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SINGULARITIES OF THE RICCI FLOW ON
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H.-D. Cao

Dedicated to Professor Manfredo do Carmo on the occasion of his 80th birthday

Abstract

We present an overview of the singularity formation of the Ricci flow
on 3-manifolds. The article, is the written version of the talks I gave
at the BIRS Workshop on Geometric Flows in Mathematics and Physics
(Banf, April 13-18, 2008), and at the XV Brazilian School of Differential
Geometry (Fortaleza, July 14-18, 2008) in honor of the 80th birthday of
Manfredo do Carmo.

In 1982, Hamilton [23] introduced the Ricci flow

∂gij
∂t

= −2Rij

to study compact three-manifolds with positive Ricci curvature. The Ricci

flow, which evolves a Riemannian metric by its Ricci curvature, is a natural

analogue of the heat equation for metrics. As a consequence, the curvature ten-

sors evolve by a system of diffusion-reaction equations which tends to distribute

the curvature uniformly over the manifold. Hence, one expects that the initial

metric be improved and evolve into a more canonical metric, thereby leading to

a better understanding of the topology of the underlying manifold. Indeed, in

the celebrated paper [23] Hamilton showed that on any compact three-manifold

with an initial metric of positive Ricci curvature, the Ricci flow, after rescaling

to keep the constant volume, converges to a metric of positive constant sec-

tional curvature, implying that the underlying manifold is diffeomorphic to the

three-sphere S3 or a quotient of S3 by a linear group of isometries. However, on
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general 3-manifolds the Ricci flow could develop singularities. Understanding

the singularities of the Ricci flow is not only an essential step in proving the

geometrization of 3-manifolds, but also of great significance in geometric anal-

ysis and nonlinear PDEs in general. In this article, we shall outline Hamilton’s

theory of singularity formation and Perelman’s singularity structure theorem

in the Ricci flow on 3-manifolds.

1 The Ricci Flow

Given a complete Riemannian manifold (Mn, gij), Hamilton’s Ricci flow

∂gij(t)
∂t

= −2Rij(t), (1.1)

with the initial metric gij(0) = gij , is a system of second order, nonlinear,

weakly parabolic partial differential equations. The degeneracy of the system

is caused by the diffeomorphism group of the underlying manifold Mn which

acts as the gauge group of the equation: if gij(t) is a solution to (1.1) and φ is

a diffeomorphism of Mn, then the pull-back g̃ij(t) = φ∗gij(t) is also a solution

to (1.1).

1.1 Short time existence and uniqueness

If Mn is compact, then for any initial metric gij the Ricci flow (1.1) admits a

unique solution gij(t) for a short time. This short-time existence and unique-

ness theorem was first proved by Hamilton [23] using the sophisticated Nash-

Moser implicit function theorem. One year later, a simpler proof was given by

De Turck [19] (see also an improved version by him in [9]) using the idea of

gauge fixing. When Mn is noncompact, W.-X Shi [42] established the short-

time existence under the assumption that the initial metric gij has bounded

curvature |Rm| ≤ C, while B.-L. Chen and X.-P. Zhu [12] recently showed the

uniqueness in the class of complete solutions with bounded curvature.
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1.2 The evolution of curvatures

Since the most important geometric quantity is the curvature tensors, it is

important to know how the curvature tensors evolve and behave under the

Ricci flow.

The (Riemannian) curvature tensor Rm = {Rijkl}, when viewed as an

endomorphism Rm : Λ2(M) → Λ2(M) on the space of 2-forms, satisfies the

evolution equation
∂

∂t
Rm = ∆Rm+Rm2 +Rm#, (1.2)

where Rm2 is the matrix square of Rm, and Rm# is a certain square of Rm

involving the structure constants of the Lie algebra so(n). The evolution equa-

tions for the Ricci tensor Rij and the scalar curvature R are given, respectively,

by

∂

∂t
Rik = ∆Rik + 2RijklRjl,

and

∂R

∂t
= ∆R+ 2|Rij |2.

For example, for n = 3, if we diagonalize

Rm =

 λ
µ

ν

 ,

so that λ ≥ µ ≥ ν are the principal sectional curvatures, then the Ricci tensor

Rc =

 λ+ µ
λ+ ν

µ+ ν


and the scalar curvature

R = 2(λ+ µ+ ν).
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Moreover,

Rm2 =

 λ2

µ2

ν2

 and Rm# =

 µν
λν

λµ

 .

In particular, the ODE corresponding to the evolution PDE (1.2) of Rm (in

the space of 3× 3 matrices) has a relatively simple form
d
dtλ = λ2 + µν,

d
dtµ = µ2 + λν,

d
dtν = ν2 + λµ.

The parabolic nature of the Ricci flow yields many nice properties, such as

Shi’s local derivative estimate [42] (cf. Theorem 1.4.2 in [10]), which gives

the bound on the derivatives of the evolved curvature |∇kRm|(x0, t0) at any

point (x0, t0) in space-time in terms of the bound of the curvature |Rm|(x, t) in

a parabolic neighborhood of (x0, t0). Hamilton [23, 24] also developed important

maximum principles for the Ricci flow, including the maximum principle

for tensors (cf. Lemma 2.1.3 in [10]), the strong maximum principle (cf.

Theorem 2.2.1 in [10]) and the advanced maximum principle (cf. Theorem

2.3.1 in [10]). In particular, the positivity of various curvatures are preserved.

