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PARABOLIC SUBMANIFOLDS OF RANK TWO

M. Dajczer P. Morais

An immersed submanifold f :Mn → RN , n ≥ 3, into Euclidean space with

the induced metric is called of rank two if at any point the kernel of its vector

valued second fundamental form has codimension two. Equivalently, we have

that the image of the Gauss map in the Grassmannian of non-oriented n-planes

GNn is a surface. These submanifolds have been the object of a great deal of

work in Riemannian Geometry since long time ago. For instance, see [2] and

references therein. This interest is in good part motivated by the fact that

their curvature tensor is “as flat as possible” without vanishing altogether.

The subspace spanned by the second fundamental form, usually called the

first normal space and denoted by N1, of a rank two submanifold satisfies

dimN1 ≤ 3 at any point. It turns out that if in substantial codimension, any

rank two submanifold is a hypersurface if dimN1 = 1 at any point. Then

f is either a Euclidean surface or the cone over a spherical surface, up to a

Euclidean factor, if dim N1 = 3 everywhere. Submanifolds in the remaining

and much more interesting case, namely, when dimN1 = 2 everywhere, have

been divided in three classes: elliptic, hyperbolic and parabolic. A complete

parametric description of the elliptic submanifolds was given in [5].

For codimension N − n = 2, it was shown in [6] that elliptic and nonruled

parabolic submanifolds are genuinely rigid. This means that given any other

isometric immersion f̃ : Mn → Rn+2 there is an open dense subset of Mn such

that restricted to any connected component f |U and f̃ |U are either congruent

or there are an isometric embedding j: U ↪→ Nn+1 into a Riemannian manifold

Nn+1 and either flat or isometric noncongruent hypersurfaces F, F̃ : Nn+1 →
Rn+2 such that f |U = F ◦ j and f̃ |U = F̃ ◦ j. Recently, we proved [8] that

nonruled parabolic submanifolds in codimension two are not only genuinely

rigid but, in fact, isometrically rigid.
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The goal of this paper is to classify parametrically parabolic submanifolds

in any codimension. First, we describe the ones that are ruled and show that

they are the only parabolic submanifolds that admit an isometric immersion

as a hypersurface. Then, we classify the nonruled ones by two different means.

In fact, we provide the polar and bipolar parametrizations, each of which is

associated to a parabolic surface and a function on the surface which satisfies

a parabolic differential equation. To conclude, we describe the structure of the

singular set of the nonruled parabolic submanifolds.

1 Parabolic submanifolds.

In this section, we introduce the concept of parabolic submanifold and study

in detail the structure of the normal bundle.

We denote by f : Mn → QN
ε , ε = 0, 1, a connected n-dimensional submani-

fold of either Euclidean space RN (ε = 0) or unit Euclidean sphere SN (ε = 1)

with codimension N − n. The kth-normal space Nf
k (x) of f at x ∈ Mn is

defined as

Nf
k (x) = span{αk+1

f (X1, . . . , Xk+1) ;X1, . . . , Xk+1 ∈ TxM}.

Here, α`f : TM × · · · × TM → T⊥f M , ` ≥ 2, is the symmetric tensor known as

the `th-fundamental form and given by

α`f (X1, . . . , X`) = π`−1
(
∇⊥X` . . .∇

⊥
X3
αf (X2, X1)

)
where π` stands for the orthogonal projection π`: T⊥f M → (Nf

1 ⊕ . . .⊕N
f
`−1)⊥

and T⊥f M is endowed with the normal connection ∇⊥ induced by the metric

connection ∇̃ in the ambient space. We agree that α1
f : TM → TM is α1

f = I

and denote α2
f = αf (π1 = I) as usual.

We always assume that f : Mn → QN
ε is substantial and has rank 2. The

later condition is denoted as rankf = 2, and means that the relative nullity

subspaces ∆(x) ⊂ TxM defined as

∆(x) = {X ∈ TxM : αf (X,Y ) = 0 ; Y ∈ TxM},
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form a tangent subbundle of codimension two. It is a standard fact that the

relative nullity distribution is integrable and that the leaves are totally geodesic

submanifolds of the ambient space QN
ε .

The cone Cf : Mn × R+ → RN+1 of a submanifold f : Mn → SN of rank

two has the same rank since the relative nullity leaves of Cf are the cones of

the relative nullity leaves of f . Moreover, one has that NCf
k = Nf

k , k ≥ 1, up

to parallel transport in RN+1. Thus, it suffices to consider the Euclidean case

since we had restricted ourselves to submanifolds of RN and SN .

