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ON THE COHOMOLOGICAL EQUATION OF
MAGNETIC FLOWS

N. S. Dairbekov G. P. Paternain

Abstract

We consider a magnetic flow without conjugate points on a closed
manifold M with generating vector field Gµ. Let h ∈ C∞(M) and let θ
be a smooth 1-form on M . We show that the cohomological equation

Gµ(u) = h ◦ π + θ

has a solution u ∈ C∞(SM) only if h = 0 and θ is closed. This result
was proved in [10] under the assumption that the flow of Gµ is Anosov.

1 Introduction

In the present paper, which is a sequel to [10], we study the cohomological

equation for a certain class of second order differential equations on the tangent

bundle of a closed connected manifold M with canonical projection π : TM →
M (π(x, y) = x for x ∈M , y ∈ TxM).

The dynamical systems that we will consider are magnetic flows. In their

most general form they are determined by a pair (F,Ω), where F is a Finsler

metric on M and Ω is a closed 2-form. The Legendre transform `F : TM \
{0} → T ∗M \{0} associated with the Lagrangian 1

2F
2 is a diffeomorphism and

ω0 := `∗F (−dλ) defines a symplectic form on TM \{0}, where λ is the Liouville

1-form on T ∗M . The magnetic flow of the pair (F,Ω) is the Hamiltonian flow

φ of 1
2F

2 with respect to the symplectic form ω0 + π∗Ω.

Contrary to what happens for geodesic flows, a magnetic flow can change

behaviour drastically as we change energy levels. One can obtain the behaviour

in all energy levels by restricting the flow φ to the unit sphere bundle SM :=

F−1(1) and changing Ω by λΩ, where λ ∈ R. Henceforth, we shall only consider

φ acting on SM and we will denote by Gµ the infinitesimal generator of φ. A

curve γ : R→M given by γ(t) = π(φt(x, y)) will be called a magnetic geodesic.
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The cohomological equation (also known in the literature as the kinetic

equation) is simply

Gµ(u) = v

where u, v are functions on SM . The function v is said to be a coboundary. The

importance of the cohomological equation in dynamical systems is well known;

it arises for example in the study of invariant measures, conjugacy problems,

reparametrizations, rigidity questions and inverse problems.

Suppose now that v ∈ C∞(SM) and we try to solve Gµ(u) = v for u ∈
C∞(SM). There are some obvious obstructions for doing so. Let I(φ) be the

space of all invariant distributions, i.e., D ∈ I(φ) is an element of the dual space

of C∞(SM) such that D(Gµ(u)) = 0 for every smooth function u. Hence, if

Gµ(u) = v admits a smooth solution u we must have D(v) = 0 for all D ∈ I(φ).

In particular, ∫
SM

v dµ = 0

for every φ-invariant Borel probability measure µ. Remarkably, in some cases

invariant distributions are the only obstructions. For Anosov flows, the smooth

version of the Livšic theorem ([17]) says that there exists u ∈ C∞(SM) such

that Gµ(u) = v where v ∈ C∞(SM) if and only if v has zero integral along

every closed orbit of the flow. More recently, L. Flaminio and G. Forni [12]

proved the following:

Theorem 1.1. Let M be a closed oriented hyperbolic surface and let Ω be the

area form. If D(v) = 0 for all D ∈ I(φ) then there exists u ∈ C∞(SM) such

that

Gµ(u) = v.

Flaminio and Forni proved this theorem for the usual horocycle flow φh, but

it is easy to see that φ and φh are conjugated by the map (x, y) 7→ (x, iy), where

iy is the vector obtained by rotating y by π/2 following the orientation of the
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surface. Using representation theory they were able to determine completely

the space I(φh) in terms of the spectrum of the Laplacian of M and the genus

of M . We will return to their results below.

In the present paper we are concerned with the following geometrical aspect

of the cohomological equation related to the fibration SM →M . Assume there

exists u, v ∈ C∞(SM) such that Gµ(u) = v and suppose that for every x ∈M ,

v(x, y) is a polynomial of degree k in y. What does it imply about u? Must u

also be a polynomial in y? Of special interest to us is the case k = 1, i.e., we

suppose that v = h ◦ π+ θ, where h ∈ C∞(M) and θ is a smooth 1-form which

we view as a function θ : TM → R. The case k = 2 is also of great interest,

but with the exception of Proposition 4.3 we will not consider it here. Even for

k = 1 cohomological equations of this special kind appear in problems related

to spectral rigidity and regularity of the Anosov splitting [9, 10]. Note that if

h = 0 and θ = df is exact, then Gµ(f ◦ π) = θ because dπ(Gµ(x, y)) = y.

The literature on this topic is abundant, see [14, 15, 19, 8, 11, 23, 9, 10].

However in all these references the results require either non-positive curvature

(and transitivity) or uniform hyperbolicity of φ. Here we show that these

conditions can be weakened to just no conjugate points.

Theorem A. Suppose SM does not have conjugate points. Let h ∈ C∞(M)

and let θ be a smooth 1-form on M . Then the cohomological equation

Gµ(u) = h ◦ π + θ

has a solution u ∈ C∞(SM) only if h = 0 and θ is closed.

Given (x, y) ∈ TM we define the vertical subspace at (x, y) as V(x, y) :=

ker d(x,y)π, where π : TM → M is the canonical projection. We say that the

orbit of (x, y) ∈ SM does not have conjugate points if for all t 6= 0,

d(x,y)φt(V(x, y)) ∩ V(φt(x, y)) = {0}.

The energy level SM is said to have no conjugate points if for all (x, y) ∈ SM ,

the orbit of (x, y) does not have conjugate points. Since magnetic flows are
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optical, the main result in [5] says that SM has no conjugate points if and only

if the asymptotic Maslov index of the Liouville measure m(µ) = 0.

Note that if φ is Anosov, then there are no conjugate points [25, 21, 5] and

Theorem A was proved in [10] using a non-negative version of the Livšic theorem

[18, 27] and an integral version of the Pestov identity. Here we will use the same

integral Pestov identity and show how we can do without hyperbolicity.

Theorem A seems to be new even for the particular case of the geodesic

flow of a Riemannian metric (Ω = 0 and F is Riemannian). There are several

interesting examples of geodesic flows without conjugate which are not Anosov

and have regions of positive curvature. The example of W. Ballmann, M. Brin

and K. Burns in [1] is of this kind and has the additional feature of having

non-continuous Green subbundles (see Section 2). Another interesting class of

magnetic flows without conjugate points is given by compact quotients M of

complex hyperbolic space Hn
C. If we let (g,Ω) be the Kähler structure with

holomorphic sectional curvature −1 on M , then the magnetic flow φ of the pair

(g,Ω) has no conjugate points and φ is an algebraic unipotent flow. For n = 1

we obtain the flow in Theorem 1.1. The proof that these magnetic flows have

no conjugate points is fairly simple and is given in the appendix, where we also

collect other facts about them which are probably well known to experts, but

not readily available in the literature.

It is very likely that in Theorem A one can replace “closed” by “exact”,

but we do not know how to prove this in general. Let us explain what are

the complications and at the same time indicate very general conditions under

which we can claim that θ must be exact.

LetM(φ) be the space of all φ-invariant Borel probability measures. Clearly

M(φ) ⊂ I(φ). To any element D ∈ I(φ) we can associate its asymptotic cycle

ρ(D) ∈ H1(M,R) by setting

〈ρ(D), [ω]〉 = D(ω),

where [ω] ∈ H1(M,R) and ω is any closed 1-form in the class [ω]. Invariance
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of D ensures that ρ(D) is well defined.