For example:

(a) The scalar curvature R ≥ 0 is preserved in all dimensions.

(b) The Ricci curvature Rc ≥ 0 is preserved in dimension three [23].

(c) The curvature operator Rm ≥ 0 is preserved in all dimensions [24].

1.3 Long time convergence results in n = 2 and n = 3

On any compact Riemann surface M2, Hamilton [25] showed that the solution

to the normalized Ricci flow (i.e., after rescaling to keep constant area) exists

for all time, and converges to a metric of constant Gaussian curvature provided

the Euler number χ(M2) ≤ 0 or the initial metric has positive curvature R > 0
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when χ(M2) > 0. Subsequently, B. Chow [15] proved that starting with any

metric on the (topological) 2-sphere, the Ricci flow will evolve it to a metric

of positive curvature R > 0 after a short time. Thus, the works of Hamilton

[25] and Chow [15] imply that on any compact Riemann surface, the solution

to the normalized Ricci flow converges to a metric of constant curvature.

For dimension n = 3, as we mentioned in the beginning, Hamilton [23]

showed that for any compact three-dimensional Riemannian manifold (M3,

gij) with positive Ricci curvature Rc > 0, the Ricci flow exists on a maximal

time interval 0 ≤ t < T (T < ∞) such that Ricci curvature remains positive

Rc(t) > 0 and (M3, gij(t)) shrinks to a point as t → T . If we rescale gij(t)

to keep constant volume, then the normalized solution exists for all time and

converges to a metric of positive constant (sectional) curvature.

Remark 1.1 It was not known before Hamilton’s work [23] that a 3-manifold

of positive Ricci curvature admits a metric of constant positive sectional cur-

vature (which is equivalent to Einstein in n = 3). So in this case the Ricci flow

actually finds the canonical metric without a priori knowing it exists or not.

This illustrates the sheer power of the Ricci flow.

Remark 1.2 Various higher dimensional differentiable sphere theorems have

also been proved by using the Ricci flow, e.g., Hamilton [24], H. Chen [14], and

Börm-Wilking [2] for manifolds with positive curvature operator and 2-positive

curvature operator; Brendle-Schoen [3] for manifolds with 1/4-pinched sectional

curvatures, proving a long standing conjecture in Riemannian geometry.

2 Special Solutions: Einstein Metrics and Ricci
Soltons

To help the readers to develop some feel of the Ricci flow, we examine two

special classes of solutions: Einstein metrics and Ricci solitons.
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2.1 Exact solutions I: Einstein metrics

When the initial metric gij is an Einstein metric, i.e.,

Rij = ρgij

for some constant ρ, the solution gij(t) to the Ricci flow is given by

gij(t) = (1− 2ρt)gij .

For simplicity, we can normalize ρ = 0, 1/2 or −1/2. Thus we see that

• Ricci flat metrics are stationary solutions

If ρ = 0, i.e., the initial metric gij is Ricci flat, then

gij(t) = gij (2.1)

for all t ∈ (−∞,∞). This happens, for example, on a flat torus or a

K3-surface with a Calabi-Yau metric.

• Positive Einstein metrics shrink homothetically

If ρ = 1/2, then

gij(t) = (1− t)gij , (2.2)

which shrinks homothetically as t increases. Moreover, the curvature

blows up like 1/(1 − t) as t → 1. Note that gij(t) goes back in time all

the way to −∞, an ancient solution. This happens, for example, on

round spheres Sn which shrink to a point in finite time.

• Negative Einstein metrics expand homothetically

By contrast, if ρ = −1/2 then

gij(t) = (1 + t)gij

expands homothetically as t increases and the curvature falls back to zero

like −1/t as t→∞. Note that now gij(t) only goes back in time to −1,
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when the metric explodes out of a single point in a ”big bang”. This

happens, for example, on hyperbolic spaces.

In particular we see that under the Ricci flow, metrics expand in directions

of negative Ricci curvature and shrink in directions of positive Ricci curvature.

2.2 Exact solutions II: gradient Ricci solitons

A complete metric gij on Mn is called a gradient Ricci soliton if there exists

a smooth function f such that the Ricci tensor Rij of gij satisfies the equation

Rij +∇i∇jf = ρgij

for some constant ρ, where ∇i∇jf is the Hessian of f and f is called a poten-

tial function. For ρ = 0, the Ricci soliton is steady, for ρ > 0 it is shrinking,

and for ρ < 0 it is expanding. If f is a constant function, then we get an

Einstein metric. As we shall see later, shrinking and steady Ricci solitons often

arise as limits of dilations of singularities in the Ricci flow.

Similar to Einstein metrics, Ricci solitons give rise to special solutions to

the Ricci flow. For example,

• Let gij be a steady gradient Ricci soliton and ϕt the one-parameter group

of diffeomorphisms generated by the vector field ∇f . Then

gij(t) = φ∗t gij (2.3)

is a solution to the Ricci flow. Thus gij(t) moves along the Ricci flow sim-

ply under a one-parameter subgroup of diffeomorphisms, the symmetry

group of the Ricci flow, hence the name steady Ricci soliton.

• Similarly, a shrinking gradient Ricci soliton gij , with ρ = 1/2, gives rise

to the self-similar solution

gij(t) = (1− t)ϕ∗t gij (t < 1) (2.4)
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to the Ricci flow, where ϕt is the 1-parameter family of diffeomorphisms

generated by ∇f/(1− t).

