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Abstract

In this paper, we prove a generalized integral inequality for an n-
dimensional oriented closed C-totally real submanifold M with parallel
mean curvature vector h in a (2m + 1)-dimensional closed A\-Sasakian
space form M(c) of constant p-sectional curvature ¢ with 0 < ¢ < A,
n > 2 and if a tensor ¢ related to A and the second fundamental form
satisfies a certain inequality. As a consequence we obtain that M is
totally umbilic or minimal with S = (n(c + 3X\) 4+ (¢ — X))/6, which
generalize the Theorem 3 of [10]. Finally, we prove that if M is f-
pseudo-parallel in a (2n + 1)-dimensional A\-Sasakian space form with
f > (n(c+3X)+(c—A))/4n, then M is totally geodesic, which generalize
the Theorem 1 of [13], when A = 1.

1 Introduction

Let M be a (2m + 1)-dimensional manifold and T'(M) the Lie algebra of
vector fields on M. An almost contact structure on M is defined by a (1,1)-
tensor ¢, a vector field ¢ and a 1-form 1 on M such that for any p € M, we
have

@z =-T+n,®&, m(&) =1
where I denote the identity transformation of the tangent space TpM at p.
Then ¢(§) = 0 and o ¢ = 0. Manifolds equipped whit an almost contact
structure are called almost contact manifolds. A Riemannian manifold M with

metric tensor (, ) and an almost contact structure (¢, &,n) such that
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or equivalently

<X790Y>:_<QDX’Y> and <Xa€>:77(X)a

for all X,Y € I'(M), is an almost contact metric manifold. The existence of
an almost contact metric structure on M is equivalent with the existence of a
reduction of the structural group to U(m)x 1, i. e. all the matrices of O(2m+1)

of the form

A B 0
B A 0 |,
00 1

where A and B are real (n x n)-matrices. The fundamental 2-form ¥ of an

almost contact metric manifold (M, g, &, 1, (, )) is defined by
U(X,Y)=(X,pY),

for all X,Y € I'(M), and this form satisfies 7 A U™ # 0. When ¥ = Ldn,
A # 0 the associated structure is a contact structure and M is an almost A-
Sasakian manifold. An almost A-Sasakian manifold (M, ¢, &,n,(, )) is called

a A-Sasakian manifold if

[(pX, oY ]+ @*[X, Y] — o[ X, 0Y] — p[X, Y] = —2dn(X,Y )¢

for all X, Y € T'(M). A necessary and sufficient condition for an almost contact

metric manifold (M, p,&,n, (, )) to be a A-Sasakian manifold is

(Vxe) ¥ = MX, V)€ = n(V) X}, (L1)

for all X,Y € I'(M), where V is the Levi-Civita connection of the Riemannian

metric (, ). Moreover, a A-Sasakian manifold satisfies:
@Xg = _/\@Xv (12)

see [6]. If A =1 a A-Sasakian manifold is a Sasakian manifold [4].
An n-dimensional Riemannian manifold M isometrically immersed in M is

said to be anti-invariant in M if T, M C T,M~* for each p of M, where T, M
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and T, M+ denote respectively the tangent and the normal space to M at p .
Thus, for any vector X tangent to M, ¢X is normal to M. In this case, ¢ is
necessarily of rank 2m and hence n < m + 1. An n-dimensional Riemannian
manifold M isometrically immersed in M is said to be C-totally real if € is a
normal vector field to M. Recall that a direct consequence of this definition
is that M is a anti-invariant submanifold in M and n < m . A plane section
o in TpM of a A-Sasakian manifold is called a (-section if it is spanned by X
and X, where X is a unit tangent vector field orthogonal to £. The sectional
curvature k(o) with respect a p-section o is called a @-sectional curvature. In
this paper a A-Sasakian manifold M complete simply connected with constant
p-sectional curvature c¢ is called a A-Sasakian space form and is denoted by

M (c). The curvature tensor R of M(c) is given by [9]:

R )2 =T vz 4 A o2y
—9(Y)(Z2)X + (X, Z)n(Y)E — (Y, Z)n(X)¢ (1.3)

(Y, Z)pX — (pX, Z)pY — 2{pX,Y)pZ},
where X AY is the operator defined by (X AY)Z =(Y,Z)X — (X, 2)Y.
Example 1.1. [}/ Let R*™*! be a Euclidean space with cartesian coordinates

(x%,9%, 2). Then a 1-Sasakian structure on R*™+1 is defined by (¢o,&,n,g) such
that

9 1 S 1 - i i
522%, nzi(dz—Zydx), 921(77®77+Z((d$)2+(dy)2))
i=1 i=1
and the tensor field pg is given by matriz
0 45 O
—6;; 0 0
0 ¥ 0

With such a structure, R*™+1 is of constant @-sectional curvature —3 and

denoted by R*mT1(-3).
Example 1.2. [1] For 0 € (0,7/2), the immersion

F(u,v,w,s,t) =2(u,0,w,0,vcosf,vsinb, scosfssin b, t),
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defines a 5-dimensional submanifolds M in R%(—3). We consider on M the
induced almost contact structure (¢,€,1,g), where p = (secO)T, T being the
tangential component of pg. It can be checked that (Vx )Y = cosf(g(X,Y)E—
n(Y)X), for any vector fields X,Y tangent to M, which means that M is a -
Sasakian manifold with A = cos 0 € (0,1).

For other examples, we refer to [2].

The purpose of present paper is to study n-dimensional C-totally real sub-
manifolds M, with parallel mean curvature in A-Sasakian space form M (¢).

It is we need consider ® : T,M x T,M — T,M + a bilinear map defined as
follows: choose an orthonormal frame {e,41, ..., €2m+1} of T, M L and for each

a=n+1,...,2m+ 1, define maps ®, : T,M — T,M by
DX = (h,eq)X — A X, (1.4)

where h is the mean curvature vector and A._’s are the shape operators. Then
® is given by
O(X,Y) =) (2aX,YV)eq. (1.5)

[e3

Therefore both ® and |®| not depend on the choice of {e,}, moreover, if S be

the squared norm of the second fundamental form of M, then

B° =) " tr (®4)* = S — nH?, (1.6)

where H = |h|. We recall that |®|?> = 0 if and only if M is totally umbilic;
H = 0 if and only if M is minimal; and S = 0 if and only if M is totally
geodesic. We remark that the immersion F' in the example (1.2) defines a
5-dimensional minimal submanifold M in an 1-Sasakian space form R%(—3).

Now, for any H € R, we define the polynomial Pg . x by

-2
Py a(x) = 33?2 + MHJU - (

n(c+3\)+c— A
== +
2 n(n—1)

4

nHQ) . (L7

Denoting by 9y the square of the positive root of P . x(z) = 0, our results

can be stated as:
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Theorem 1.1. Let M be an n-dimensional oriented complete closed C-totally
real submanifold with parallel mean curvature vector in a closed A\-Sasakian

space form M(c), n>2 and 0 < ¢ < \. If |®|? <9y on M, then
| 2P Paca(@hiar >0 (1)
M

As a consequence Theorem 1.1 , we get:

Theorem 1.2. Let M be an n-dimensional oriented complete closed C-totally
real submanifold with parallel mean curvature vector in a closed A-Sasakian
space form M(c), n > 2 and 0 < ¢ < X\. If |®|* < 9y on M, then either M
is totally umbilical or m = n and M is minimal, non-totally geodesic. In this

case,

S = %{n(c—FS)\) +c— AL

In particular, if c = A =1, then M is either a totally geodesic submanifold or

a Veronese surface.

A submanifold M is f-pseudo-parallel if its second fundamental form o

satisfies the following condition

RX,)Y) - oc=fXAY -0,
for some real valued smooth function f on M and for any X and Y vectors
tangent to M, where R(X,Y) is the curvature operator of the Van der Waerden-
Bortolotti connection V of M, which with the operator X AY act on o as a

derivation [3]. We prove a result that generalize the Theorem 1 of [13].