The condition rankf = 2 and the symmetry of the second fundamental form

imply that the first normal spaces of f satisfy dimNf
1 ≤ 3 at any point. By

Theorem 1 in [9] we have that f is a hypersurface in substantial codimension

if dimNf
1 = 1 everywhere. On the other hand, it is not difficult to show that

a submanifold with dimNf
1 = 3 everywhere is either a Euclidean surface or

the cone over a spherical surface up to Euclidean factor. In the remaining case

when dimNf
1 = 2 everywhere, either there exists a pair of linearly independent

“conjugate directions” X1, X2 ∈ ∆⊥ , i.e.,

αf (X1, X1)± αf (X2, X2) = 0, (1)

or f admits an “asymptotic direction” 0 6= Z ∈ ∆⊥, i.e., αf (Z,Z) = 0. In cases

(1) the submanifold was called elliptic for the plus sign and hyperbolic for the

minus sign in [5].

Definition 1. A submanifold f : Mn → QN
ε is called parabolic if we have:

(i) rankf = 2,

(ii) dimNf
1 = 2,

(iii) There is a nonsingular asymptotic vector field Z ∈ ∆⊥, i.e., αf (Z,Z) = 0.

Notice that cones of parabolic spherical submanifolds are also parabolic.

Let f : Mn → RN be a parabolic submanifold. We always denote by {X,Z}
an orthonormal frame in ∆⊥ where Z is an asymptotic vector field. Clearly,
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we can always take an orthonormal smooth frame {η1, η2} in Nf
1 such that the

shape operators take the form

Afη1 |∆⊥ =
[
a b
b 0

]
and Afη2 |∆⊥ =

[
c 0
0 0

]
(2)

where the functions b, c never vanish. In particular, we see that the asymptotic

field Z is unique up to sign.

An easy argument given in [5] proves the following fact.

Proposition 2. Assume that f : Mn → QN
ε satisfies dimNf

1 = 2 at any point.

Then, we have that dimNf
k ≤ 2 for all k ≥ 1.

We always admit that the fibers of any Nf
k have constant dimension and

thus form subbundles of the normal bundle. If τ = τf denotes the index of the

“last” of the normal subbundles of f , then T⊥f M = Nf
1 ⊕ · · · ⊕ Nf

τ since, by

assumption, f is substantial.

We denote

ξk1 = αk+1
f (X, . . . ,X) and ξk2 = αk+1

f (Z,X, . . . ,X).

Since αk+1
f (Z,Z, Y1, . . . , Yk−1) = 0, it is clear that

Nf
k = span{ξk1 , ξk2} for 1 ≤ k ≤ τf .

Proposition 3. For 1 ≤ k ≤ τf − 1 the following holds:

(i) (∇̃Z ξk1 )Nfk+1
= (∇̃X ξk2 )Nfk+1

= ξk+1
2 ,

(ii) (∇̃X ξk1 )Nfk+1
= ξk+1

1 ,

(iii) (∇̃Z ξk2 )Nfk+1
= 0.

Proof: From the definition of the k-normal spaces, given η ∈ Nf
l we have

∇⊥Y η ∈ N
f
l−1 ⊕N

f
l ⊕N

f
l+1 (3)
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where Nf
0 = 0 = Nf

τf+1
. Then,

ξk+1
2 = (∇⊥Z (∇⊥X . . .∇⊥Xαf (X,X))Nfk )Nfk+1

= (∇̃Z ξk1 )Nfk+1
,

ξk+1
2 = (∇⊥X(∇⊥Z . . .∇⊥Xαf (X,X))Nfk )Nfk+1

= (∇̃X ξk2 )Nfk+1

and (i) has been proved. The proof of (ii) is similar. For (iii), we have

(∇̃Zξk2 )Nfk+1
= (∇⊥Z (∇⊥X . . .∇⊥Xαf (X,Z))Nfk )Nfk+1

= αk+2
f (X, . . . , Z, Z) = 0.

�

The following fact was proved in [5].

Proposition 4. If f : Mn → RN is a parabolic submanifold, then the normal

subbundles Nf
k , 1 ≤ k ≤ τf , are parallel in RN along ∆.

Let νk ⊂ Nf
k ×N

f
k , 0 ≤ k ≤ τf , be the subspace defined as

νk = {(µ1, µ2) ∈ Nf
k ×N

f
k : 〈µ2, ξ

k
2 〉 = 0 and 〈µ2, ξ

k
1 〉 = 〈µ1, ξ

k
2 〉}.

It is easy to see that νk is independent of the base {X,Z} with Z asymptotic.

Clearly, ξk1 = 0 implies that νk = 0. We also have the following facts.

Lemma 5. For 1 ≤ k ≤ τf the following holds:

(i) dimνk = 2 if and only if dimNf
k = 2,

(ii) dimνk = 1 if and only if dimNf
k = 1 and ξk2 = 0,

(iii) dimνk = 0 if and only if dimNf
k = 1 and ξk2 6= 0.