Suppose now that ρ : I(φ)→ H1(M,R) is surjective. Then it is immediate

to see that if Gµ(u) = θ with θ closed, then θ must in fact be exact. We know

of no example of a magnetic flow without conjugate points for which ρ is not

surjective. We indicate now several conditions that imply the surjectivity of ρ.

If Ω = 0, then ρ is surjective. This follows from the fact that ρ(M(φ)) is a

compact convex set containing the origin in its interior, which in turn follows

from the fact that every non-trivial homotopy class contains a closed geodesic,

see [22, Chapter 1].

If φ is Anosov, the closed orbits are dense and it is not hard to see that ρ

is also surjective (cf. [26]).

But one can say more. Let M̃ be the universal covering of M . Consider

the exponential map expx : TxM̃ → M̃ of the energy level SM̃ , given by

expx(ty) = π ◦φt(x, y), where x ∈ M̃ , t ≥ 0 and y ∈ SxM̃ . It is unknown if the

abscence of conjugate points in SM implies that expx is a diffeomorphism for

all x (see [6, p. 907]). But suppose it does and to simplify matters suppose also

that F is a Riemannian metric. Then, M̃ is diffeomorphic to Rn and the lift

Ω̃ of Ω to M̃ is exact. Write Ω̃ = dϑ. Then we can associate to the magnetic

system a critical value c in the sense of Mañé [3, 24]:

c = inf
f∈C∞(M̃,R)

sup
x∈M̃

1
2
|dxf + ϑx|2.

(Note that as f ranges over C∞(M̃,R) the form ϑ+df ranges over all primitives

of Ω̃, because any two primitives differ by a closed 1-form which must be exact

since M̃ is simply connected.)

We will say that a magnetic flow is Mañé critical if c = 1/2. If expq is a

diffeomorphism, the same proof of Theorem D in [7] shows that c ≤ 1/2. If

c < 1/2, then assuming a technical condition on π1(M) which seems to hold

always, it is known that every non-trivial homotopy class contains a closed

magnetic geodesic [24] and again ρ is surjective.

We are left with the question: suppose SM has no conjugate points and
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is Mañé critical, is ρ surjective? We mentioned before that compact quotients

of complex hyperbolic space Hn
C with the Kähler structure with holomorphic

sectional curvature −1 have no conjugate points. It turns out that they are

also Mañé critical (for n = 1 this is proved in [4, Example 6.2] and for n ≥ 2

the proof is similar). We do not know other examples of Mañé critical magnetic

flows without conjugate points.

For n = 1 we will check using Flaminio and Forni’s explicit computation

of the invariant distributions that ρ is surjective (see Section 4). We suspect

that the same is true for any n ≥ 2, but finding the invariant distributions

and understanding the cohomological equation using representation theory and

harmonic analysis seems quite a laborious task. A direct argument using the

Pestov integral identity obtained in [10] will allow us to show exactness in this

case. More precisely we will show:

Theorem B. Let M be a smooth compact quotient of complex hyperbolic space

Hn
C. Let (g,Ω) be the Kähler structure with holomorphic sectional curvature −1

and let Gµ be the vector field generated by the magnetic flow of the pair (g,Ω).

Let h ∈ C∞(M) and let θ be a smooth 1-form on M . Then the cohomological

equation

Gµ(u) = h ◦ π + θ

has a solution u ∈ C∞(SM) if and only if h = 0 and θ is exact.

We note that if Theorem 1.1 extends to compact quotients of Hn
C for n ≥ 2,

then Theorem B shows that ρ must be surjective for n ≥ 2.

1.1 Convex Hamiltonians

Theorem A above can be used to prove a fairly general result for an arbitrary

convex superlinear Hamiltonian H : T ∗M → R (M close and connected). The

Hamiltonian is said to be convex if ∂2H/∂p2 is everywhere positive definite.

The Hamiltonian is superlinear if for all x ∈M ,

lim
|p|→∞

H(x, p)
|p|

= +∞.
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Let τ : T ∗M →M be the canonical projection. Given an arbitrary smooth

closed 2-form Ω on M , we consider T ∗M endowed with the symplectic struc-

ture −dλ + τ∗Ω where λ is the Liouville 1-form. Given a convex superlinear

Hamiltonian H : T ∗M → R we let XH be the Hamiltonian vector field of H

with respect to −dλ+ τ∗Ω. We denote by φ the flow of XH . Let c be a regular

value of H and set Σ := H−1(c).

As before we say that the orbit of (x, p) ∈ Σ does not have conjugate points

if for all t 6= 0,

d(x,p)φt(V(x, p)) ∩ V(φt(x, p)) = {0},

where now V(x, p) = ker d(x,p)τ . The energy level Σ is said to have no conjugate

points if for all (x, p) ∈ Σ, the orbit of (x, p) does not have conjugate points.

Theorem C. Suppose Σ does not have conjugate points and let θ be a smooth

1-form on M . Then the cohomological equation

XH(u) = τ∗θ(XH)

has a solution u ∈ C∞(Σ) only if θ is closed.

2 Preliminaries

2.1 Green subbundles

If SM has no conjugate points, one can construct the so called Green subbundles

[6, Proposition A] given by:

E(x, y) := lim
t→+∞

dφ−t(V(φt(x, y))),

F (x, y) := lim
t→+∞

dφt(V(φ−t(x, y))).

These subbundles are Lagrangian, they never intersect the vertical subspace

and, crucial for us, they are contained in T (SM). Moreover, they vary mea-

surably with (x, y) and they contain the vector field Gµ.
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Assume now that SM has no conjugate points and let E be one of Green

subbundles. Using the splitting

T(x,y)TM = H(x, y)⊕ V(x, y),

where H(x, y) is the horizontal subspace, we can represent E(x, y) as the graph

of a linear map S(x, y) : TxM → TxM . The correspondence (x, y) 7→ S(x, y) is

measurable and ‖S‖ ∈ L∞(SM) [6, Proposition 1.7].

2.2 Semibasic tensor fields

For the reader’s convenience we recall various definitions and notations from

[10]. Henceforth M is a closed n-dimensional manifold and F is a Finsler metric

on M .

Let π : TM\{0} →M be the natural projection, and let βrsM := π∗τ rsM de-

note the bundle of semibasic tensors of degree (r, s), where τ rsM is the bundle of

tensors of degree (r, s) over M . Sections of the bundles βrsM are called semiba-

sic tensor fields and the space of all smooth sections is denoted by C∞(βrsM).

For such a field T , the coordinate representation

T = (T i1...irj1...js
)(x, y)

holds in the domain of a standard local coordinate system (xi, yi) on TM \{0}
associated with a local coordinate system (xi) in M . Under a change of a local

coordinate system, the components of a semibasic tensor field are transformed

by the same formula as those of an ordinary tensor field on M .

Every “ordinary” tensor field on M defines a semibasic tensor field by the

rule T 7→ T ◦ π, so that the space of tensor fields on M can be treated as

embedded in the space of semibasic tensor fields.

Let (gij) be the fundamental tensor,

gij(x, y) =
1
2

[F 2]yiyj (x, y),

and let (gij) be the contravariant fundamental tensor,

gikg
kj = δji . (1)
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In the usual way, the fundamental tensor defines the inner product 〈·, ·〉 on

β1
0M , and we put |U |2 = 〈U,U〉.

Let

G = yi
∂

∂xi
− 2Gi

∂

∂yi

be the spray induced by F . Here Gi are the geodesic coefficients [29, (5.7)],

Gi(x, y) =
1
4
gil
{

2
∂gjl
∂xk

− ∂gjk
∂xl

}
yjyk.

Let

T (TM \ {0}) = HTM ⊕ VTM

be the decomposition of T (TM \{0}) into horizontal and vertical vectors. Here

HTM = span
{

δ

δxi

}
, VTM = span

{
∂

∂yi

}
,

with
δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj

and

N i
j =

∂Gi

∂yj
.