Theorem 1.3. Let M be an n-dimensional C-totally real submanifold with
parallel mean curvature vector in a (2n+1)-dimensional A\-Sasakian space form
M(c). If M is f-pseudo-parallel and f > (n(c + 3\) + ¢ — \)/4n, then M is
totally geodesic.

Finally, we get the following results for closed f-pseudo-parallel submani-

folds with parallel mean curvature vector in a A-Sasakian space form.
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Theorem 1.4. Let M be an n-dimensional closed C-totally real submanifold
with parallel mean curvature vector in a (2m+1)-dimensional A\-Sasakian space
form M(c) If M is f-pseudo-parallel and f > 0, then M 1is parallel, i.e.
Vo = 0.

Corollary 1.1. Let M be an n-dimensional closed C-totally real submanifold
with parallel mean curvature vector in a (2n+1)-dimensional A-Sasakian space

form M(c) If M s f-pseudo-parallel and f > 0, then M is totally geodesic.

2 Preliminaries

Let M(c) be a (2m + 1)-dimensional A-Sasakian space form with structure
(p,&,n,(, ) and M an n-dimensional C-totally real submanifold (n < m). As
usual, V (resp. V) be the Riemannian connection with respect to (, ) (resp.
{, )|ar) and V+ the connection in the normal bundle on M. These connections
are related by the Gauss and the Weingarten formulas

VxY = VxY +0(X,Y),

. (2.1)

VxN= —AyX + V%N,
for any X,Y vectors tangent to M and any N vector normal to M, where Ay
is the shape operator (which is auto-adjunt) in the direction N and o is the
second fundamental form on M. The shape operator and second fundamental
form are related by

(ANX,Y) = (o(X,Y), N). (2.2)

Let R, R and R* the curvature tensors of v, V and V*, respectively. Then,

the Gauss and the Ricci equations are given by

(RIX,Y)Z,W) = (R(X,V)Z,W) + (a(X,W),0(Y, 2))
_<U(X’ Z)’ U(K W)>7

(RH(X,Y)Ny, Ny) = (R(X,Y)Ny, No) + ([An,, An,], Y). (2.4)
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The Codazzi-Mainardi equation is
(Vo)(X,Y,Z) = (Vo)(X,Z,Y), (2.5)

where Vo is the first covariant derivative of o is defined by

(Vo)(X,Y,Z) = (Vz0)(X,Y)

(2.6)
= Vzlo(X,Y)] - 0(VzY,X) - a(Y,V2X),
and the second covariant derivative is defined by
(Vo) (X, Y. 2W) = (VwVz0)(X.Y)
= Vipl(Vz0)(X,Y)] = (Vz0)(VwX,Y) (2.7)
—(Vz0)(X,VwY) — (vnga)(X, Y).
Then, we have
RH(X,Y)[o(Z,W)] = (VxVyo)(Z,W)— (VyVxo)(Z,W)
(2.8)

+o(R(X,Y)Z, W) +0o(Z,R(X,Y)WV).
In this work we use the following convention of index:
1<AB,C,---<2m+1,
1<i4,5,k---<n, "=m+r,
n+l1<apfB,7--<2m+1.

As M is a C-totally real submanifold, we can choose a local orthonor-
mal frame {ey,...,en,€ni1, ..., €m, 1% = DLy s E(np 1) = PCrtlyees Epr =
©em, €ame1 = £} in M(c) such that {e;} at each point of M span the tan-
gent space of M.