Proof: If dimνk = 2, we either may choose (µ1, µ2) ∈ νk such that µ1 6= 0 6=
µ2 or we are done. It is easy to see that µ1 and µ2 must be linearly independent,

and thus dimNf
k = 2. Then, take 0 6= v ∈ Nf

k such that 〈v, ξk2 〉 = 0, and set

u = (〈v, ξk1 〉/‖ξk2‖2)ξk2 . Hence, u, v are a base of Nf
k and (u, v), (u+ v, v) ∈ νk

are linearly independent. This proves (i). The proofs of (ii) and (iii) follow

easily form the definition of νk.

�
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Definition 6. Given a parabolic submanifold f : Mn → QN
ε ⊆ RN+ε, we call

an element β ∈ C∞(Mn,RN+ε) a k–cross section to f , 1 ≤ k ≤ τf , if at any

point

β∗ (TM) ⊂ Nf
k ⊕ · · · ⊕N

f
τf
,

up to parallel transport in RN+ε.

Lemma 7. Let Pk: C∞(Mn,RN+ε)→ Nf
k ×N

f
k , 1 ≤ k ≤ τf , be the tensor

Pk(β) = ((β∗X)Nfk , (β∗Z)Nfk ).

Then Pk(β) ∈ νk for any k–cross section β to f . Moreover, the tensor

Pk|Nfk+1
: Nf

k+1 → νk, 1 ≤ k ≤ τf − 1,

is injective.

Proof: We have,

〈β∗X, ξk2 〉 = 〈∇̃Xβ, ∇̃Z(∇⊥X . . .∇⊥Xαf (X,X))〉

= Z〈∇̃Xβ,∇⊥X . . .∇⊥Xαf (X,X)〉 − 〈∇̃Z∇̃Xβ,∇⊥X . . .∇⊥Xαf (X,X)〉

= 〈∇̃Zβ, ∇̃X(∇⊥X . . .∇⊥Xαf (X,X))〉

= 〈β∗Z, ξk1 〉.

A similarly argument gives

〈β∗Z, ξk2 〉 = 〈β∗X,αk+1
f (Z,Z,X, . . . ,X)〉 = 0.

To conclude, observe that if η ∈ Nf
k+1 satisfies Pk(η) = 0, then

0 = 〈η∗X, ξkj 〉 = 〈∇̃Xη, ξkj 〉 = −〈η, ∇̃Xξkj 〉 = −〈η, ξk+1
j 〉, j = 1, 2.

Hence, η = 0.

�

Proposition 8. Let f : Mn → RN be a parabolic submanifold. Then, we have:
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(i) ξk1 6= 0 for any 1 ≤ k ≤ τf − 1,

(ii) ξk2 = 0 if and only if dimNf
k = 1,

(iii) If ξk2 = 0, then ξj2 = 0 for j ≥ k.

Proof: To prove (i) suppose that ξk1 = 0. Thus, νk = 0. Then Lemma 7 gives

Nf
k+1 = 0, which is not possible. For (ii) suppose that dimNf

k = 1 and ξk2 6= 0.

We have that νk = 0 from Lemma 5, and by Lemma 7 this is a contradiction.

Finally, to prove (iii) assume ξk2 = 0. Using (3) we have

ξk+1
2 = πk+1(∇⊥X∇⊥Z∇⊥X . . .∇⊥Xαf (X,X))

= πk+1(∇⊥X(πk(∇⊥Z∇⊥X . . .∇⊥Xαf (X,X)))

= πk+1(∇⊥Xξk2 ) = 0.

�

Definition 9. We say that a parabolic submanifold f : Mn → QN
ε has critical

index τf0 ∈ {1, . . . , τf − 1} if ξτ
f
0

2 6= 0 and ξk2 = 0 for any k ≥ τf0 + 1.

Corollary 10. Assume that f possesses critical index. Then:

(i) dimNf
k = 2, 1 ≤ k ≤ τf0 ,

(ii) dimNf
k = 1, τf0 + 1 ≤ k ≤ τf ,

(iii) The tensor, Pk|Nfk+1
: Nf

k+1 → νk is an isomorphism for k ≤ τf0 − 1.

2 Intrinsic proprieties

In this section we analyze the metric structure of the parabolic submanifolds.

Proposition 11. Let f : Mn → RN be a parabolic submanifold. Then,

F = span{Z} ⊕∆

is an integrable distribution and the leaves are flat hypersurfaces.
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Proof: We first show that the line bundle L = span{ξ1
2} is parallel along the

leaves of relative nullity. The unit vector field η ∈ Nf
1 orthogonal to ξ1

2 is the

only one, up to sign, such that AfηZ = 0. Thus Afη has rank 1. In view of

Proposition 4 it is sufficient to show that η is parallel along ∆.

Recall that the splitting tensor C associates to T ∈ ∆ the endomorphism

CT of ∆⊥ defined as

CTX = − (∇XT )∆⊥ .

It is well-known [7] that the differential equation

∇TAfξ = Afξ ◦ CT (4)

is satisfied along ∆⊥ if ξ ∈ T⊥f M is parallel along ∆.