Let

∇ : C∞(T (TM))× C∞(π∗TM)→ C∞(π∗TM)

be the Chern connection,

∇X̂U =
{
dU i(X̂) + U jωij(X̂)

} ∂

∂xi
,

where

ωij = Γijkdx
k

are the connection forms. Recall that

N i
j = Γijky

k. (2)

Given a function u ∈ C∞(TM \ {0}), we put

u|k :=
δu

δxk
, u·k :=

∂u

∂yk
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and, given a semibasic vector field U = (U i) ∈ C∞(β1
0M), put

U i|k :=
(
∇ δ

δxk
U
)i
, U i·k :=

(
∇ ∂

∂yk
U
)i
.

We have

u|k =
∂u

∂xk
− Γpkqy

q ∂u

∂yp
, u·k =

∂u

∂yk
,

and

U i|k =
∂U i

∂xk
− Γpkqy

q ∂U
i

∂yp
+ ΓikpU

p, U i·k =
∂U i

∂yk
.

In the usual way, we extend these formulas to higher order tensors:

T i1...irj1...js|k =
∂

∂xk
T i1...irj1...js

− Γpkqy
q ∂

∂yp
T i1...irj1...js

+
r∑

m=1

ΓimkpT
i1...im−1pim+1...ir
j1...js

−
s∑

m=1

ΓpkjmT
i1...ir
j1...jm−1pjm+1...js

and

T i1...irj1...js·k =
∂

∂yk
T i1...irj1...js

.

We define the operators

∇| : C∞(βrsM)→ C∞(βrs+1M), ∇· : C∞(βrsM)→ C∞(βrs+1M)

by

(∇|T )i1...irj1...jsk
= ∇|kT i1...irj1...js

:= T i1...irj1...js|k

and

(∇·T )i1...irj1...jsk
= ∇·kT i1...irj1...js

= T i1...irj1...js·k.

For convenience, we also define ∇| and ∇· by

∇|i = gij∇|j , ∇·i = gij∇·j .

2.3 Modified horizontal derivative for magnetic flows

The form Ω, regarded as an antisymmetric tensor field (Ωij) ∈ C∞(τ0
2M),

gives rise to a corresponding semibasic tensor field. We define the Lorentz force

Y ∈ C∞(β1
1M) by

Y ij (x, y) = Ωjk(x)gik(x, y). (3)
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We also define

Y (U) = (Y ij U
j).

Note that Y is skew symmetric with respect to g:

〈Y (U), V 〉 = −〈U, Y (V )〉.

Straightforward calculations show that

Gµ(x, y) = yi
δ

δxi
+ yiY ji

∂

∂yj
. (4)

If u ∈ C∞(TM \ {0}), then by (4)

Gµu(x, y) = yi
(
δu

δxi
+ Y ji

∂u

∂yj

)
= yi(u|i + Y ji u·j).

Suppose that for a smooth function u : SM → R we have

Gµu = ϕ.

Extend u to a positively homogeneous function (of degree 0) on TM \ {0},
denoting the extension by u again.

For (x, y) ∈ TM , define

Xu = yi(u|i + FY ji u·j).

Then on TM \ {0} we have

Xu = φ,

where φ is the positively homogeneous extension of ϕ to TM \ {0} of degree 1.

Given T = (T i1...irj1...js
) ∈ C∞(βrsM), put

T i1...irj1...js:k
= T i1...irj1...js|k + FY jk T

i1...ir
j1...js·j .

Finally, given u ∈ C∞(TM \ {0}), define

∇:u = (u:i) = (giju:j).
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2.4 An integral identity

A crucial element in our proofs is the following integral version of the Pestov

identity proved in [10]:

∫
SM

{
|X(∇·u)|2 − 〈Ry(∇·u),∇·u〉 −L(Y (y),∇·u,∇·u)− 〈∇·(Xu), Y (∇·u)〉

− 2〈Y (y),∇·u〉2 + 〈∇:u, Y (∇·u)〉+ 〈∇|(∇·u)Y (y),∇·u〉
}
dµ

=
∫
SM

{
|∇·(Xu)|2 − n(Xu)2

}
dµ. (5)

We note the following points:

1. ∇·u vanishes if and only if u is the pull back of a function on M ;

2. R and L are respectively the Riemann curvature operator and the Lands-

berg tensor from Finsler geometry; Y is the Lorentz force associated with

the magnetic field;

3. n is the dimension of M .

We may regard the identity as a kind of “dynamical Weitzenböck formula”.

We will also need the following lemma [10, Lemma 4.4]:

Lemma 2.1. Let φ ∈ C∞(TM \ {0}) be such that φ = ϕ0F + ψ, where ϕ0 is

independent of y while ψ depends linearly on y. Then∫
SM

|∇·φ|2 dµ =
∫
SM

(ϕ2
0 + nψ2) dµ.

In [10] we dealt with the left hand side of (5) assuming that φ is Anosov.

We will show in the next section, how to bypass hyperbolicity just using the

Green subbundles and a further calculation to show that θ in Theorem A must

be closed.

3 Proof of Theorem A

Define

C(Z) = Ry(Z)− Y (XZ)− (∇|ZY )(y).
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Then the following holds:

〈C(∇·u),∇·u〉 = 〈Ry(∇·u),∇·u〉+ 〈X(∇·u), Y (∇·u)〉 − 〈(∇|(∇·u)Y )(y),∇·u〉

= 〈Ry(∇·u),∇·u〉+ 〈∇·(Xu)−∇:u− 〈Y (y),∇·u〉y, Y (∇·u)〉

− 〈(∇(∇·u)Y )(y),∇·u〉

= 〈Ry(∇·u),∇·u〉+ 〈∇·(Xu), Y (∇·u)〉 − 〈∇:u, Y (∇·u)〉

+ 〈Y (y),∇·u〉2 − 〈(∇|(∇·u)Y )(y),∇·u〉.

Suppose Gµu = h◦π+θ and extend u to a positively homogeneous function

of degree zero on TM \ {0} (still denoted by u). Then X(u) = Fh ◦ π + θ.

From (5) and Lemma 2.1 we infer that∫
SM

{
|X∇·u|2 − 〈C(∇·u),∇·u〉 − L(Y (y),∇·u,∇·u)− 〈Y (y),∇·u〉2

}
dµ (6)

≤ −
∫
SM

(h ◦ π)2 dµ.

For each (x, y) ∈ SM , let P(x, y) : TxM → TxM be the orthogonal projec-

tion onto {y}⊥ with respect to the fundamental tensor at (x, y).

Theorem 3.1. Assume SM has no conjugate points and let Z(x, y) be a

semibasic vector field with 〈Z(x, y), y〉 = 0 for all (x, y) ∈ SM . Let S(x, y) :

TxM → TxM be a linear map whose graph is one of the Green subbundles.

Then∫
SM

|P(XZ−S(Z))|2 dµ =
∫
SM

{
|XZ|2−〈C(Z), Z〉−L(Y (y), Z, Z)−〈Y (y), Z〉2

}
dµ.

Moreover ∫
SM

|P(XZ − S(Z))|2 dµ = 0

if and only if

Z0(t) := Z(φt(x, y)) +
(∫ t

0

f(φs(x, y)) ds
)
γ̇(t)

is a magnetic Jacobi field along γ(t) = π ◦ φt(x, y) for all (x, y) ∈ SM , where

f(x, y) := 〈Z(x, y), Yx(y)〉.
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Proof. Fix v ∈ SM and T > 0 and let γ be the unit speed magnetic geodesic

determined by v. Let

I :=
∫ T

0

{
|Ż|2 − 〈C(Z), Z〉 − L(Y (γ̇), Z, Z)− 〈Y (γ̇), Z〉2

}
dt.