Let {wa} be the dual of {e4} and let {wap} be the connection 1-forms of

M (¢). Then the structure equations of Cartan are given by

de:—ZwAB Awp, wap+wpa =0, (2‘9)
B
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1 _
deB:;wAc/\wCB—I—iCZDRABCD wo Nwp. (2.10)

The (wap) is a real representation of a skew-Hermitian matrix. Hence

Wixj = Wijxj. (211)
Moreover,
Wij = Wi jx and Wi = —wi(2m+1). (212)
Thus, we have along M that
wq =0,
which implies 0 = dwq = — >, wa; A w; along M. From Cartan’s Lemma, we
write
Zh wj, gy =h, (2.13)

where hf; denoted the components of second fundamental form o, that is
he; = (Ac.€irej) = (o(ei,€5), eq). (2.14)
Therefore, from (2.11) and (2.2) we have

hiy, = hl, = bt

13

hi = 0. (2.15)

From (1.3), we get

~ c+ 3\
Rijii = 1 (0051 — 8310k), (2.16)

an

c— A . . .
1 (0ixdj1 — 0qdji), if a=1i* B=j%
Rogr = (2.17)

0, otherwise,

where (e;, e;) = d;;. Using (2.16) in (2.3), we obtain

Riji = T(5ik5jl — k) + Z (h§hSy — h§hSy) (2.18)

and subtituting (2.17) in (2.4), we get
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c— A\

8k — dadn) +Z(h Bk i a=i 8=

Z (thhrl - hrlhrk) »  otherwise.

T

L
Raﬁkl =

(2.19)

Let S be the squared norm of second fundamental form, h denote the mean

curvature vector field and H the mean curvature of M, that is

S=> (h)? h= %Z (Z h;ﬁ) eas H=|h. (2.20)

a,i,J
The Ricci curvature tensor {Ry;} and the scalar curvature K are expressed,

respectively, as follows:

Rkl = ¢ Z3>\ (Tl — 1)5kl + Z <Z hz) Zhlﬂ il (221)

c+ 3\
4

The components of the covariant derivative of o are given by

K =

n(n — 1)+ (n*H? - S). (2.22)

?jk = <(v ) (6"76J 6a> VSk i) (223)

hence, the square of the length of third fundamental form of M is given

Vo> = > (hi)" (2.24)
a,i,g,k
The components of the second covariant derivative of ¢ are given by

h%‘kl = <(v61vek0) (eiaej>veoc> = vez h?jk: = vmvwh?j- (2.25)

Hence, we get

Z h%kwk = dha Z h, rWri — Z hzrw’l“j + Z h’ljwaﬁ7 (226)
k
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o | NoY a L o .
E hijklwl _dhijk - E hrjkw” E heykwrj
l T r

(2.27)
=D hipn + 3 Wy,
r B
From (2.5), we have
ik — hie; =0, (2.28)
and by (2.8), we obtain the following Ricci formula
e — B =Y B Rk + Y B Rojis — Y B Rigy. (2.29)
T T Jé]
From (2.12), (2.11) and (2.26), we get
2m+1 k*
hijk+ =—hi;. (2.30)

The Laplacian Ahg; of hg; is defined by Ay = > hehyy = > hityp. Using
(2.28) and (2.29), we obtain

ARg = Z hig Ryiji + Z hyi Rk — Z Wi Rapr;
k,r kr k.p

=D (0, Reijie + 1 Rongne) + D Wi Raps

k,r k.8 (2.31)
B 18 1,8 B8 18 B 1B
+ Z (hm'hrjhkk + 2h(]:rh’rjhik - hzrhkrhij
r.k,a
= hihi by — B,
Since
1 «@ « [e% 2
oi,g 5,5,k
we have
1 a \2 ara p ara p
§AS= Z (h5k)” + Z (hihi Ryigr + hishe; Regik)
a,i,j,k a,i,j,k,r
+ Z h%hgiRaﬁkj_ Z h% %rh?jhir
«a,B3,i,7,k a,B3,4,7,k,r (233)
+ > gkl by,
a,B,1,5,k,r

— > (hhy — Bl (RS R, — Rkl

a,B,i,5,k,r
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We remark that (2.31) and (2.33) can be found by specialising the result of [8]

to this case.