Remark 2.1 The reader may wish to compare (2.3) with (2.1), and (2.4) with

(2.2).

2.3 Examples of 3-D shrinking Ricci solitons

• Quotients of round 3-sphere S3/Γ

The round 3-sphere S3, or any its metric quotient S3/Γ, is clearly a (com-

pact) shrinking soliton. Note that under the Ricci flow it shrinks to a

point in finite time.

• The round cylinder S2 × R

The round cylinder S2 × R (or either of its two Z2 quotients) is a (non-

compact) shrinking soliton. Under the Ricci flow, it shrinks to a line in

some finite time.

Remark 2.2 According to Hamilton [25] (n = 2) and Ivey [31] (n = 3), there

are no compact shrinking solitons in dimensions n = 2 and n = 3 other than

the round sphere (and its quotients). Also, as will be described in Section 5,

the only complete noncompact nonflat 3-dimensional gradient shrinking solitons

are the round cylinder S2 × R and its Z2 quotients [8].

Remark 2.3 There do exist both compact and noncompact (non-Einstein) shrink-

ing gradient solitons for n ≥ 4. So far they are all Kähler.

Koiso [33] and the author [6] independently constructed a U(2)-invariant

(compact) gradient shrinking Kähler soliton on CP 2#(−CP 2), the below-up of

the complex projective plane at one point. Later, X.-J Wang and X.H. Zhu

[43] found a (compact) gradient Kähler shrinking soliton on CP 2#2(−CP 2)

which has U(1)×U(1)-symmetry. More generally, Koiso and the author found

U(m)-invariant Kähler shrinking solitons on twisted projective line bundle over
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CPm−1 (m ≥ 2), while Wang-Zhu proved the existence of gradient Kähler

shrinking solitons on all Fano toric varieties of complex dimension m ≥ 2 with

non-vanishing Futaki invariant. Feldman-Ilmanen-Knopf [21] found complete

noncompact U(m)-invariant gradient shrinking Kähler solitons on certain

twisted complex line bundles over CPm−1 (m ≥ 2) which are cone-like at in-

finity. See also the recent work of Dancer-Wang [18] for further examples.

2.4 Examples of steady Ricci solitons

• The cigar soliton Σ

The cigar soliton Σ is defined on R2 with the metric

g0 = ds2 =
dx2 + dy2

1 + x2 + y2
.

It has positive curvature,

R = 1/(1 + x2 + y2) > 0,

the linear volume growth, and is asymptotic to the flat cylinder at infinity.

The corresponding solution g(t), −∞ < t <∞, is given by

g(t) =
dx2 + dy2

e2t + x2 + y2
= φ∗t g0,

where φt(x, y) = (e−tx, e−ty). Thus, under the Ricci flow the whole

picture of the cigar soliton looks the same at each time, but a point

p0 = (x0, y0) ∈ Σ at time t0 will be moved radially towards the origin to

p1 = (e−(t1−t0)x0, e
−(t1−t0)y0) ∈ Σ at a later time t1 > t0.

• The product Σ× R

Clearly, the product Σ × R of the cigar soliton with the real line is a

three-dimensional steady Ricci soliton with nonnegative curvature. Note

that the volume has quadratic growth and the curvatures decay to zero

at infinity.
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• The Bryant soliton

Bryant found a complete rotationally symmetric gradient steady Ricci

soliton on Rn (n ≥ 3) which has positive curvature and opens like a

paraboloid: the sphere Sn−1 at geodesic distance s from the origin has

radius on the order
√
s. The geodesic ball B(O, s) centered at the ori-

gin with radius r has volume growth on the order of s(n+1)/2, and the

curvature decays to zero like 1/s as →∞.

Remark 2.4 The author [6] found a complete U(m)-invariant gradient steady

Kähler-Ricci soliton on the complex Euclidean space Cm (m ≥ 2) with positive

curvature. He also found a complete U(m)-symmetric gradient steady Kähler-

Ricci soliton on the blow-up of Cm/Zm at the origin which is the same under-

lying space that Eguchi-Hanson [20] and Calabi [5] constructed ALE Hyper-

Kähler metrics.

Remark 2.5 Of course, any Ricci flat metric is a steady soliton. On the other

hand, it is known that there are no compact steady solitons other than Ricci

flat ones.

3 Formation of singularities in the Ricci flow

In all dimensions, Hamilton [28] showed that any solution gij(t) to the Ricci

flow on a complete manifold Mn, with the initial metric of bounded curvature,

will exist on a maximal time interval [0, T), where either T =∞, or 0 < T <∞
and the maximal curvature |Rm|max(t) at t becomes unbounded as t→ T . We

call such a solution gij(t) a maximal solution.

If T <∞ and |Rm|max(t)→∞ as t→ T , we say the maximal solution g(t)

develops singularities at time T and T is a singular time. Furthermore,

such a solution gij(t) is either of

• Type I: lim supt→T (T − t) |Rm|max(t) <∞; or
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• Type II: lim supt→T (T − t) |Rm|max(t) =∞.

Remark 3.1 The round sphere and round cylinder shrink to a point in finite

time. They are both of Type I.