Since

〈Z̈, Z〉 = Dγ̇(〈Ż, Z〉)− |Ż|2 + 〈(∇·ŻY )(γ̇), Z〉,

we have

I = 〈Ż, Z〉
∣∣∣∣T
0

−
∫ T

0

{〈A(Z), Z〉+ 〈Y (γ̇), Z〉2} dt,

where

A(Z) = Z̈ + Rγ̇(Z)− Y (Ż)− (∇|ZY )(γ̇)− (∇·ŻY )(γ̇)− L(Z, Y (γ̇))

= Z̈ + C(Z)− (∇·ŻY )(γ̇)− L(Z, Y (γ̇)).

If ξ ∈ E(v), then Jξ(t) = dπ ◦dφt(ξ) satisfies the Jacobi equationA(Ji) = 0.

Since for all t ∈ R,

dπγ̇(t)

∣∣
E(γ̇(t))

: E(γ̇(t))→ Tγ(t)M

is an isomorphism, there exists a basis {ξ1, . . . , ξn} of E(v) such that {Jξ1(t), . . . , Jξn(t)}
is a basis of Tγ(t)M for all t ∈ R. Without loss of generality we may assume

that ξ1 = (v, S(v)) and Jξ1 = γ̇.

Let us set for brevity Ji = Jξi . Then we can write

Z(t) =
n∑
i=1

fi(t)Ji(t),

for some smooth functions f1, . . . , fn and thus,

I = 〈Ż, Z〉
∣∣∣∣T
0

−
∑
i,j

∫ T

0

〈A(fiJi), fjJj〉 dt−
∫ T

0

〈Y (γ̇), Z〉2 dt. (7)

An easy computation shows that

A(fiJi) = f̈iJi + 2ḟiJ̇i − ḟiY (Ji)− ḟi(∇·JiY )(γ̇) + fiA(Ji).
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Indeed,

Dγ̇Dγ̇(fiJi) = f̈iJi + 2ḟiJ̇i + fiJ̈i,

Rγ̇(fiJi) = fiRγ̇(Ji),

Y (Dγ̇(fiJi)) = ḟiY (Ji) + fiY (J̇i),

(∇|fiJiY )(γ̇) = fi(∇|JiY )(γ̇),

(∇·Dγ̇(fiJi)Y )(γ̇) = ḟi(∇·JiY )(γ̇) + fi(∇·J̇iY )(γ̇),

L(fiJi, Y (γ̇)) = fiL(Ji, Y (γ̇)).

Since Ji satisfies the Jacobi equation A(Ji) = 0 we have

〈A(fiJi), Jj〉 = f̈i〈Ji, Jj〉+ 2ḟi〈J̇i, Jj〉 − ḟi〈Y (Ji), Jj〉 − ḟi〈(∇·JiY )(γ̇), Jj〉.

Observe that since E is a Lagrangian subspace,

〈Ji, J̇j〉 − 〈J̇i, Jj〉+ 〈Y (Ji), Jj〉 = 0,

and then

〈A(fiJi), Jj〉 =
d

dt
(ḟi〈Ji, Jj〉).

Now we can write∫ T

0

〈A(fiJi), fjJj〉 dt = 〈ḟiJi, fjJj〉
∣∣∣T
0
−
∫ T

0

〈ḟiJi, ḟjJj〉 dt.

Combining the last equality with (7) we obtain

I =
∫ T

0

∣∣∣∣ n∑
i=1

ḟiJi

∣∣∣∣2 dt−〈 n∑
i=1

ḟiJi − Ż, Z
〉∣∣∣∣T

0

−
∫ T

0

〈Y (γ̇), Z〉2 dt.

Note that J̇i(t) = Sγ̇(t)Ji(t), hence

n∑
i=1

fiJ̇i = S

(
n∑
i=1

fiJi

)
= S(Z),

which implies together with Ż =
∑n
i=1 ḟiJi +

∑n
i=1 fiJ̇i that

I =
∫ T

0

|Ż − S(Z)|2 dt+ 〈S(Z), Z〉
∣∣∣∣T
0

−
∫ T

0

〈Y (γ̇), Z〉2 dt. (8)
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Now let

W :=
n∑
i=2

ḟiJi.

Since J1 = γ̇ we have:〈 n∑
i=1

ḟiJi,

n∑
i=1

ḟiJi

〉
= 〈ḟ1γ̇ +W, ḟ1γ̇ +W 〉 = ḟ2

1 + 2ḟ1〈γ̇,W 〉+ 〈W,W 〉.

Differentiating 〈Z, γ̇〉 = 0 we get

〈Ż, γ̇〉+ 〈Z, Y (γ̇)〉 = 0.

But

〈Ż, γ̇〉 =

〈
n∑
i=1

ḟiJi, γ̇

〉
= ḟ1 + 〈W, γ̇〉

since 〈J̇i, γ̇〉 = 0 for all i. Therefore

〈Y (γ̇), Z〉2 = ḟ2
1 + 2ḟ1〈W, γ̇〉+ 〈W, γ̇〉2.

Thus 〈
n∑
i=1

ḟiJi,

n∑
i=1

ḟiJi

〉
− 〈Y (γ̇), Z〉2 = 〈W,W 〉 − 〈W, γ̇〉2.

If we let W⊥ be the orthogonal projection of W to γ̇⊥, the last equation and

(8) give:

I =
∫ T

0

|W⊥|2 dt+ 〈S(Z), Z〉
∣∣∣∣T
0

.

Observe now that

P(Ż − S(Z)) = P(W ) = W⊥

thus

I =
∫ T

0

|P(Ż − S(Z))|2 dt+ 〈S(Z), Z〉
∣∣∣∣T
0

and we have established the equality∫ T

0

{
|XZ|2 − 〈C(Z), Z〉 − L(Y (γ̇), Z, Z)− 〈Y (γ̇), Z〉2

}
dt

=
∫ T

0

|P(XZ − S(Z))|2 dt+ 〈S(Z), Z〉
∣∣∣∣T
0

(9)
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We now set T = 1 in (9) and we integrate the equality with respect to the

Liouville measure µ. Since φ preserves µ we have∫
SM

〈S(Z)(φ1(x, y)), Z(φ1(x, y))〉 dµ =
∫
SM

〈S(Z)(x, y), Z(x, y)〉 dµ.

Thus, using Fubini’s theorem we obtain∫
SM

|P(XZ−S(Z))|2 dµ =
∫
SM

{
|XZ|2−〈C(Z), Z〉−L(Y (y), Z, Z)−〈Y (y), Z〉2

}
dµ.

Suppose now ∫
SM

|P(XZ − S(Z))|2 dµ = 0.

Using Fubini’s theorem again we have for any T ∈ R∫
SM

(∫ T

−T
|P(XZ − S(Z))|2(φt(x, y)) dt

)
dµ(x, y) = 0.

Since S is smooth along the flow we conclude that for all t ∈ R

P(XZ − S(Z))(φt(x, y)) = 0

for almost every (x, y) ∈ SM . Let

Z0(t) := Z(φt(x, y)) + x(t)γ̇(t)

where

x(t) :=
∫ t

0

f(φs(x, y)) ds.

Now observe that

Ż0 = Ż + xY (γ̇) + ẋγ̇,

SZ0 = SZ + xY (γ̇),

hence

Ż − SZ + ẋγ̇ = Ż0 − SZ0.