3 Estimates and proofs of Theorems 1.2 and 1.3

Now, we assume that the mean curvature vector h of M is parallel (i.e.,
VLh =0), and M is a complete submanifold in M (c).

In this section ®, denoted the matrix (®f;), where ®¢; = (®,e;,¢;). Note
that to H = 0 (i.e., M is minimal submanifold), we get ®, = —H,, for all a,
where H, is the matrix (h;). If H # 0, we choose a local orthonormal frame

{e1, .-y €n, €nt1, e, €m, .o, €23m+1} such that e, 1 = % With this choose
Opyy = HI — Hypq, = Hy, a#n+1, (3.1)
where I = (0;5). Since en41 is a parallel direction,

HoHpiy = Hyp1Ho, Wognyn) =0 and Y Ay, =0 (3.2)
k

In this case, we obtain

tr Hypr =nH, trHy =0, a#n+1 and R{, ., =0 (3.3)

Furthermore,
|1 |? = tr H2, —nH?, (3.4)

2
> lea= > (h5) (3.5)
a#n+1 B#Nn+1
and

tr &, =0, (3.6)

for all a. Thus,
S=> |0 (3.7)

Now, we need the following algebraic lemmas:
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Lemma 3.1. [11] If A and B are two symmetric linear maps of R™ with
AB—BA=0andtr A=tr B=0. Then

[tr A%B| < Mtr A*Vtr B2 (3.8)

Vvn(n—1)

and the equality holds if only if n—1 of eigenvalues x; of A and the correspond-
ing eigenvalues y; of B satisfy

Y =

tr B2
2 (e wm )

Lemma 3.2. [5, 10]. Let Ay, Ao, ..., A be symmetric (n X n)-degree matrices,
where k > 2. Denote L;; = tr AZ-AE» and L = L1y + Los + ... + L. Then

D {N(AA; — AjA) + (Ly)*} < ng’ (3.9)
where N(A) = tr AAY, for all matriz A.

The ideas used for proving the following lemmas are analogous to that found

in [8].

Lemma 3.3.

3\
C+4 n|®2. (3.10)

Z (h%h?kérijk + h?jh?jé’rkik) =

i,k

Proof: Fix a vector e, and let {e;} be a local orthogonal frame on M such

that the matrix H, (resp. ®,) takes the diagonal form with h; = uf*d;; (resp.

.
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O3 = A\{'6ij, where AY = (h,eq) — ). Then, of (2.16) we get

> (B Ryiji + Wb Rogin) = Y (18 Rcian, + (1) Rini)

i,9,k,r ik
= Z((H?)Q - M?N%)Rikik
ik
= Y () = AP Rk
ik
= +43/\n tr @i
_ C—ZB/\n|¢’a|2.
Hence
~ ~ c+ 3\
> (hhe Ryiji + heshe Rogir) = 1 n|®|?.
a,t,7,k,r
O
Lemma 3.4. If ¢ < )\, then
a1 B 7 c—A
> Wk Ragr > 1 D[,

a,B,i,5,k
Proof: As M is a C-totally real submanifold, we can choose a local orthonor-
mal frame {e1,...,€n, €ni1, s Cmy €1 = Q€1 .oy €(nt1)s = Plnilyeess Cms =
©em,€ami1 =€} in M(c). If a# r* or § # s*, then from (2.17) we have
> hhy Rapr; = 0.
a,B3,i,7,k
If = r* and § = s*, from (2.17) we obtain
Z h:j* Z:RT*S*IW = Z h;:' ;;RT’*S*I"J'

r*,s%*,1,5,k r*,s* 1,k

> (s - v

S—Z)\ —A
:C4 zi:tlﬂbf :C4 zl:\(bz*

and the lemma is proved.

2> Q@F.
4
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Lemma 3.5.

