r

hαijh
α
irh

β
jrh

β
kk

−
∑

α,β,i,j,k,r

(hαrjh
β
kr − h

α
krh

β
rj)(h

α
ijh

β
ki − h

α
kih

β
ij).

(2.33)
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We remark that (2.31) and (2.33) can be found by specialising the result of [8]

to this case.

3 Estimates and proofs of Theorems 1.2 and 1.3

Now, we assume that the mean curvature vector h of M is parallel (i.e.,

∇⊥h = 0), and M is a complete submanifold in M̃(c).

In this section Φα denoted the matrix (Φαij), where Φαij = 〈Φαei, ej〉. Note

that to H = 0 (i.e., M is minimal submanifold), we get Φα = −Hα, for all α,

where Hα is the matrix (hαij). If H 6= 0, we choose a local orthonormal frame

{e1, ..., en, en+1, ..., em, ..., e2m+1} such that en+1 = h
H . With this choose

Φn+1 = HI −Hn+1, Φα = Hα, α 6= n+ 1, (3.1)

where I = (δij). Since en+1 is a parallel direction,

HαHn+1 = Hn+1Hα, ωα(n+1) = 0 and
∑
k

hαkki = 0. (3.2)

In this case, we obtain

tr Hn+1 = nH, tr Hα = 0, α 6= n+ 1 and R⊥(n+1)αij = 0. (3.3)

Furthermore,

|Φn+1|2 = tr H2
n+1 − nH2, (3.4)∑

α 6=n+1

|Φα|2 =
∑

β 6=n+1

(
hβij

)2

, (3.5)

and

tr Φα = 0, (3.6)

for all α. Thus,

S =
∑
α

|Φα|2. (3.7)

Now, we need the following algebraic lemmas:
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Lemma 3.1. [11] If A and B are two symmetric linear maps of Rn with

AB −BA = 0 and tr A = tr B = 0. Then

|tr A2B| ≤ (n− 2)√
n(n− 1)

tr A2
√

tr B2 (3.8)

and the equality holds if only if n−1 of eigenvalues xi of A and the correspond-

ing eigenvalues yi of B satisfy

|xi| =

√
tr A2

n(n− 1)
, xixj ≥ 0,

yi =

√
tr B2

n(n− 1)

(
resp. yi = −

√
tr B2

n(n− 1)

)
.

Lemma 3.2. [5, 10]. Let A1, A2, ..., Ak be symmetric (n×n)-degree matrices,

where k ≥ 2. Denote Lij = tr AiAtj and L = L11 + L22 + ...+ Lkk. Then

∑{
N(AiAj −AjAi) + (Lij)2

}
≤ 3

2
L2, (3.9)

where N(A) = tr AAt, for all matrix A.

The ideas used for proving the following lemmas are analogous to that found

in [8].

Lemma 3.3.

∑
α,i,j,k,r

(hαijh
α
rkR̃rijk + hαijh

α
rjR̃rkik) =

c+ 3λ
4

n|Φ|2. (3.10)

Proof: Fix a vector eα and let {ei} be a local orthogonal frame on M such

that the matrix Hα (resp. Φα) takes the diagonal form with hαij = µαi δij (resp.
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Φαij = λαi δij , where λαi = 〈h, eα〉 − µαi ). Then, of (2.16) we get∑
i,j,k,r

(hαijh
α
rkR̃rijk + hαijh

α
rjR̃rkik) =

∑
i,k

(µαi µ
α
k R̃kiik + (µαi )2R̃ikik)

=
∑
i,k

((µαi )2 − µαi µαk )R̃ikik

=
∑
i,k

((λαi )2 − λαi λαk )R̃ikik

=
c+ 3λ

4
n tr Φ2

α

=
c+ 3λ

4
n|Φα|2.

Hence ∑
α,i,j,k,r

(hαijh
α
rkR̃rijk + hαijh

α
rjR̃rkik) =

c+ 3λ
4

n|Φ|2.

�

Lemma 3.4. If c ≤ λ, then∑
α,β,i,j,k

hαijh
β
kiR̃αβkj ≥

c− λ
4
|Φ|2.

Proof: As M is a C-totally real submanifold, we can choose a local orthonor-

mal frame {e1, ..., en, en+1, ..., em, e1∗ = ϕe1, ..., e(n+1)∗ = ϕen+1, ..., em∗ =

ϕem, e2m+1 = ξ} in M̃(c). If α 6= r∗ or β 6= s∗, then from (2.17) we have∑
α,β,i,j,k

hαijh
β
kiR̃αβkj = 0.

If α = r∗ and β = s∗, from (2.17) we obtain∑
r∗,s∗,i,j,k

hr
∗

ij h
s∗

ki R̃r∗s∗kj =
∑

r∗,s∗,i,k

hi
∗

jrh
i∗

ksR̃r∗s∗kj

=
∑
r,s,i

c− λ
4

(
(hi

∗

sr)
2 − hi

∗

rrh
i∗

ss

)
=
c− λ

4

∑
i

tr Φ2
i∗ =

c− λ
4

∑
i

|Φi∗ |2 ≥
c− λ

4
|Φ|2.

and the lemma is proved.