Now note that since 〈Z, γ̇〉 = 0, ẋ = 〈Z, Y (γ̇)〉 = −〈Ż, γ̇〉. Also 〈S(x, y)(z), y〉 =

0 for any (x, y) ∈ SM and z ∈ TxM , since the Green subbundle is contained

in T (SM). It follows that

〈Ż0 − SZ0, γ̇〉 = 0
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and thus

0 = P(Ż − SZ + ẋγ̇) = P(Ż0 − SZ0) = Ż0 − SZ0.

Hence Z0 is a Jacobi field along γ for almost every (x, y) ∈ SM . This implies

0 = A(Z0) = A(Z) +A(xγ̇).

An easy calculation shows that

A(xγ̇) =
D

dt
(fγ̇)

therefore

A(Z) + X(fγ̇) = 0

for all t ∈ R and almost every (x, y) ∈ SM . Consider now the operator acting

on semibasic vector fields V given by

V 7→ A(V ) + X(〈V, Y (y)〉 y)

This operator annihilates Z for almost every (x, y) ∈ SM and since Z is smooth

it must annihilate Z for every (x, y) ∈ SM . Going backwards we now deduce

that Z0(t) is a Jacobi field along every magnetic geodesic γ as desired.

Conversely, it is now easy to check that if Z0(t) is a Jacobi field along every

magnetic geodesic, then∫
SM

|P(XZ − S(Z))|2 dµ = 0.

3.1 Proof of Theorem A

First observe that (6) and Theorem 3.1 imply right away that h = 0. Let us

show that θ must be closed.

Note that (6) and Theorem 3.1 also imply that Z = ∇·u satisfies the equa-

tion

A(Z) + X(fy) = 0, (10)
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with

f(x, y) = 〈Z(x, y), Yx(y)〉,

A(Z) = X2Z+Ry(Z)−Y (XZ)−(∇|ZY )(y)−(∇·XZY )(y)−L(Z, Y (y)). (11)

Note that (see [10, Proof of Lemma 4.7])

X(∇·u) = ∇·(Xu)−∇:u− 〈Y (y),∇·u〉y.

Therefore,

X2Z = X[∇·(Xu)−∇:u− fy]

= X[∇·(Xu)]−X(∇:u)−X(fy). (12)

We have

X(∇:u) = yk(giju:j):k = yk
(
gij:ku:j + giju:j:k

)
= −2ykY sk g

ilgjmClmsu:j + ykgij [u:k:j − (u:k:j − u:j:k)]

= −2C(∇:u, Y (y)) + gij [(yku:k):j − yk:ju:k]− ykgijR̃skju·s

= −2C(∇:u, Y (y)) +∇:(Xu)− gijY kj u:k − ykgijR̃skju·s

= ∇:(Xu) + Y (∇:u)− 2C(∇:u, Y (y))− ykgijR̃skju·s, (13)

where C is the Cartan tensor of F and C(U, V ) =
(
gilClmsU

mV s
)
.

Next,

ykgijR̃skju·s = ykgij
[
Rskj + (Y sk|j − Y

s
j|k)− (P skmY

m
j − P sjmY mk )

+ (Y mk Y sj·m − Y mj Y sk·m) + ym(Y mj Y sk − Y mk Y sj )
]
u·s.

(14)

Note that

ykgijRskju·s = −Ry(Z), (15)

ykgij(Y sk|j − Y
s
j|k)u·s = ykgij

(
(Ωkmgsm)|j − (Ωjmgsm)|k

)
u·s

= ykgij (Ωkm,jgsm − Ωjm,kgsm)u·s

= −ykgijΩkj,mgsmu·s = −ykY ik|mg
smu·s

= −(∇ZY )(y) (16)
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in view of the identity Ωkm,j + Ωmj,k + Ωjk,m = 0 (Ω is closed),

ykgij
(
P skmY

m
j − P sjmY mk

)
u·s = L(Z, Y (y)) (17)

in view of [10, (20) and (24)],

ykgij
(
Y mk Y sj·m − Y mj Y sk·m

)
u·s

= −2ykgij
(
Y mk Y nj g

slClnm − Y mj Y nk g
slClnm

)
u·s = 0 (18)

in view of [10, (32)] and the symmetry of C, and

ykgijym
(
Y mj Y sk − Y mk Y sj

)
u·s = −〈Y (y), Z〉Y (y) (19)

by the skew symmetry of Y .

Using (13)–(19) in (12), we obtain

X2Z = X[∇·(Xu)]−∇:(Xu)− Y (∇:u) + 2C(∇:u, Y (y))

−Ry(Z) + (∇ZY )(y)− L(Z, Y (y))

− 〈Y (y), Z〉Y (y)−X(fy).

(20)

Also,

Y (XZ) = Y (X(∇·u)) = Y [∇·(Xu)−∇:u− 〈Y (y),∇·u〉y]

= Y (∇·(Xu))− Y (∇:u)− 〈Y (y), Z〉Y (y), (21)

(∇·XZY )(y) =
[
(Xu)·k − u:k − 〈Y (y),∇·u〉yk

]
yjY ij·k

= −2
[
(Xu)·k − u:k − 〈Y (y),∇·u〉yk

]
yjY mj gilClmk

= −2C(∇·(Xu), Y (y)) + 2C(∇:u, Y (y)). (22)

Using (11) and (20)–(22) in (10) and performing cancelations, we deduce

the following:

X[∇·(Xu)]−∇:(Xu)− Y (∇·(Xu)) + 2C(∇·(Xu), Y (y)) = 0. (23)
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Since Xu(x, y) = θi(x)yi, we have

X[∇·(Xu)]−∇:(Xu)− Y (∇·(Xu)) + 2C(∇·(Xu), Y (y))

= yk(gijθi):k − gij(θkyk):j − Y ij gjkθk + 2gilClmsgmjθjY sk y
k

= yk(gij:kθj + gijθj,k)− gijθk,jyk − gijθkyk:j − Y ij gjkθk + 2ykY sk g
ilgjmClmsθj

= −2ykY sk g
ilgjmClmsθj + gijθj,ky

k − gijθk,jyk − gijθkY kj − gjkY ij θk

+ 2ykY sk g
ilgjmClmsθj

= gij(θj,k − θk,j)yk,

Now, (23) yields

gij(θj,k − θk,j)yk = 0,

which means that the form θ is closed.

Remark 3.2. Observe that if we assume that the hyperbolic closed orbits of

φ are dense, it is easy to show that θ is exact directly from (6) and Theorem

3.1. Indeed we have ∫
SM

|P(XZ − S(Z))|2 dµ = 0

where Z = ∇·u. Since Z is bounded, the Jacobi field Z0 grows at most linearly.

If (x, y) gives rise to a hyperbolic closed orbit, then Z must vanish along it.

Since we are assuming that the hyperbolic closed orbits are dense, Z must

vanish everywhere on SM . It follows that u(x, y) depends only on x and θ is

exact.

Also note that the set Q := {(x, y) ∈ SM : Z(x, y) = 0} is φ-invariant and

π(Q) = M (cf. end of the proof of Theorem B).

4 Invariant distributions and asymptotic cycles

In [12] L. Flaminio and G. Forni studied the cohomological equation for the

horocycle flow φh of a compact hyperbolic surface. Let U be the vector field

generating φh. They showed (among several other results) that the equation



176 N. S. DAIRBEKOV G. P. PATERNAIN

U(u) = v for v ∈ C∞(SM) admits a C∞ solution u if and only if D(v) =

0 for every invariant distribution D of the horocycle flow. Recall that an

invariant distribution D is an element of the dual space of C∞(SM) such

that D(U(u)) = 0 for every smooth function u. Let I(φh) be the space of all

invariant distributions. Flaminio and Forni also show that I(φh) is a vector

space of infinite countable dimension completely determined by the spectrum σ

of the Laplacian of M and the genus of M as follows (their result also provides

precise information about the Sobolev regularity of the invariant distributions):

I(φh) =
⊕
µ∈σ
Iµ ⊕

⊕
n∈Z+

In

where

• for µ = 0, I0 is spanned by the PU(1, 1)-invariant volume;

• for µ > 0, Iµ has dimension equal to twice the multiplicity of µ ∈ σ;

• for n ∈ Z+, the space In has dimension equal to twice the rank of the

space of holomorphic sections of the n-th power of the canonical line

bundle over M .