- Z hij %zh?jhfz == Z(tr <I>a<I>ﬁ)2 —n?H* — 2nH*|®,1|%.
o, B,i,5,k,1 .p

Proof: If H =0, we have &, = —H,, for all a. Hence,

— > REhphhg == (tr HoHg)? = =) (tr ®,Dp)7,

a,B,i,5,k,1 a,p a,p

which proves the lemma in this case. If H # 0, choose a local orthonormal

frame {e1, ..., €n, €nt1,--€m, oo, €241} such that e, 41 = %, and thus

— Y hGhERLRY = = (tr HoHg)?
a,B3,4,3,k,l 6

= — Z (tI‘ <I>a<I>,g)2 -2 Z (tI‘ (HI— (I)n—i-l)q)a)Q

a,B>n+1 a>n+1
— (tr (HT = By41)2)

= ) (tr2a®p)’ -2 Y (Hir (D0) — tr $py1®a)’
a,f>n+1 a>n+1

— (tr (H*I —2H®,41 + ®2,,))?
= ) (tr2a®p)’ =2 Y (tr By ®a)’

a,B>n+1 a>n+1
— (nH? +tr 2,,)?

=) (tr ®®p)* — n*H* — 2nH’tr O,
o3

= =) (tr ®a®p)* —n’H* — 2nH?| Py i1 .
o3

Lemma 3.6.

n(n —2)

5 H|®P? +2nH?|®, 41 |? + nH?|®)? + n?H*.
o

5,8
> hGRGR G = —
NERAY
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Proof: Note that the inequality is obvious if H = 0. If H # 0, we obtain

> hGhGhO R = > tr Hy tr HoHj
a,B,i,5,k,l a,p

=nH» tr H, H;

=nH? Y tr (HI — 0p41)®% +nH tr (HI — 0)°

a>n+1
=nH? > tr®2—nH Y tr®, P
a>n+1 a>n+1

+nH tr (HI —3H*®,41 +3H®Z,, — D))
= nH? Z tr ®2 — nHZtr B,p P2

a>n+1 «
+n?H* 4 3nH? tr <I>3L+1
= nH?|® —nH Y tr O, 102 + n’H* + 2nH?|0;, 44|
«

Using lemma 3.1, we have

-2
tr B @2 < — e (B, [|Pa?, (3.11)
Vn(n—1)
and so
2 n—2 2
>t B @) < ——— |0y [P (3.12)
- Vn(n—1)
Hence,

-2 .
> hGhGhO R, > —MH@P+2nH2|<I>n+1|2+nH2|<I>|2+n2H4.

,Bi,4ksl - vnn—1)

O

Lemma 3.7.

N v 1 3 B3B8
Z (h'(rljhfr - (lzrhfj)(h?jhki - gihij) - Z h%‘ ;:rhijhkr
a,B3,1,5,k,r a,B3,1,5,k,r

3
> —§|<1>|4 —n?H* = 2nH?|®, 1%

Proof: Note that

ST (. = b ) (W — hishl) = =) N(@a®p — ®pd,),
a,B,1,7,k,r a3



98 A. BRASIL G. A. LOBOS M. MARIANO

and
— > hGRBLRL == (tr(®a®p))® — n?H* — 2nH? (@, 44 7.
«a,B3,i,7,k,r a,3

From lemma 3.2, we have

3
_ _ _ 2>_7 4
3N~ ) = 3 r @) 2

and so

— (WS = BSBE) (hGRS — kSR — > RS hy ki kg,
a,B3,i,5,k,l a,B3,i,5,k,l

3
> —§|<I’|4 —n?H* = 2nH?|®, 1%

3.1 Proof of the Theorem 1.1

Now, using lemmas 3.3, 3.4, 3.5, 3.6 and 3.7, we get the following result:

Proposition 3.1. Let M(c) an (2m + 1)-dimensional \-Sasakian space form
with structure (v, &,m,(,)) and M an n-dimensional C-totally real submanifold

with parallel mean curvature vector in M(c) If ¢ < )\, then
-2

n(n—1) (3.13)

3\ - A
F(HE N Y g

1 = 3
SAS > [Vo|” - Z|al* -
SAS > [Vol? - 5[]

Suppose now that M is a closed n-dimensional C-totally real submanifold

with parallel mean curvature vector in M (c). From proposition 3.1, we have

0< / Vol2dM < / |0 Prg.ox(1B])dM, (3.14)
M M

where

-2 A - A
PH,C,,\(x):;ﬁ—l—MHx— (n(c+3 ) +e +nH2>.

n(n—1) 4

This proves the Theorem 1.1.