We mentioned earlier that the Ricci flow on any closed Riemann surface

will converge to a constant metric after normalizing to keep constant area. This

will no longer be so when the dimension n ≥ 3 and the initial metric is not of

positive curvature. In fact, in mid-1980s S.-T. Yau first pointed out the neck-

pinch singularity could form in dimension three, and Hamilton further noted

that the degenerate neck-pinch could also occur. Now we describe three typical

examples of singularity formation in the Ricci flow on compact 3-manifolds, in

particular the neck-pinch and the degenerate neck-pinch.

3.1 Examples of 3-D singularities

(i) Compact 3-manifold with positive curvature

According to Hamilton [23], the Ricci flow on a compact 3-manifold with

positive (Ricci) curvature will shrink to a round point (and the curvature

becomes infinite!) in finite time. This is a Type I singularity. (Note that

if we rescale to keep the constant volume, then the normalized solution

exists for all time and converges to a quotient of the round 3-sphere.)

(ii) The neck-pinch

Imagine we take a rotationally symmetric dumbbell metric on a topologi-

cal S3 with a neck-like S2×I, where I is some interval, then we expect the

neck in the middle will shrink under the Ricci flow because the positive

curvature in the S2 direction will dominate the slightly negative curva-

ture in the direction of interval I. We also expect the neck will pinch off

in finite time. Note that the dumbbell metric may have positive scalar

curvature but is not of nonnegative Ricci curvature.
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(iii) The degenerate neck-pinch

Hamilton noted that one could also pinch off a small sphere from a big

one. Imagine we choose the size of the little one to be just right, then we

expect a degenerate neck-pinching: there is nothing on the other side.

Remark 3.2 We want to point out that when one makes connected sums of 3-

manifolds one creates necks. Thus one could view the neck-pinch as a geometric

process in the Ricci flow trying to locate necks so one can undo the connected

sum operation and perform the prime decomposition by surgery.

Remark 3.3 The above intuitive pictures of neck-pinch and degenerate neck-

pinch have been confirmed by Angnents-Knopf [1], and Gu-Zhu [22] respectively.

Also, the neck-pinch is of Type I, while the degenerate neck-pinch is of Type II.

3.2 The rescaling argument and Hamilton’s compactness
theorem

Starting from early 1990s’, Hamilton systematically studied the formation of

singularities in the Ricci flow. The parabolic rescaling (or blow-up) method,

inspired by the theory of minimal surfaces and harmonic maps, was developed

by him since then to understand the structure of singularities. Now we describe

this argument. (See the schematic picture shown in Fig. 1 for an illustration.)

The Rescaling Argument:

• Step 1: Take a sequence of (almost) maximum curvature points {(xk, tk)}∞k=1,

where tk → T and xk ∈M , such that for all (x, t) ∈M × [0, tk], we have

|Rm|(x, t) ≤ CQk,

where Qk = |Rm|(xk, tk).

• Step 2: rescale g(t) around (xk, tk) by the factor Qk and shift tk to

new time zero to get the rescaled solution g̃k(t) = Qkg(tk + Q−1
k t) for
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- -
scaling

initial manifold

6

solution near T

Figure 1: Rescaling

t ∈ [−Qktk, Qk(T − tk)) with |Rm|(xk, 0) = 1, and

|Rm|(x, t) ≤ C on M × [−Qktk, 0]. (3.1)

Remark 3.4 Hamilton’s original rescaling argument is more careful, according

to whether a singularity is of Type I or Type II (cf. [28] or [10]).

Naturally, in the above rescaling argument one would hope to obtain a limit

(smooth) solution by letting k →∞.

Remark 3.5 The reader may wish to pause for a moment here and try to

imagine what kind of limits one would get as k → ∞ if one carries out this

rescaling procedure to the neck-pinch and the degenerate neck-pinch singularities

described in Section 3.1. (Hint: review the Ricci soliton examples in Sections

2.3 and 2.4. Also, shrinking solitons are often tied to Type I singularity models,

while steady solitons to Type II singularity models.)
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In [27], Hamilton proved a Cheeger-type compactness theorem for the Ricci

flow (see also Theorem 16.1 in [28]). Roughly speaking, Hamilton’s compact-

ness theorem says that for any sequence of marked solutions (Mn
k , gk(t), xk)

(k = 1, 2, . . .) to the Ricci flow defined on some time interval (A,Ω], if there

exist positive constants C > 0 and δ > 0 such that for all k we have

|Rm|gk(t) ≤ C (3.2)

and

inj(Mn
k , xk, gk(0)) ≥ δ > 0, (3.3)

then a subsequence of (Mn
k , gk(t), xk) converges in the C∞loc topology to a com-

plete solution (Mn
∞, g∞(t), x∞) to the Ricci flow defined on the same time in-

terval (A,Ω].

Note that the two conditions in Hamilton’s compactness theorem are nec-

essary: if the curvatures |Rm|gk(t) of (Mk, gk(t)) are not uniformly bounded

for all k then the limit manifold would have ”corners” and hence would not

be smooth; on the other hand, if the injectivity radii of (Mk, gk(0)) at xk are

not uniformly bounded away from zero then the sequence of marked mani-

folds (Mk, gk(0), xk) would collapse and the limit manifold would be of lower

dimensional.

Now back to our rescaled marked solutions (Mn, g̃k(t), xk). Clearly, by

(3.1), the curvatures of (Mn, g̃k(t)) are uniformly bounded on the time interval

[−Qktk, 0] (which tends to (−∞, 0] as k → ∞). However, to be able to apply

Hamilton’s compactness, one still needs the uniform positive lower bound on

the injectivity radii of (Mn, g̃k(0)) at xk which is not obvious at all.