There is also an explicit calculation of Iµ and In in terms of appropriate

bases of the subspaces of the irreducible representations.

Let X be the infinitesimal generator of the geodesic flow and let V be the

infinitesimal generator of the action of S1 on the fibres of SM →M . Let H be

the vector field associated with the flow R−1 ◦ gt ◦R, where gt is the geodesic

flow and R(x, y) = (x, iy). Using the basis {X,H, V } we can write:

U = −H + V ;

Gµ = X + V.

Define (cf. [14, 12]):

η+ := X − iH
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and

η− := X + iH.

Let L2(SM) be the space of square integrable functions with respect to the

Liouville measure of SM . The space L2(SM) decomposes into an orthogonal

direct sum of subspaces
∑
Hn, n ∈ Z, such that on Hn, −i V is n times the

identity operator; η+ extends to a densely defined operator from Hn to Hn+1

for all n. Moreover, its transpose is −η−.

An orthogonal basis of the representation of the principal or complementary

series is given by

. . . , ηk−f, . . . , η
2
−f, η−f, f, η+f, η

2
+f, . . . , η

k
+f, . . .

where f is a normalized eigenfunction of the Laplacian on M (V (f) = 0).

On the other hand an orthogonal basis of the representation of the holo-

morphic discrete series π+
n is given by

f, η+f, η
2
+f, . . . , η

k
+f, . . .

where f ∈ Hn and η−f = 0 (and also with unit norm). Similarly for the

anti-holomorphic discrete series π−n .

Given a smooth 1-form θ we can decompose θ as

θ = θ−1 + θ1

where

2θ−1 = θ + iV (θ),

2θ1 = θ − iV (θ).

Clearly θ±1 ∈ H±1.

The following lemma is straightforward:

Lemma 4.1. The form θ is closed if and only if =η−θ1 = 0. The form θ is

coclosed if and only if <η−θ1 = 0. Also, θ is closed if and only V (θ) coclosed

(and hence θ is coclosed if and only if V (θ) is closed since V 2(θ) = −θ).
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We shall now give a proof of Theorem B for n = 1 without using the

integral Pestov identity and at the same time we will compute the map ρ :

I(φ) → H1(M,R). We will suppose that h = 0 to simplify matters, but the

calculation below can be easily extended.

The first thing to observe is that D(θ) = 0 for all D ∈ I(φ) iff D(V (θ)) = 0

for all D ∈ I(φh). This will allow us to use directly the information on I(φh)

from [12].

Note that we always have D(θ) = 0 for D ∈ In for n 6= 1.

Let us examine the component of θ in one of the spaces of the irreducible

representation corresponding to the principal or complementary series (where

Iµ acts). Call it θµ. The expansion of this component in the basis described

above is

θµ = aµη−fµ + bµη+fµ,

where

aµ‖η−fµ‖2 = 〈θ−1, η−fµ〉 = −〈η+θ−1, fµ〉,

bµ‖η+fµ‖2 = 〈θ1, η+fµ〉 = −〈η−θ1, fµ〉

and it is easy to see that ‖η−fµ‖2 = ‖η+fµ‖2 = µ.

Now, the space Iµ is generated by certain distributions D+
µ and D−µ that

Flaminio and Forni compute explicitly in terms of their Fourier coefficients.

From [12, Section 3] we see that these distributions have the property

D±µ (η−fµ) = D±µ (η+fµ)

and call this common non-zero value value r±. Then

D±µ (θ) =
−r±
µ
〈η+θ−1 + η−θ1, fµ〉 =

−2r±
µ
〈<(η−θ1), fµ〉. (24)

In the case of the holomorphic discrete series we can do a similar calculation.

We can think of each f1 with η−f1 = 0 as a holomorphic section of the canonical

line bundle over M which gives rise to an invariant distribution D1 ∈ I1 and

D1(θ) = 〈θ1, f1〉D1(f1) (25)
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with D1(f1) 6= 0 and similarly for the anti-holomorphic discrete series.

Suppose now Gµ(u) = θ and let us show that θ must be exact. Without

loss of generality we can assume that θ is coclosed, since we can always write

θ = θ′ + df , where θ′ is coclosed and Gµ(u − f ◦ π) = θ′. Then D(V (θ)) = 0

for all D ∈ I(φh). Hence by (24)

〈<(η−V (θ)1), fµ〉 = 0

for all µ ∈ σ which implies <(η−V (θ)1) = 0. By Lemma 4.1, θ must be closed

and hence harmonic (since we are assuming it is coclosed) and so is V (θ). Thus

η−V (θ)1 = 0 and we have an invariant distribution associated with V (θ)1. But

using (25) we see that θ must vanish identically.

This argument also shows the following. Take [ω] ∈ H1(M,R) and represent

the class by a harmonic 1-form ω. Equation (24) shows that D(ω) = 0 for any

D ∈ I(φ) corresponding to a distribution from Iµ. On the other hand by (25)

the restriction of ρ to the subspace corresponding to I1 will be an isomorphism

onto H1(M,R).

We now observe that the results in [12] also give complete information

for higher order tensors. Let C∞n (SM) = Hn ∩ C∞(SM). Note that if u ∈
C∞n (SM), then Gµ(u) ∈ C∞n+1(SM)⊕ C∞n (SM)⊕ C∞n−1(SM). Set

F∞k (SM) :=
⊕
|i|≤k

C∞i (SM).

Definition 4.2. The magnetic ray transform is the function I : C∞(SM) →
(I(φ))∗ given by

I(v)(D) = D(v).

Proposition 4.3. For any k ≥ 0, the kernel of I restricted to F∞k (SM) is

Gµ(F∞k−1(SM)). (If k = 0, we interpret this as saying that I is injective.)

Proof. Take v in the kernel of I. We know by Theorem 1.1 that there exists

a smooth u (unique up to addition of a constant) such that Gµ(u) = v. We

must show that u ∈ F∞k−1(SM).
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Using the conjugacy between φ and φh it is easy to see that it suffices to

show this claim for the classical horocycle flow U . Indeed, note that D(v) = 0

for all D ∈ I(φ) iff D((x, y) 7→ v(x, iy)) = 0 for all D ∈ I(φh).

But in [12, Section 4], there are explicit formulas for the Fourier coefficients

of u in terms of those of v for each of the possible representations, where

U(u) = v. For example, for the principal series (and ν 6= 0) one obtains:

un =
2i
ν

∑
l<n

(
Πν,|l|

Πν,|n|
− 1
)
vl =

−2i
ν

∑
l≥n

(
Πν,|l|

Πν,|n|
− 1
)
vl,

where ν is related to an eigenvalue µ of the Laplacian by 1 − ν2 = 4µ, and

Πν,l are certain coefficients defined in [12, Section 2] whose precise value is of

no importance to us. Now, if v ∈ F∞k (SM), then vl = 0 for all l with |l| > k.

Thus the formula above implies that un = 0 for all n with |n| ≥ k. A similar

argument can be done for all other representations using the formulas in [12,

Section 4]. In all the cases we see that v ∈ F∞k (SM) implies un = 0 for all n

with |n| ≥ k, and thus u ∈ F∞k−1(SM) as desired.

Of course, for k = 1 the proposition is saying exactly the same as Theorem

B for n = 1.