C-TOTALLY REAL SUBMANIFOLDS 99

3.2 Proof of the Theorem 1.2

If |®]? < Iy, we have that Py .(|®]) < 0. Then, follows from Theorem 1.1
that
0< / |®|? Py (|®])dM < 0. (3.15)
M

Thus, |®2Py (|®|) = 0. Therefore, |®|> = 0 and M is totally umbilical or
| =

If |®|? =Yg, from (3.15) we have that in all the inequalities of the lemmas
@2

above become equalities. Then, from lemma 3.4, we obtain » " | [®; 2=
and m = n. Hence M is minimal by Theorem 1.1 given in [12]. Note that, in

this case
n(c+3\) +c—A
4 b)

3
P x(|®]) = §|‘I’|2 -

and

n(c+3\) +c— A
G :

In particular, if ¢ = A\ = 1, then M(c) is the Sakakian unit sphere S2"+1(1) C

= \¢>|2 =

C™*+! with contact structure induced and S = %” Hence, from Theorem 3 in

[10], M is a Veronese surface in S*(1) C S?™+1(1).

4 Proofs of the Theorems 1.3 and 1.4
4.1 Proof of theorem 1.3

Let M be a n-dimensional C-totally real submanifold in a (2n+1)-dimensional
A\-Sasakian space form M(c). We choose a local orthonormal frame
{61, vy €ny 6n+1, ey €py, €1 = <p61, ceey €(n+1)* = <P€n+17 ceey Epx = (p@n, 62n+1 =

¢}. From [4] follows that

n(c+3X\) +c— A

—AS D hi Ve Ve (tr Ha) + | S
3,5,a
— > [(tr HoHpg)? + |[Ha, Hg)|* — tr Hp tr HoHgH,| + [Vo .
a,B

(4.1)
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And the other hand, we have that f is pseudo-parallel if and only if
hise = hisie — f {5kz — O1ihyj + Okjhi) — Siihs ), (4.2)

where 4,5, k,l =1,..,nand a =n+1,...,2n + 1, see [3]. Using (4.2), (2.16),
(2.17), (2.18) and Codazzi equation in (2.33), we get

—AS Zhav V., (tr Hy) +nf|®* + [Vo|>. (4.3)
,0,00

Therefore, for a C-totally real f-pseudo-parallel submanifold of a A-Sasakian
space form of p-sectional curvature ¢, we have:

nlc+3X)+c—A

1 S

0= [(tr HoHp)? + |[Ha, Hp]|* — tr Hp tr Ho HgHo|+nf|®[*~
o,B

Now, the condition V+h = 0 in an n-dimensional C-totally real submanifold
M of a (2n + 1)-dimensional \-Sasakian space form M (c) is equivalent to the
condition H = 0. This follows by taking the trace of (2.30), see also [7] in the
special case that A = 1. Hence, we have that tr H, = 0, for all @ and we get:

_ (nf n(C+3>\i+c)\) S+Zﬁ [(tr HaHﬁ)2+|[Ha7Hﬂ]|2]-

If f> (n(c+3X) +c— A)/4n, then tr (H,Hg) = 0, for all o, 5. In particular
|Aa|? = tr H2 =0, hence o = 0. This proves Theorem 1.3.

4.2 Proof of Theorem 1.4
If M is f-pseudo-parallel and V-+h = 0, then we obtain
1 _
3 A S =nf|®]* + Vol

If f >0, we get % A S > 0. Hence, if M is compact, then we have Vo = 0.

This proves our result.
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