Let x ∈Mn and γ a geodesic with γ(0) = x contained in the corresponding

leaf of ∆. If δt is the parallel transport of ηx along γ, we have

∇γ′Afδt = Afδt ◦ Cγ′ .

Hence, Afδt = Afηxe
∫ t
0 Cγ′dτ . Thus Afδt has rank 1 and, therefore η = δt is

parallel.

Since the left hand side of

∇TAfη = Afη ◦ CT

is symmetric, we obtain that

AfηCTZ = CtTA
f
ηZ = 0.

Thus CTZ ∈ span{Z}, that is, 〈∇ZT,X〉 = 0. Then the Codazzi equation

yields

∇⊥T αf (Z,X)− 〈∇TZ,X〉αf (X,X) + 〈∇ZT,Z〉αf (Z,X) = 0.

Using that L is parallel along ∆, we obtain that 〈∇TZ,X〉 = 0. Hence F is

integrable. Moreover, the second fundamental form of a leaf U is

AUX =
[
λ 0
0 0

]
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where λ = 〈∇ZZ,X〉. Thus the leaves of F are flat.

�

Recall that a submanifold f : Mn → QN
ε is called ruled when Mn admits a

hypersurface foliation of totally geodesic submanifolds of QN
ε .

Example 12. Ruled Euclidean submanifolds of rank 2 without flat points and

substantial codimension at least 2 are basic examples of parabolic submanifolds.

In fact, it follows from Corollary 4.7 in [3] that dimNf
1 = 2.

From the proof of Proposition 11 we have the following fact.

Corollary 13. Let f : Mn → RN be a ruled parabolic submanifold. Then the

leaves of F are totally geodesic in Mn.

3 Regularity

A key ingredient in the parametric description of the elliptic submanifolds given

in [5] was the regularity of the k-normal spaces. In fact, any elliptic subma-

nifold f satisfies dimNf
k = 2, 1 ≤ k ≤ τf − 1, whereas the dimension of Nf

τf
is

determined by the codimension. In this paper, that a parabolic submanifold is

regular roughly means that the Nf
k ’s behave as in the elliptic case. The main

result in this section is that nonregular parabolic submanifolds are necessarily

ruled.

Definition 14. We say that a parabolic submanifold f : Mn→ RN is regular

if dimNf
k = 2 for any 1 ≤ k ≤ τf − 1.

By Corollary 10, the following holds:

f is regular if and only if

{
dimNf

τf
= 2 ⇐⇒ ξτ

f

2 6= 0, if N − n is even

dimNf
τf−1

= 2⇐⇒ ξτ
f−1

2 6= 0, if N − n is odd.

Observe that ruled surfaces with dimN1 = 2 are parabolic. We give next an

example of such a surface that is nonregular.
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Example 15. Let c: I ⊂ R → R6 be a smooth curve parametrized by arc

length with Frenet frame E1, . . . , E6 and constant Frenet curvatures kj 6= 0, 1 ≤
j ≤ 5. The map X: R2 → R6 given by

X(s, t) = c(s) + tE2(s)

parametrizes a substantial complete surface that is parabolic for t 6= 0. An easy

calculation gives ξ2
2 = 0, that is, τX0 = 1. Hence, dimNX

2 = 1 and therefore X

is nonregular.

By a parabolic submanifold being nonruled we understand that none of the

leaves of F is totally geodesic in Mn or, equivalently, in RN .

Theorem 16. Nonruled parabolic submanifolds f : Mn → RN are regular.

The proof of Theorem 16 will follow from two results. First, we give a

sufficient condition for a parabolic submanifold in odd codimension to be ruled.

Proposition 17. Let f : Mn → RN be a regular parabolic submanifold satis-

fying that ξτ
f

2 = 0 at any point. Then f is ruled.

Proof: We claim that f is ruled if and only if L = span{ξ1
2} is parallel along F .

From the proof of Proposition 11, we know that L is parallel along ∆. Clearly,

that f is ruled is equivalent to ∇ZZ = 0. Take an orthonormal frame {η1, η2}
in Nf

1 as in (2). Since η1 ∈ L, we have to show that

∇ZZ = 0 if and only if (∇⊥Zη1)Nf1 = 0. (5)

From the Codazzi equation

〈(∇XAfη2)Z − (∇ZAfη2)X,Z〉 = 0,

we get

c〈∇ZZ,X〉 = b〈∇⊥Zη1, η2〉.