5 Proof of Theorem B

Given an arbitrary pair (g,Ω) on a closed manifold M , formula (5) takes the

simpler form:

∫
SM

{
|X(∇·u)|2 − 〈Ry(∇·u),∇·u〉 − 〈∇·(Xu), Y (∇·u)〉 − 2〈Y (y),∇·u〉2

+ 〈∇:u, Y (∇·u)〉+ 〈∇(∇·u)Y (y),∇·u〉
}
dµ =

∫
SM

{
|∇·(Xu)|2−n(Xu)2

}
dµ,

(26)

where now all the derivatives that appear are obtained using the Levi-Civita

connection of the metric.
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Suppose now that Gµ(u) = h ◦ π + θ and extend u to a positively ho-

mogeneous function of degree zero on TM \ {0} (still denoted by u). Then

X(u) = |y|h ◦ π + θ and Lemma 2.1 shows as in the proof of Theorem A that

the right hand side of (26) is non-positive and thus

∫
SM

{
|X(∇·u)|2 − 〈Ry(∇·u),∇·u〉 − 〈∇·(Xu), Y (∇·u)〉 − 2〈Y (y),∇·u〉2

+ 〈∇:u, Y (∇·u)〉+ 〈∇(∇·u)Y (y),∇·u〉
}
dµ ≤ 0. (27)

We also know that ([10, Proof of Lemma 4.7]:

X(∇·u) = ∇·(Xu)−∇:u− 〈Y (y),∇·u〉y.

Therefore

−〈∇·(Xu), Y (∇·u)〉+ 〈∇:u, Y (∇·u)〉 = −〈X(∇·u), Y (∇·u)〉+ 〈Y (y),∇·u〉2.

Hence (27) gives:

∫
SM

{
|X(∇·u)|2 − 〈Ry(∇·u),∇·u〉 − 〈X(∇·u), Y (∇·u)〉

− 〈Y (y),∇·u〉2 + 〈∇(∇·u)Y (y),∇·u〉
}
dµ ≤ 0. (28)

Let M be as is the Theorem. Then Y = J, ∇J = 0, and the curvature

tensor is given by (see [16, p. 166]):

−4R(X,Y, Z,W ) = 〈X,Z〉〈Y,W 〉 − 〈X,W 〉〈Y,Z〉+ 〈X, JZ〉〈Y, JW 〉

−〈X, JW 〉〈Y, JZ〉+ 2〈X, JY 〉〈Z, JW 〉.

Let Z := ∇·u. Then 〈Z, y〉 = 0 and

R(y, Z, y, Z) = −1
4
(
|Z|2 + 3〈Z, Jy〉2

)
.

Using this information in (28) we obtain:
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∫
SM

{
|X(Z)|2 +

1
4
(
|Z|2 − 〈Z, Jy〉2

)
+ 〈J(X(Z)), Z〉

}
dµ ≤ 0. (29)

Write Z = aJy + Z0, where 〈Z0, J〉 = 0. Then

X(Z) = Gµ(Z) = Gµ(a)Jy − ay + Gµ(Z0),

J(X(Z)) = −Gµ(a)y − aJy + JGµ(Z).

Since

〈Z0, y〉 = 〈Z0, Jy〉 = 0

we have

〈Gµ(Z0), y〉 = 〈Gµ(Z0), Jy〉 = 0.

Therefore

|X(Z)|2 = [Gµ(a)]2 + a2 + |Gµ(Z0)|2,

〈J(X(Z)), Z〉 = −a2 + 〈JGµ(Z0), Z0〉.

Hence (29) can be rewritten as follows∫
SM

{
[Gµ(a)]2 + |Gµ(Z0)|2 +

1
4
|Z0|2 + 〈JGµ(Z0), Z0〉

}
dµ ≤ 0.

Equivalently ∫
SM

{
[Gµ(a)]2 + |Z0/2 + JGµ(Z0)|2

}
dµ ≤ 0. (30)

This inequality can hold only if

Gµ(a) = 0 and Z0/2 = −JGµ(Z0).

The last equation implies

Gµ(|Z0|2) = 2〈Gµ(Z0), Z0〉 = 〈J(Z0/2), Z0〉 = 0.

Therefore a and |Z0|2 are first integrals of Gµ. Since the magnetic flow φ1 is

ergodic with respect to the Liouville measure (cf. Lemma 7.1) we conclude that
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|Z| is constant everywhere. Let us show that this implies that Z = ∇·u = 0

everywhere.

Recall that ∇·u := (u·i) where u·i := giju·j and u·j := ∂u
∂yj . Fix x0 ∈ M

and consider the restriction ũ of u to SxM . Since SxM is compact there is

y0 ∈ SxM for which dy0 ũ = 0. Since u is homogeneous of degree zero we must

have ∇·u(x0, y0) = 0. Thus ∇·u = 0 everywhere in SM .

6 Proof of Theorem C

The first thing to observe is that the existence of Green subbundles implies

that τ(Σ) = M (see [6, Corollary 1.13]). Since H is convex and superlinear, for

each x ∈M , there exists a unique βx ∈ T ∗xM such that p 7→ H(x, p) achives it

unique minimum at βx.

The map x 7→ βx can be seen as a smooth 1-form and βx belongs to the

interior of the region bounded by Σ ∩ T ∗xM for all x ∈M .

Consider the map B : T ∗M → T ∗M given by B(x, p) = (x, p − βx). It is

easy to check that B∗(λ) = λ − τ∗β and that B∗(τ∗Ω) = τ∗Ω. Hence if we

let Ω̃ := Ω + dβ, B is a symplectomorphism between (T ∗M,−dλ + τ∗Ω) and

(T ∗M,−dλ + τ∗Ω̃). The Hamiltonian Hβ(x, p) := H(x, p + βx) = H ◦ B−1

achieves its minimum on every fibre at the zero section and thus, without loss

of generality, we may assume that Σ contains the zero section of T ∗M . But

in that case we can define a Finsler metric F on M using homogeneity and

declaring that Σ corresponds to the unit cosphere bundle of F .

Let φF be the magnetic flow of (F,Ω) acting on Σ with infinitesimal gener-

ator XF . By definition of F , there exists a positive function f ∈ C∞(Σ) such

that XH = fXF . Thus XH(u) = τ∗θ(XH) if and only if XF (u) = τ∗θ(XF ).

On account of Theorem A, the proof of Theorem C will be complete once we

prove that the magnetic flow φF is also free of conjugate points on Σ.
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Since XH = fXF , there exists a smooth function st(x, p) such that

φFt (x, p) = φst(x,p)(x, p).

Differentiating with respect to (x, p) we obtain

dφFt = dφst + (XH ◦ φst) dst.

Let E ⊂ TΣ be the stable Green subbundle for φ (recall that we are assuming

that φ has no conjugate points). Since XH ∈ E, the formula above shows that

E is also dφF -invariant. Since E is a Lagrangian subbundle which intersects

the vertical subspace trivially, it follows from [6, Proposition 1.15] that φF is

also free of conjugate points as desired.

7 Appendix

In this appendix we collect some facts about magnetic flows on compact quo-

tients of complex hyperbolic space.

7.1 Complex hyperbolic space

Our reference for this subsection is [13].

Let Cn,1 be the (n + 1)-dimensional complex vector space consisting of

(n+ 1)-tuples

z =
[

z′

zn+1

]
∈ Cn+1

with Hermitian pairing

〈z, w〉 = z1w̄1 + · · ·+ znw̄n − zn+1w̄n+1.

We denote the group of unitary automorphisms of Cn,1 by U(n, 1). For any unit

complex number ρ, scalar multiplication by ρ lies in U(n, 1); the corresponding

subgroup is the center of U(n, 1).
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Complex hyperbolic space n-space Hn
C is defined to be the subset of P(Cn,1)

consisting of negative lines in Cn,1. A vector z is said to be negative (resp. null,

positive) if 〈z, 〉 is negative (resp. null, positive).