�
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Lemma 3.5.

−
∑

α,β,i,j,k,l

hαijh
α
klh

β
ijh

β
kl = −

∑
α,β

(tr ΦαΦβ)2 − n2H4 − 2nH2|Φn+1|2.

Proof: If H = 0, we have Φα = −Hα for all α. Hence,

−
∑

α,β,i,j,k,l

hαijh
α
klh

β
ijh

β
kl = −

∑
α,β

(tr HαHβ)2 = −
∑
α,β

(tr ΦαΦβ)2,

which proves the lemma in this case. If H 6= 0, choose a local orthonormal

frame {e1, ..., en, en+1, ..em, ..., e2m+1} such that en+1 = h
H , and thus

−
∑

α,β,i,j,k,l

hαijh
α
klh

β
ijh

β
kl = −

∑
α,β

(tr HαHβ)2

= −
∑

α,β>n+1

(tr ΦαΦβ)2 − 2
∑

α>n+1

(tr (HI − Φn+1)Φα)2

− (tr (HI − Φn+1)2)2

= −
∑

α,β>n+1

(tr ΦαΦβ)2 − 2
∑

α>n+1

(Htr (Φα)− tr Φn+1Φα)2

− (tr (H2I − 2HΦn+1 + Φ2
n+1))2

= −
∑

α,β>n+1

(tr ΦαΦβ)2 − 2
∑

α>n+1

(tr Φn+1Φα)2

− (nH2 + tr Φ2
n+1)2

= −
∑
α,β

(tr ΦαΦβ)2 − n2H4 − 2nH2tr Φ2
n+1

= −
∑
α,β

(tr ΦαΦβ)2 − n2H4 − 2nH2|Φn+1|2.

�

Lemma 3.6.

∑
α,β,i,j,k,l

hαijh
α
ilh

β
jlh

β
kk ≥ −

n(n− 2)√
n(n− 1)

H|Φ|3 + 2nH2|Φn+1|2 + nH2|Φ|2 + n2H4.
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Proof: Note that the inequality is obvious if H = 0. If H 6= 0, we obtain∑
α,β,i,j,k,l

hαijh
α
ilh

β
jlh

β
kk =

∑
α,β

tr Hα tr HαH
2
β

= nH
∑
α

tr Hn+1H
2
α

= nH2
∑

α>n+1

tr (HI − Φn+1)Φ2
α + nH tr (HI − Φ)3

= nH2
∑

α>n+1

tr Φ2
α − nH

∑
α>n+1

tr Φn+1Φ2
α

+ nH tr (H3I − 3H2Φn+1 + 3HΦ2
n+1 − Φ3

n+1)

= nH2
∑

α>n+1

tr Φ2
α − nH

∑
α

tr Φn+1Φ2
α

+ n2H4 + 3nH2 tr Φ2
n+1

= nH2|Φ|2 − nH
∑
α

tr Φn+1Φ2
α + n2H4 + 2nH2|Φn+1|2

Using lemma 3.1, we have

tr Φn+1Φ2
α ≤

n− 2√
n(n− 1)

|Φn+1||Φα|2, (3.11)

and so ∑
α

tr Φn+1Φ2
α ≤

n− 2√
n(n− 1)

|Φn+1||Φ|2. (3.12)

Hence,∑
α,β,i,j,k,l

hαijh
α
ilh

β
jlh

β
kk ≥ −

n(n− 2)√
n(n− 1)

H|Φ|3 + 2nH2|Φn+1|2 + nH2|Φ|2 + n2H4.

�

Lemma 3.7.∑
α,β,i,j,k,r

(hαrjh
β
kr − h

α
krh

β
rj)(h

α
ijh

β
ki − h

α
kih

β
ij)−

∑
α,β,i,j,k,r

hαijh
α
krh

β
ijh

β
kr

≥ −3
2
|Φ|4 − n2H4 − 2nH2|Φn+1|2.

Proof: Note that∑
α,β,i,j,k,r

(hαrjh
β
kr − h

α
krh

β
rj)(h

α
ijh

β
ki − h

α
kih

β
ij) = −

∑
α,β

N(ΦαΦβ − ΦβΦα),
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and

−
∑

α,β,i,j,k,r

hαijh
α
krh

β
ijh

β
kr = −

∑
α,β

(tr(ΦαΦβ))2 − n2H4 − 2nH2|Φn+1|2.

From lemma 3.2, we have

−
∑
α,β

N(ΦαΦβ − ΦβΦα)−
∑
α,β

(tr(ΦαΦβ))2 ≥ −3
4
|Φ|4,

and so

−
∑

α,β,i,j,k,l

(hαikh
β
jk − h

α
jkh

β
ik)(hαilh

β
jl − h

α
jlh

β
il)−

∑
α,β,i,j,k,l

hαijh
α
klh

β
ijh

β
kl

≥ −3
2
|Φ|4 − n2H4 − 2nH2|Φn+1|2.