Being f parabolic we obtain b 6= 0 6= c, and the claim follows.
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We first consider the case N − n = 3. We have, dimNf
1 = 2, dimNf

2 = 1

and ξ2
2 = 0. It suffices to show that η1 is parallel along Z. By Proposition 3,

the subbundles Nf
1 , N

f
2 are parallel along Z. Thus, the Codazzi equation gives

Af∇⊥Xδ
Z = Af∇⊥Z δ

X = 0

where δ ∈ Nf
2 has unit length. Using (2) we obtain(

∇⊥Xδ
)
Nf1
∈ span{η2}. (6)

From X〈η1, δ〉 = 0 and (6) we have(
∇⊥Xη1

)
Nf2

= 0. (7)

The Ricci equation, using (6), (7) and the parallelism of Nf
1 along Z gives

0 = 〈R⊥(X,Z)η1, δ〉 = 〈∇⊥X∇⊥Zη1 −∇⊥Z∇⊥Xη1 −∇⊥[X,Z]η1, δ〉

= 〈∇⊥X∇⊥Zη1, δ〉 = −〈∇⊥Zη1,∇⊥Xδ〉

= 〈∇⊥Zη1, η2〉〈∇⊥Xη2, δ〉.

But 〈∇⊥Xη2, δ〉 6= 0 since Nf
1 is not parallel. Thus, (∇⊥Zη1)Nf1 = 0.

We now consider the general case N − n ≥ 5. Take an orthonormal basis

{ηk1 , ηk2} of Nf
k for any 1 ≤ k ≤ τf − 1 such that

ξk1 = akη
k
1 + ckη

k
2 and ξk2 = bkη

k
1 .

Proposition 3 gives(
∇⊥Zηk1

)
Nfk+1

= 0 and ck
(
∇⊥Zηk2

)
Nfk+1

= bk
(
∇⊥Xηk1

)
Nfk+1

. (8)

Since dimNf
k = 2, 1 ≤ k ≤ τf − 1, it follows from (8) that

Nf
k = span

{(
∇⊥Xηk−1

1

)
Nfk

,
(
∇⊥Xηk−1

2

)
Nfk

}
. (9)

From (8) and ξτ
f

2 = 0, we have

(∇⊥Zητ
f−1

1 )Nf
τf

= (∇⊥Xητ
f−1

1 )Nf
τf

= (∇⊥Zητ
f−1

2 )Nf
τf

= 0. (10)
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Thus Nf
1 ⊕ . . .⊕N

f
τf−1

and Nf
τf

are both parallel along Z. The Ricci equation

for δ ∈ Nf
τf

and (10) give

0 = 〈R⊥(X,Z)ητ
f−1

1 , δ〉 = 〈∇⊥X∇⊥Zητ
f−1

1 , δ〉 = −〈∇⊥Zητ
f−1

1 ,∇⊥Xδ〉

= 〈∇⊥Zητ
f−1

1 , ητ
f−1

2 〉〈∇⊥Xητ
f−1

2 , δ〉.

But 〈∇⊥Xη
τf−1
2 , δ〉 6= 0 since f is substantial. Therefore,

(∇⊥Zητ
f−1

1 )Nf
τf−1

= 0.

To conclude again that 〈∇⊥Zη1
1 , η

1
2〉 = 0, it suffices to show that if

(∇⊥Zη`+1
1 )Nf`+1

= 0, 1 ≤ ` ≤ τf − 2, (11)

then

(∇⊥Zη`1)Nf` = 0. (12)

Being η`1 collinear with ξ`2 and η`+1
1 with ξ`+1

2 , then η`+1
1 and (∇⊥Xη`1)Nf`+1

are

also collinear. From (11), we have

〈∇⊥Z (∇⊥Xη`1)Nf`+1
, η`+1

2 〉 = 0. (13)

The Ricci equation using (8) and (13) yields

0 = 〈R⊥(X,Z)η`1, η
`+1
2 〉 = 〈∇⊥X∇⊥Zη`1 −∇⊥Z∇⊥Xη`1 −∇⊥[X,Z]η

`
1, η

`+1
2 〉

= 〈∇⊥X〈∇⊥Zη`1, η`2〉η`2, η`+1
2 〉 − 〈∇⊥Z (∇⊥Xη`1)Nf` , η

`+1
2 〉 − 〈∇XZ,X〉〈∇⊥Xη`1, η`+1

2 〉

= 〈〈∇⊥Zη`1, η`2〉∇⊥Xη`2 − 〈∇⊥Xη`1η`2〉∇⊥Zη`2,−〈∇XZ,X〉∇⊥Xη`1, η`+1
2 〉.

Thus,(
〈∇⊥Zη`1, η`2〉∇⊥Xη`2 − 〈∇⊥Xη`1, η`2〉∇⊥Zη`2 − 〈∇XZ,X〉∇⊥Xη`1

)
Nf`+1

∈ span{η`+1
1 },

and we obtain (12) from (8) and (9).