In [28], by imposing an injectivity radius condition on the maximal solution

(Mn, g(t)) which ensures (3.3) holds, Hamilton obtained the following singu-

larity structure result at maximal curvature points (cf. Theorem 26.5 in [28]):

Type I Limit: spherical or necklike;

Type II Limit: either a steady Ricci soliton with positive curvature; or Σ×R,

the product of the cigar soliton with the real line.
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This implies that a (maximal) singularity would look like one of the three

examples in Section 3.1, plus a possible 4th type whose singularity mode is

Σ×R. Hamilton also conjectured that Σ×R cannot occur as a limit solution

of dilations of singularities (such unwanted singularities, if exist, could not be

removed by the surgery!). He further conjectured the ”Little Loop Lemma”

(cf. Lemma 15.1 in [28]), which would rule out Σ× R as a limit solution.

3.3 Perelman’s no Local collapsing theorem

Clearly, two important issues remained in completing the (maximal) singularity

formation picture painted by Hamilton:

(a) To verify the injectivity radius condition (3.3) for all maximal solutions;

(b) To exclude the possibility of forming a singularity modelled on Σ× R.

Both obstacles were removed by the following Perelman’s non-collapsing theo-

rem, which is a major breakthrough in the Ricci flow.

No Local Collapsing Theorem (Perelman [38]). Given any solution gij(t)

on Mn× [0, T ), with Mn compact and T <∞, there exist constants κ > 0 and

ρ0 > 0 such that for any point (x0, t0) ∈M × [0, T ), gij(t) is κ-noncollapsed at

(x0, t0) on scales less than ρ0 in the sense that, for any 0 < r < ρ0, whenever

|Rm| ≤ r−2 on Bt0(x0, r)× [t0 − r2, t0], (3.4)

we have

V olt0(Bt0(x0, r)) ≥ κrn.

Corollary (Little Loop Lemma). If |Rm| ≤ r−2 on Bt0(x0, r)×[t0−r2, t0],

then

inj(M,x0, g(t0)) ≥ δr
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for some positive constant δ.

Remark 3.6 Perelman proved the above non-collapsing theorem using the mono-

tonicity of the reduced volume

Ṽ (τ) =
∫
M

(4πτ)−
n
2 e−l(q,τ)dVτ (q)

associated to the reduced distance l, a space-time distance function obtained

by path integral analogous to what Li-Yau did in [34]. Here, the reduced distance

l is defined as follows: for any space path γ(s) (0 ≤ s ≤ τ) joining p to q, define

its L-length by L(γ) =
∫ τ

0

√
s(R(γ(s), t0 − s) + |γ̇(s)|2g(t0−s))ds, and denote by

L(q, τ) the L-length of L-shortest curve from p to q. Then the reduced distance

is defined as l(q, τ) = 1
2
√
τ
L(q, τ).

In addition, the theorem can be extended to the case when Mn is noncompact

or Ricci flow with surgery.

Remark 3.7 Using his W-functional

W(g, f, τ) =
∫
M

[τ(R+ |∇f |2) + f − n](4πτ)−
n
2 e−fdV

and the monotonicity of the associated µ-entropy

µ(g, τ) = inf
{
W(g, f, τ) | f ∈ C∞(M),

∫
M

(4πτ)−
n
2 e−fdV = 1

}
,

Perelman also proved a stronger version of the non-collapsing theorem for Ricci

flow on compact manifolds which only requires the curvature bound |Rm| ≤
r−2 on the geodesic ball Bt0(x0, r) only. Very recently, Q. Zhang [44] has proven

a strong non-collapsing result for Ricci flow with surgery on 3-manifolds using

Parelman’s µ-entropy.

Now, we can conclude from (3.1) and Perelman’s non-collapsing theorem

(and the Little Loop lemma) that the rescaled solutions (Mn, g̃k(t), xk) also

satisfy the injectivity condition (3.3) in Hamilton’s compactness theorem. Thus

(Mn, g̃k(t), xk) converges to some limit marked solution (M̃∞, g̃∞(t), x∞), which

is complete ancient with bounded curvature and is κ-noncollapsed on all scales.
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Moreover, since the product Σ× R of the cigar with the real line is almost

flat at large distances, it is not κ-noncollapsed on large scales for any κ > 0

hence cannot occur in the limit of such rescalings.

3.4 A magic of the 3-D Ricci flow: the Hamilton-Ivey
pinching theorem

Recall that, as we described in Section 1.2, in dimension n = 3 we can express

the curvature operator Rm : Λ2(M)→ Λ2(M) as

Rm =

 λ
µ

ν

 ,

where λ ≥ µ ≥ ν are the principal sectional curvatures, and the scalar curvature

R = 2(λ+ µ+ ν).

The Hamilton-Ivey Pinching Theorem ([28, 31]). Suppose we have a

solution gij(t) to the Ricci flow on a 3-manifold M3 which is complete with

bounded curvature for each t ≥ 0. Assume at t = 0 the eigenvalues λ ≥ µ ≥ ν

of Rm at each point are bounded below by ν ≥ −1. Then at all points and all

times t ≥ 0 we have the pinching estimate

R ≥ (−ν)[log(−ν) + log(1 + t)− 3]

whenever ν < 0.