The boundary ∂Hn
C of Hn

C is the set of null lines in Cn,1.

Let PU(n, 1) be the image of U(n, 1) in PGL(Cn,1). The group PU(n, 1)

is the full group of biholomorphisms of Hn
C.

Consider Cn with the standard positive definite Hermitian inner product

〈〈z, w〉〉 = z1w̄1 + · · ·+ znw̄n.

Complex hypebolic space can be identified with the unit ball Bn in Cn by

considering the restriction to Bn of the map that takes z′ ∈ Cn to the line

determined by [
z′

1

]
∈ Cn,1.

The map also identifies ∂Bn = S2n−1 with ∂Hn
C.

Complex hyperbolic space can be naturally endowed with a PU(n, 1)-invariant

Kähler structure which we normalize so that it has holomorphic sectional

curvature equal to −1 (hence the sectional curvatures range in the interval

[−1,−1/4]).

The group PU(n, 1) acts transitively on Hn
C and on the unit sphere bundle

SHn
C. Let O be the point in Hn

C determined by the line[
0
1

]
∈ Cn,1

which corresponds to the origin in Bn. The stabilizer of O is given by U(n)

which sits in PU(n, 1) as follows

U(n) 7→ U(n, 1) 7→ PU(n, 1)

where the first map is

A 7→
[
A 0
0 1

]
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and the second map is just projection. (U(n) is the maximal compact subgroup

of PU(n, 1).) Thus Hn
C is the rank one symmetric space

PU(n, 1)/U(n).

The Lie algebra of PU(n, 1) equals su(n, 1) and consists of matrices of the

form

M(X, ξ) :=
[
X ξ
ξ∗ −tr(X)

]
where X ∈ u(n) satisfies X∗ = −X and ξ ∈ Cn. (For any matrix Y we denote

its conjugate transpose by Y ∗.) The embedding u(n) 7→ su(n, 1) corresponding

to U(n) 7→ PU(n, 1) is given by

X 7→
[
X − 1

n+1 tr(X)In 0
0 − 1

n+1 tr(X)

]
.

It is easily seen that TOHn
C is given by the matrices of the form M(0, ξ) and

the metric of the Kähler structure is just

〈M(0, ξ),M(0, η)〉 = 4〈〈ξ, η〉〉.

(The factor of 4 makes the holomorphic sectional curvature equal to −1.) One

can also check that the almost complex structure JO : TOHn
C 7→ TOHn

C is given

by

ξ 7→ iξ.

The subgroup U(n) acts on TOHn
C simply by

ξ 7→ Aξ.

Hence if we set

ξ0 =
[

0
1/2

]
∈ Cn,

then M(0, ξ0) has norm one and the subgroup of U(n) that stabilizes ξ0 is

U(n− 1) embedded as

A 7→
[
A 0
0 1

]
.
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Thus

SHn
C = PU(n, 1)/U(n− 1).

The embedding u(n− 1) 7→ su(n, 1) is given by

X 7→

 X − 1
n+1 tr(X)In−1 0 0

0 − 1
n+1 tr(X) 0

0 0 − 1
n+1 tr(X)

 .
Set

N(η, ξ, t) :=

 On−1 η ξ′

−η∗ it ξn
(ξ′)∗ ξn −it


where t ∈ R, η ∈ Cn−1 and

ξ =
[
ξ′

ξn

]
∈ Cn.

The tangent space T(O,ξ0)SHn
C is then given by the set of all matrices N(η, ξ, t)

as above. If we let π : SHn
C → Hn

C be the canonical projection, then its

differential dπ(O,ξ0)SHn
C → TOHn

C is given by

N(η, ξ, t) 7→M(0, ξ).

From this we can easily see that the vertical subspace V at (O, ξ0) is just the

set of all matrices of the form N(η, 0, t). The horizonal subspace H is given by

the matrices of the form N(0, ξ, 0).

7.2 Geodesic and magnetic flows

Let

X := N(0, ξ0, 0) =

 On−1 0 0
0 0 1/2
0 1/2 0

 .
The one-parameter subgroup generated by X is precisely the geodesic flow of

Hn
C. That is, if we let φt : SHn

C = PU(n, 1)/U(n− 1)→ SHn
C be

φt(gU(n− 1)) = getXU(n− 1)
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then φ is the geodesic flow of Hn
C. This follows from the fact that X is horizontal

and its horizontal component is precisely ξ0. Note that

etX =

 In−1 0 0
0 cosh(t/2) sinh(t/2)
0 sinh(t/2) cosh(t/2)


which commutes with U(n− 1).

Next observe that the vertical vector, whose vertical component is iξ0 =

JO(ξ0) is given by the matrix

V := N(0, 0, 1/2) =

 On−1 0 0
0 i/2 0
0 0 −i/2

 .
It follows that

Xλ := X + λV =

 On−1 0 0
0 λi/2 1/2
0 1/2 −λi/2


generates the magnetic flow φλ of the pair (g, λΩ) where g is the Riemannian

metric on Hn
C and Ω is the Kähler form. Note that X1 gives rise to a unipotent

flow.

7.3 Smooth compact quotients

A classical result of A. Borel [2] asserts that there are always cocompact lattices

Γ ⊂ PU(n, 1) such that M := Γ \Hn
C is a smooth compact manifold (a locally

symmetric space). The magnetic flows φλ descend to

SM = Γ\PU(n, 1)/U(n− 1)

and we still denote them by φλ.

The following lemma should be well known to experts. We include its proof

for completeness.

Lemma 7.1. For |λ| < 1, the flow φλ is, up to a constant time change,

smoothly conjugate to φ0 with entropy
√

1− λ2 h(φ0). The flow φ1 has zero

entropy and is ergodic (in fact mixing) with respect to the Liouville measure.
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Proof. If |λ| < 1 one can check that there exists c ∈ PU(n, 1) such that

c−1Xλc =
√

1− λ2X0.

Moreover, we can choose c of the form

c =

 In−1 0 0
0 ∗ ∗
0 ∗ ∗


which commutes with U(n − 1). Hence the map g 7→ gc descends to SM to

give a conjugacy between φλ and a constant time change of φ0 with scaling

factor
√

1− λ2.

The fact that φ1 has zero entropy follows easily from φ0
t ◦ φhs = φhse−t ◦ φ

0
t

for all s, t ∈ R, where φh is the flow generated by

U :=

 On−1 0 0
0 −i/2 −i/2
0 i/2 i/2

 .
But φ1 and φh are conjugated because there exists d ∈ PU(n, 1) such that

d−1X1d = U . In fact

d = e
π
2 V =

 In−1 0 0
0 eiπ/4 0
0 0 e−iπ/4

 .
Note that U spans the center of the Heisenberg Lie algebra giving the stable

bundle of φ0. When n = 1, φh is the classical horocycle flow.

The ergodicity of φ1 follows immediately from Moore’s ergodicity theorem

[20].

Remark 7.2. Ratner’s theorem [28] describes completely all the ergodic in-

variant probability measures of φ1 (they are all algebraic).

The explicit form of d tells us that the conjugacy f : SM → SM between

φ1 and φh is given by:

f(x, y) = (x, Jy)

where J is the almost complex structure.
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Using what we just proved it follows easily that φ1 has no conjugate points.

Indeed, since φλ is Anosov for |λ| < 1, it does not have conjugate points.

But the no conjugate points condition is closed, thus φ1 also has no conjugate

points. Of course, one can also give a direct proof of this fact using the known

expression of the Riemann curvature tensor solving explicitly the magnetic

Jacobi equation.
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