�

To conclude that f is ruled, from (11) and (12) in the proof of the preceding

result it is sufficient to show that there exists an index 1 ≤ ` ≤ τf − 2 such

that (∇⊥Zη
`+1
1 )Nf`+1

= 0. Thus, this gives the following fact.
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Corollary 18. Let f : Mn → RN be a regular parabolic submanifold. If there

is an index 1 ≤ s ≤ τf−1 such that ηs1 = ξs2/‖ξs2‖ ∈ Nf
s satisfies (∇⊥Zηs1)Nfs= 0,

then f is ruled.

Our next result deals with nonregular parabolic submanifolds.

Proposition 19. Let f : Mn → RN be a simply connected parabolic sub-

manifold. Assume that dimNf
k0−1 = 2 and dimNf

k0
= 1 for some index

2 ≤ k0 ≤ τf − 1. Then, there exists a parabolic regular isometric immer-

sion f̃ : Mn → Rn+2k0−1 such that the subbundles N f̃
s and Nf

s , 1 ≤ s ≤ k0,

endowed with the induced connection, correspond by a parallel isometry.

Proof: Consider the normal subbundle T = Nf
1 ⊕ . . .⊕N

f
k0

with the induced

connection ∇̂⊥Y η = (∇⊥Y η)T . We have to show that αf still satisfies the Gauss,

Codazzi and Ricci equations. In fact, the Gauss and Codazzi equations are

trivially satisfied. By Propositions 3 and 8, the subbundles T and T ⊥ are

parallel in the normal connection along Z. Given η ∈ T , a simple calculation

yields

R̂⊥(X,Z)η −R⊥(X,Z)η = −
(
∇⊥X∇⊥Zη

)
T ⊥ +∇⊥Z

(
∇⊥Xη

)
T ⊥ +

(
∇⊥[X,Z]η

)
T ⊥

.

Since R⊥(X,Z)η ∈ T by the Ricci equation, the left hand side vanishes and

thus

R̂⊥(X,Z)η = R⊥(X,Z)η.

Now using Proposition 4 we conclude that the Ricci equation is satisfied. Since

Mn is simply connected, the result follows from the Fundamental theorem of

submanifolds.

�

Finally, we are in condition to prove Theorem 16.

Proof: Assume that f is nonregular. By Proposition 8 there exists k0 ≤ τf−1

such that ξk02 = 0. By Proposition 19, there is a regular parabolic submanifold
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f̃ : Mn → Rn+2k0−1 with ξτ
f̃

2 = 0. It follows from Proposition 17 that f is

ruled.

�

4 Ruled parabolic

The simple structure of ruled parabolic submanifolds allows us to give a para-

metric description of these submanifolds. Using this description, we conclude

that this submanifolds are generically regular. Then, we show that ruled

parabolic submanifolds are the only parabolic submanifolds that admit iso-

metric immersions as hypersurfaces.

Let v: I ⊂ R→ RN be a smooth curve parametrized by arc length in some

interval. Set e1 = dv/ds and let e2, . . . , en−1 be orthonormal normal vector

fields along v = v(s) parallel in the normal connection of v in RN . Thus,

dej
ds

= bje1, 2 ≤ j ≤ n− 1, (14)

where bj ∈ C∞(I). Set ∆ = span{e2, . . . , en−1} and let ∆⊥ be the orthogonal

complement in the normal bundle. Take e0 ∈ ∆⊥ along v such that

P = {e0, (de1/ds)∆⊥} ⊂ ∆⊥

satisfy that

dimP = 2 (15)

and that P is nowhere parallel in ∆⊥ along v, that is,

span{(de0/ds)∆⊥ , (d
2e1/ds

2)∆⊥} 6⊂ P. (16)

We parametrize a ruled submanifold Mn by

f(s, t1, . . . , tn−1) = c(s) +
n−1∑
j=1

tjej(s) (17)



PARABOLIC SUBMANIFOLDS OF RANK TWO 209

where (t1, . . . , tn−1) ∈ Rn−1 and c(s) satisfies dc/ds = e0. To see that f is

parabolic, first observe that

TM = span{fs} ⊕ span{e1} ⊕∆

where fs = e0+t1de1/ds+
∑
j≥2 tjbje1. Consider the orthogonal decomposition(
de1

ds

)
∆⊥

= a1e0 + η. (18)

Thus η(s) 6= 0 for all s ∈ I from (15). Hence,

TM = span{e0 + t1(a1e0 + η)} ⊕ span{e1} ⊕∆. (19)

Since fstj = bje1 ∈ TM, 2 ≤ j ≤ n− 1, we have that ∆ ⊂ ∆f . It follows easily

from (18), (19) and η(s) 6= 0 that

fst1 =
de1

ds
6∈ TM.

It is easy to see that fss 6∈ span{fst1} ⊕ TM , i.e., dimNf
1 = 2, is equivalent to(

de0

ds

)
∆⊥

+ t1

(
d2e1

ds2

)
∆⊥
6∈ P.

It follows that ∆ = ∆f . Therefore f is parabolic in, at least, an open dense

subset of Mn.