This means in 3-D Ricci flow whenever the curvature tensor |Rm| blows

up, the positive sectional curvature blows up faster than the (absolute value

of) negative sectional curvature. It follows that any limit of dilations around a

(almost) maximal singularity of the Ricci flow on an 3-manifold necessarily has

nonnegative sectional curvature (which is equivalent to nonnegative curvature

operator Rm ≥ 0 for n = 3.) In particular, the limit solution (M̃∞, g̃∞(t), x∞)

described in Section 3.2 is a complete ancient solution with bounded and non-
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negative curvature and is κ-noncollapsed on all scales, called an ancient κ-

solution.

3.5 A key a priori estimate: the Li-Yau-Hamilton in-
equality

Having nonnegative curvature in the rescaling limits has tremendous advantage

in the classification of singularities of the Ricci flow. For one, we can make use

of the powerful Li-Yau-Hamilton inequality (also known as the differential Har-

nack inequality) for such rescaling limits.

The Li-Yau-Hamilton Inequality (Hamilton [26]). Let gij(t) be a complete

ancient solution to the Ricci flow with bounded and nonnegative curvature op-

erator 0 ≤ Rm ≤ C. Then for any vector field V we have

∂R

∂t
+ 2∇R · V + 2Rc(V, V ) ≥ 0.

Corollary. ∂R
∂t > 0 and hence the scalar curvature R(·, t) is pointwise nonde-

creasing in t.

As a consequence, for any ancient κ-solution the upper bound on the curva-

ture at the current time gives the upper bound on the curvature at any earlier

time. This is especially useful when combined with Shi’s local derivative esti-

mate mentioned in Section 1.2. Moreover, in this case the curvature assump-

tion (3.4) over the parabolic cylinder in Perelman’s non-collapsing theorem is

reduced to only over the geodesic ball at time t0.

4 Structure of Singularities in 3-D Ricci Flow

In this section we describe the singularity structure theorem, due to Perelman,

for (almost) maximal singularities as well as general singularities in the Ricci
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flow on 3-manifolds.

4.1 Structure of 3-D ancient κ-solutions

Recall that whenever a 3-D maximal solution g(t) onM3×[0, T ) (T <∞) devel-

ops singularities, the parabolic dilations around (almost) maximum curvature

points (xk, tk) converges to a limit non-flat ancient κ-solution (M̃3, g̃(t), x̃),

i.e., a complete ancient solution with nonnegative and bounded curvature and

is κ-noncollapsed on all scales.

Therefore, to understand the singularity structure of (M3, g(t)) near the

maximal time T it is important to understand the geometry of ancient κ-

solutions. As claimed by Perelman in [39], there holds a universal non-collapsing

property (cf. Proposition 6.4.2 in [10]) for ancient κ-solutions. Namely, there

exists a positive constant κ0 such that for any nonflat 3-dimensional ancient

κ-solution (for some κ > 0), either it is κ0-noncollapsed on all scales, or it

is a metric quotient of the round three-sphere S3. By using this universal

noncollapsing property and the Li-Yau-Hamilton inequality, one can derive

the following important elliptic type estimates, which were implicitly given

by Perelman [38], for the evolving scalar curvature R of a three-dimensional

ancient κ-solution (M̃, g̃ij(t)) (cf. Theorem 6.4.3 in [10]):

There exist a positive constant η and a positive increasing function ω :

[0,+∞)→ (0,+∞) such that

(i) for every x, y ∈ M̃ and t ∈ (−∞, 0], we have

R(x, t) ≤ R(y, t) · ω(R(y, t)d2
t (x, y));

(ii) for all x ∈ M̃ and t ∈ (−∞, 0], we have

|∇R|(x, t) ≤ ηR 3
2 (x, t) and

∣∣∣∣∂R∂t
∣∣∣∣ (x, t) ≤ ηR2(x, t).

Based on these two estimates, one obtains a rather complete picture of

the geometry of three-dimensional orientable ancient κ-solution in terms of the
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canonical neighborhood theorem given by Perelman [38] which can be roughly

described as follows (cf. Theorem 6.4.6 in [10] for a more detailed statement of

the theorem).

Canonical Neighborhood Theorem (Perelman). ∀ ε > 0, every point

(x0, t0) on an orientable nonflat ancient κ-solution (M̃3, g̃(t)) has an open

neighborhood B, which falls into one of the following three categories:

(a) B is an ε-neck of radius r = R−1/2(x0, t0); (i.e., after scaling by the

factor R(x0, t0), B is ε-close, in C [ε−1]-topology, to S2 × [−ε−1, ε−1] of

scalar curvature 1.)

Figure 2: ε-neck

(b) B is an ε-cap; (i.e., a metric on B3 or RP3 \ B̄3 and the region outside

some suitable compact subset is an ε-neck).

Figure 3: ε-cap

(c) B is compact (without boundary) with positive sectional curvature (hence

diffeomorphic to a space form by Hamilton [23]).

Consequently, for arbitrarily given ε > 0, the maximal solution (M3, g(t))



SINGULARITIES OF THE RICCI FLOW ON 3-MANIFOLDS 123

around xk and at time tk near T has a canonical neighborhood which is either an

ε-neck, or an ε-cap, or a compact positively curved manifold (without bound-

ary). Thus, Perelman’s canonical neighborhood theorem confirms the picture of

the structure of (maximal) singularities developed by Hamilton and asserts that

the (maximal) singularities of the Ricci flow on 3-manifolds look just like one

of the three examples we described in Section 3.1.