�

3.1 Proof of the Theorem 1.1

Now, using lemmas 3.3, 3.4, 3.5, 3.6 and 3.7, we get the following result:

Proposition 3.1. Let M̃(c) an (2m + 1)-dimensional λ-Sasakian space form

with structure (ϕ, ξ, η, 〈 , 〉) and M an n-dimensional C-totally real submanifold

with parallel mean curvature vector in M̃(c). If c ≤ λ, then

1
2

∆S ≥ |∇σ|2 − 3
2
|Φ|4 − n(n− 2)√

n(n− 1)
H|Φ|3

+
(
n(c+ 3λ) + c− λ

4
+H2

)
|Φ|2.

(3.13)

Suppose now that M is a closed n-dimensional C-totally real submanifold

with parallel mean curvature vector in M̃(c). From proposition 3.1, we have

0 ≤
∫
M

|∇σ|2dM ≤
∫
M

|Φ|2PH,c,λ(|Φ|)dM, (3.14)

where

PH,c,λ(x) =
3
2
x2 +

n(n− 2)√
n(n− 1)

Hx−
(
n(c+ 3λ) + c− λ

4
+ nH2

)
.

This proves the Theorem 1.1.
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3.2 Proof of the Theorem 1.2

If |Φ|2 ≤ ϑH , we have that PH,c(|Φ|) ≤ 0. Then, follows from Theorem 1.1

that

0 ≤
∫
M

|Φ|2PH,c(|Φ|)dM ≤ 0. (3.15)

Thus, |Φ|2PH,c(|Φ|) ≡ 0. Therefore, |Φ|2 = 0 and M is totally umbilical or

|Φ|2 = ϑH .

If |Φ|2 = ϑH , from (3.15) we have that in all the inequalities of the lemmas

above become equalities. Then, from lemma 3.4, we obtain
∑n
i=1 |Φi∗ |2 = |Φ|2

and m = n. Hence M is minimal by Theorem 1.1 given in [12]. Note that, in

this case

PH,c,λ(|Φ|) =
3
2
|Φ|2 − n(c+ 3λ) + c− λ

4
,

and

S = |Φ|2 =
n(c+ 3λ) + c− λ

6
.

In particular, if c = λ = 1, then M̃(c) is the Sakakian unit sphere S2n+1(1) ⊂
Cm+1 with contact structure induced and S = 2n

3 . Hence, from Theorem 3 in

[10], M is a Veronese surface in S4(1) ⊂ S2m+1(1).

4 Proofs of the Theorems 1.3 and 1.4

4.1 Proof of theorem 1.3

LetM be a n-dimensional C-totally real submanifold in a (2n+1)-dimensional

λ-Sasakian space form M̃(c). We choose a local orthonormal frame

{e1, ..., en, en+1, ..., en, e1∗ = ϕe1, ..., e(n+1)∗ = ϕen+1, ..., en∗ = ϕen, e2n+1 =

ξ}. From [4] follows that

1
2
4 S =

∑
i,j,α

hαij∇ei∇ej (tr Hα) +
n(c+ 3λ) + c− λ

4
S

−
∑
α,β

[
(tr HαHβ)2 + |[Hα, Hβ ]|2 − tr Hβ tr HαHβHα

]
+ |∇σ|2.

(4.1)



100 A. BRASIL G. A. LOBOS M. MARIANO

And the other hand, we have that f is pseudo-parallel if and only if

hαijkl = hαijlk − f
{
δkih

α
lj − δlihαkj + δkjh

α
il − δljhαik

}
, (4.2)

where i, j, k, l = 1, ..., n and α = n + 1, ..., 2n + 1, see [3]. Using (4.2), (2.16),

(2.17), (2.18) and Codazzi equation in (2.33), we get

1
2
4 S =

∑
i,j,α

hαij∇ei∇ej (tr Hα) + nf |Φ|2 + |∇σ|2. (4.3)

Therefore, for a C-totally real f -pseudo-parallel submanifold of a λ-Sasakian

space form of ϕ-sectional curvature c, we have:

0 =
∑
α,β

[
(tr HαHβ)2 + |[Hα, Hβ ]|2 − tr Hβ tr HαHβHα

]
+nf |Φ|2−n(c+ 3λ) + c− λ

4
S

Now, the condition ∇⊥h = 0 in an n-dimensional C-totally real submanifold

M of a (2n + 1)-dimensional λ-Sasakian space form M̃(c) is equivalent to the

condition H = 0. This follows by taking the trace of (2.30), see also [7] in the

special case that λ = 1. Hence, we have that tr Hα = 0, for all α and we get:

0 =
(
nf − n(c+ 3λ) + c− λ

4

)
S +

∑
α,β

[
(tr HαHβ)2 + |[Hα, Hβ ]|2

]
.

If f ≥ (n(c + 3λ) + c − λ)/4n, then tr (HαHβ) = 0, for all α, β. In particular

|Aα|2 = tr H2
α = 0, hence σ = 0. This proves Theorem 1.3.

4.2 Proof of Theorem 1.4

If M is f -pseudo-parallel and ∇⊥h = 0, then we obtain

1
2
4 S = nf |Φ|2 + |∇σ|2.

If f ≥ 0, we get 1
2 4 S ≥ 0. Hence, if M is compact, then we have ∇σ = 0.

This proves our result.
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