Let f :Mn → RN be a ruled parabolic submanifold and {e2, . . . , en−1} an

orthonormal frame for ∆f along an integral curve c = c(s), s ∈ I, of the unit

vector field X orthogonal to the rulings. Without loss of generality (see Lemma

2.2 in [1]) we may assume that

dej
ds
⊥ ∆f , 2 ≤ j ≤ n− 1.

Now parametrize f by (17), where e0 = X and e1 = Z. That fstj ∈ TM

implies
dej
ds
∈ span{e1, fs}, 2 ≤ j ≤ n− 1. (20)

Taking t1 = 0, we obtain that

dej
ds

= aje0 + bje1, 2 ≤ j ≤ n− 1, (21)
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where aj , bj ∈ C∞(I). Since dimNf
1 = 2, we have

de1

ds
= a1e0 + (de1/ds)∆ + η (22)

where η ⊥ span{e0, e1} ⊕∆ satisfies η(s) 6= 0. Thus (20) reduces to

aje0 ∈ span{(1 + t1a1 + . . .+ tn−1an−1)e0 + t1η}, 2 ≤ j ≤ n− 1.

Therefore aj = 0. From (21) we have dej/ds = bje1 for 2 ≤ j ≤ n− 1.

We have proved the following result.

Proposition 20. Let c: I ⊂ R → RN , N − n ≥ 2, be a smooth curve. Let

{e0 = dc/ds, e1(s), . . . , en−1(s)} be orthonormal fields satisfying (14), (15) and

(16) at any point. Then, the submanifold parametrized by

f(s, t1, . . . , tn−1) = c(s) +
∑
j≥1

tjej(s) (23)

where (t1, . . . , tn−1) ∈ Rn−1, defines a ruled submanifold, that is parabolic in

an open dense subset of Mn. Conversely, any ruled parabolic submanifold can

be parametrized as in (23).

Let f be a ruled parabolic submanifold parametrized by (23). Assume that

f has critical index k − 1 = τf0 . The condition dimNf
k = 1 is equivalent to

dke1

dsk
∈ TM ⊕ span

{
d`−1e1

ds`−1
,
d`−1e0

ds`−1
+ t1

d`e1

ds`
, 2 ≤ ` ≤ k

}
(24)

where TM was given by (19). In particular, for t1 = 0 and using (22) we have

dk−1(a1e0 + η)
dsk−1

∈ TM ⊕ span
{
d`−2(a1e0 + η)

ds`−2
,
d`−1e0

ds`−1
, 2 ≤ ` ≤ k

}
(25)

where now TM = span{e0, e1} ⊕∆.

It is easy to see that (24) and (25) are equivalent. In fact, in (25) taking

` = 2 we obtain that η belongs to the subspace. If (25) is satisfied, it follows

that the subspace in (24) is independent of the parameter t1. In particular,
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this shows again that dimNf
k = 1 is equivalent to ξk2 = 0. Finally, we have

that (25) is equivalent to

dk−1η

dsk−1
∈ span

{
e0,

de0

ds
, . . . ,

dk−1e0

dsk−1
, η, . . . ,

dk−2η

dsk−2

}
⊕∆.

It is now clear that (24) will not be satisfied in general. In that sense and re-

calling Theorem 16, we can say that the parabolic submanifolds are generically

regular.

Remark 21. A condition for a ruled regular parabolic submanifold in odd

codimension to satisfies ξτ
f

2 = 0 is the following:

dτ
f−1η

dsτf−1
∈ span

{
e0,

de0

ds
, . . . ,

dτ
f−2e0

dsτf−2
, η, . . . ,

dτ
f−2η

dsτf−2

}
⊕∆.

Next we extend the characterization of ruled parabolic submanifolds in codi-

mension two given in [6] to arbitrary codimension.

Definition 22. We say that a submanifold f : Mn → RN is of surface type if

either f(M) ⊂ L2 ×Rn−2 where L2 ⊂ RN−n+2 or f(M) ⊂ CL2 × Rn−3 where

CL2 ⊂ RN−n+3 is a cone over a spherical surface L2 ⊂ SN−n+2.

Theorem 23. Let f : Mn → RN be a ruled parabolic submanifold. If Mn is

simply connected then it admits an isometric immersion as a ruled hypersur-

face in Rn+1 with the same rulings. Conversely, if Mn admits an isometric

immersion as a hypersurface in Rn+1 and f is not of surface type in any open

subset, then f is ruled.

Proof: To prove the converse, assume that there exists an isometric immersion

g: Mn → Rn+1 with Gauss map N . We first show that

∆g = ∆f . (26)

Let β: TxM × TxM → R〈η1〉 ⊕ R〈N〉 = R2 be the symmetric bilinear form

β(Y, V ) = (〈Afη1Y, V 〉, 〈A
g
N Y, V 〉)
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where {η1, η2} is as in (2). By the Gauss equation, β is flat with respect to the

Lorentzian metric in R2 defined as ‖η1‖2 = 1 = −‖N‖2 and 〈η1, N〉 = 0, that

is,

〈β(X,Y ), β(V,W )〉 − 〈β(X,W ), β(V, Y )〉 = 0.