4.2 Structure of 3-D singularities

Furthermore, Perelman was able to extend his canonical neighborhood theo-

rem for almost maximal curvature points to points of high curvature which

are not necessary almost maximal. Note that, however, the same argument as

before would not work for (non-maximal) singularities coming from a sequence

of points (yk, sk) with sk → T and |Rm|(yk, sk)→ +∞ but |Rm|(yk, sk) is not

comparable with the maximal curvature at time sk, since the uniform curvature

bound assumption (3.2) fails for the rescaled solutions around (yk, sk) so we

cannot take a limit directly. Nevertheless, one can generalize Hamilton’s com-

pactness theorem to allow local limits for smooth solutions over geodesic balls

(cf. Theorem 4.1.5 in [10]), and taking local limits and applying Hamilton’s

strong maximum principle, as done by Perelman [39], to derive the following

general singularity structure theorem (cf. Theorem 51.3 in [32] or Theorem

7.1.1 in [10] for a more precise statement).

Singularity Structure Theorem (Perelman). Given ε > 0 and T0 > 1,

one can find r0 > 0 such that for any maximal solution g(t), 0 ≤ t < T with

1 < T ≤ T0, to the Ricci flow on a compact orientable M3 with normalized

initial metric, each point (x0, t0) with t0 > 1 and R(x0, t0) ≥ r−2
0 admits a

canonical neighborhood B, which is either

(a) an ε-neck, or

(b) an ε-cap, or
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(c) a closed 3-manifold with positive sectional curvature.

Here, a metric is normalized if at every point the principal sectional curva-

tures satisfy 1
10 ≥ λ ≥ µ ≥ ν ≥ −

1
10 , and every geodesic ball of radius one has

volume at least one. (This condition in particular implies T > 1). We remark

that one can always make any given metric normalized by a suitable scaling.

4.3 Solutions near the singular time T

Based on the singularity structure theorem of Perelman, we can see a clear

picture of a maximal solution near its singular time T as follows.

For any given ε > 0 and a given maximal solution (M3, g(t)) on [0, T )

(T < ∞) with normalized initial metric, we can find r0 > 0 depending only

on ε and T such that each point (x, t) of high curvature, with R(x, t) ≥ r−2
0 ,

admits a canonical neighborhood B given in the singularity structure theorem.

Let Ω denote the set of all points in M3 where the curvature stays bounded

as t→ T .

If Ω is empty, then the solution g(t) becomes extinct at time T . In this

case, either M3 is compact and positively curved, or it is entirely covered by

ε-necks and ε-caps shortly before the maximal time T . It follows that M3 is

diffeomorphic to either S3, or a metric quotient of S3, or S2×S1, or RP3#RP3.

We now consider the case when Ω is nonempty. By using Shi’s local deriva-

tive estimates, we see that, as t → T , g(t) has a smooth limit ḡ on Ω. Let R̄

denote the scalar curvature of ḡ. For any 0 < ρ < r0, let us consider the set

Ωρ = {x ∈ Ω | R̄(x) ≤ ρ−2}.

First, we need some terminologies:

A metric on S2 × I, such that each point is contained in some ε-neck, is

called an ε-tube, or an ε-horn, or a double ε-horn, if the scalar curvature

stays bounded on both ends, or stays bounded on one end and tends to infinity

on the other end, or tends to infinity on both ends, respectively; A metric on

B3 or RP3 \ B̄3 is called an capped ε-horn if each point outside some compact
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subset is contained in an ε-neck and the scalar curvature tends to infinity on

the end.

Now take any ε-neck in (Ω, ḡ) and consider a point x on one of its boundary

components. If x ∈ Ω \Ωρ, then there is either an ε-cap or an ε-neck adjacent

to the initial ε-neck. In the latter case we can take a point on the boundary of

the second ε-neck and continue. This procedure will either terminate when we

get into Ωρ or an ε-cap, or go on indefinitely, producing an ε-horn. The same

procedure can be repeated for the other boundary component of the initial

ε-neck. Therefore, taking into account that Ω has no compact components, we

conclude that each ε-neck of (Ω, ḡ) is contained in one of the following types of

subsets of Ω:

(a) an ε-tube with boundary components in Ωρ, or

(b) an ε-cap with boundary in Ωρ, or

(c) an ε-horn with boundary in Ωρ, or

(d) a capped ε-horn, or

(e) a double ε-horn.

Similarly, each ε-cap of (Ω, ḡij) is contained in a subset of type (b), or type (d).

It is clear that there is a definite lower bound (depending on ρ) on the

volumes of subsets of type (a), (b), and (c). So there can be only finitely many

of them. Hence we conclude that there are only finitely many components of Ω

containing points of Ωρ, and every such component has a finite number of ends,

each being an ε-horn. On the other hand, every component of Ω containing no

points of Ωρ is either a capped ε-horn, or a double ε-horn. If we look at the

solution g(t) at a time slightly before T , the above argument shows that each

ε-neck or ε-cap of (M, g(t)) is contained in a subset of type (a) or (b), while

the ε-horns, capped ε-horns and double ε-horns (at the maximal time T ) are

connected together to form ε-tubes and ε-caps at any time t shortly before T .
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Figure 4:

Let us denote by Ωj , 1 ≤ j ≤ m, the connected components of Ω which

contain points of Ωρ. Then the initial three-manifold M3 is diffeomorphic to

the connected sum of Ω̄j, 1 ≤ j ≤ m, with finitely many copies of S2 × S1

(which correspond to gluing a tube to two boundary components of the same

Ωj) and finitely many copies of RP3. Here Ω̄j , j = 1, 2, . . . ,m, is the compact

manifold (without boundary) obtained from Ωj by taking some ε-neck in each

ε-horn of Ωj , cutting it along the middle two-sphere, removing the horn-shaped

end, and gluing back a cap (or more precisely, a differentiable three-ball).

5 Further remarks

I. To capture the topology of M3, one only needs to understand the topology of

each compact orientable three-manifold Ω̄j , 1 ≤ j ≤ m, described above. To do

so, one evolves Ω̄j , j = 1, 2, . . . ,m, by the Ricci flow simultaneously. If the new
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solution develops singularities, one performs the surgeries again as described

above and continue with the Ricci flow. By repeating this procedure, one

obtains a “weak” solution, called a solution to the Ricci flow with surgery

or a surgically modified solution to the Ricci flow.

In order to extract the topological information of the initial three-manifold

M3 from the Ricci flow with surgery, one needs to make sure that there are

at most finitely many surgeries on any finite time interval, and the surgically

modified solution admits a well-understood long-time behavior. For this pur-

pose, the surgeries, which are topologically trivial, need to be performed rather

carefully geometrically (in a 3-step geometric surgery procedure designed by

Hamilton in [29]) and in a controlled way to make sure the geometry of the

surgically modified solution is well controlled after the surgeries so that there

is always ”enough recovery time” before the next surgery. The key to prevent

the surgery times from accumulating is to construct the surgically modified

solution to the Ricci flow in such a way that one can recognize canonical neigh-

borhoods at high curvature points in some uniform manner on any finite time

interval. We refer the interested readers to the recent survey articles [8, 46] for

an outline of this part, and [10] for the details.

II. Now that the singularity formation in 3-D Ricci flow is well understood,

naturally one would ask what happens in higher dimensions, particularly in

dimension n = 4 and in the Kähler case.

For the Ricci flow on 4-manifolds with positive isotropic curvature

(PIC), the singularity formation is now also well understood, thanks to the

works of Hamilton [29] and Chen-Zhu [13]. In particular, Chen-Zhu [13] ex-

tended Perelman’s singularity structure theorem to 4-D Ricci flow with positive

isotropic curvature (see also the very recent extension by Chen-Tang-Zhu [11]

to the orbifold case). The Kähler-Ricci flow on Fano manifolds has attracted

more attention in recent years and various progress has been made. The most

significant advance is Perelman’s uniform estimates for the scalar curvature R,

the diameter, and the C1-norm of the Ricci potential function of the normalized
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Kähler-Ricci flow on Fano manifolds. These will be discussed elsewhere. One

would hope to gain a good understanding of the singularity formation both in

some more general cases in 4-D and in the Kähler case, and much remains to

be done.

III. In proving the canonical neighborhood theorem of 3-D ancient κ-

solution, Perelman [39] derived the following classification of (nonflat)

3-dimensional κ-shrinking gradient solitons (i.e., shrinking gradient solitons

with bounded and nonnegative curvature and κ-noncollapsed on all scales for

some κ > 0).

Classification of 3-D κ-Shrinking Gradient Solitons (Perelman).

A 3-dimensional complete nonflat κ-shrinking gradient soliton is either

(i) a quotient of the round sphere S3; or

(ii) a quotient of the round cylinder S2 × R.

The key step in the proof is to show that there is no 3-dimensional complete

noncompact nonflat κ-shrinking gradient solitons with positive (sectional) cur-

vature. Part of Perelman’s proof of this last assertion used the Gauss-Bonnet

theorem on the level surfaces of the potential function f which only works in

dimension two.

Very recently, various works have been done to improve Perelman’s classi-

fication result in dimension three and to extend it to higher dimensions under

certain assumptions. We list some of those progress below, and refer the reader

to a recent article [7] of the author for more information on geometry of gradient

shrinking solitons.

3-D :

• A complete noncompact non-flat shrinking gradient soliton with nonneg-

ative Ricci curvature Rc ≥ 0 and with curvature growing at most by

|Rm|(x) ≤ Cear(x) is necessarily a quotient of S2 × R. (Ni-Wallach [36])
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• A complete noncompact non-flat shrinking gradient soliton is necessarily

a quotient of S2 × R. (Cao-Chen-Zhu [8])

4-D :

• A complete gradient shrinking soliton with Rm ≥ 0 and positive isotropic

curvature (PIC), and satisfying certain additional assumptions, is either

a quotient of S4 or a quotient of S3 × R. (Ni-Wallach [37])

• A non-flat complete noncompact shrinking Ricci soliton with bounded

and nonnegative curvature operator 0 < Rm ≥ C is a quotient of either

S3 × R or S2 × R2. (Naber [35])

In addition, complete noncompact gradient shrinking solitons in n ≥ 4

which are locally conformally flat are classified recently, see the works of Ni-

Wallach [36], Petersen-Wylie [40], and Z.-H. Zhang [45].
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