If (26) is not satisfied, and since dim ∆g ≤ n− 2, it follows easily that

S(β) = span{β(Y, V ) : Y, V ∈ TxM}

satisfies S(β) = R2. From Corollary 1 in [11] we have dimN(β) = n− 2 where

N(β) = {Y ∈ TxM : β(Y, V ) = 0, V ∈ TxM}.

But since N(β) = ∆g ∩∆f , it follows that (26) holds.

Let

AgN |∆⊥ =
[
ā b̄
b̄ c̄

]
.

From (4) we have

CT =
[
m 0
n m

]
for any T ∈ ∆. On the other hand,

AgN ◦ CT =
[
ām+ bn b̄m
b̄m+ c̄n c̄m

]
.

The symmetry of AgN ◦ CT allows to conclude that c̄n = 0. Since f is nowhere

of surface type, it follows from Lemma 6 in [4] that n 6= 0 for some T ∈ ∆ in

an open dense subset of Mn. Thus c̄ = 0 and therefore, by the Gauss equation,

we may assume that b̄ = b.

The Codazzi equation for Afη1 gives

∇XbX−〈∇XZ,X〉(aX+bZ)−∇Z(aX+bZ)+〈∇ZX,Z〉bX+〈∇⊥Zη1, η2〉cX = 0.

Taking the Z-component yields

2b〈∇XX,Z〉 − a〈∇ZX,Z〉 − Z(b) = 0. (27)
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The Codazzi equation for AgN , that c̄ = 0 and b̄ = b give

∇XbX − 〈∇XZ,X〉(āX + bZ)−∇Z(āX + bZ) + 〈∇ZX,Z〉bX = 0.

Taking the Z-component yields

2b〈∇XX,Z〉 − ā〈∇ZX,Z〉 − Z(b) = 0. (28)

Subtracting (27) from (28), gives (a− ā)〈∇ZZ,X〉 = 0. If 〈∇ZZ,X〉 = 0, then

f is ruled. Thus, we may assume that a = ā. Now taking the X-component in

both Codazzi equations yields

X(b)− a〈∇XZ,X〉 − Z(a) + 2b〈∇ZX,Z〉+ c〈∇⊥Zη1, η2〉 = 0

and

X(b)− a〈∇XZ,X〉 − Z(a) + 2b〈∇ZX,Z〉 = 0.

It follows from the last two equations that

〈∇⊥Zη1, η2〉 = 0, (29)

and we conclude from (5) that f is ruled.

We now prove the direct statement. In view of (2), we consider the tensor

A : TM → TM where KerA = ∆ and

A|∆⊥ =
[
a b
b 0

]
.

Since (29) holds by assumption, it is easy to see that the tensor A satisfies the

Gauss and Codazzi equations as a hypersurface, and this concludes the proof.

�

Corollary 24. Let f : Mn → RN be a simply connected parabolic submanifold.

Assume that there is 2 ≤ k0 ≤ τf − 1 such that dimNf
k0

= 1. Then f is ruled

and Mn admits an isometric immersion as a ruled hypersurface.

Proof: We know from Proposition 19 that there exists a regular parabolic

isometric immersion f̃ : Mn → Rn+2k0−1 such that ξk02 = 0. It follows from

Theorem 17 that f is ruled. The result follows from Theorem 23.

�
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5 Nonruled parabolic submanifolds

In this section we study parabolic surfaces. First we show that they are asso-

ciated to parabolic differential equations. Then we give a complete characteri-

zation of their s-cross sections.

Let L2 be a Riemannian manifold endowed with a global system of coordi-

nates. Then, let f : L2 → QN
ε ⊂ RN+ε where ε = 0, 1 and N ≥ 4, be a surface

of the sphere or the Euclidean space whose coordinate functions are linearly

independent solutions (of length 1 if ε = 1) of the parabolic equation

∂2u

∂z2
+W (u) + ελu = 0 (30)

where W ∈ TL and λ ∈ C∞(L2). If ε = 0, then (30) is equivalent to

∇̃Zf∗Z + f∗W = 0

where Z = ∂/∂z. Thus αf (Z,Z) = 0. If ε = 1, we have

∇̃Zf∗Z + f∗W + λf = 0

and again αf (Z,Z) = 0. In both situations f is parabolic with Z asymptotic.

Conversely, let f : L2 → QN
ε be parabolic endowed with the induced metric

and coordinates (x, z) such that ∂/∂z = Z is asymptotic. The latter means

that the coordinate functions of f satisfy (30) with W = −∇ZZ and λ = ‖Z‖2.

Let g: L2 → QN
ε be a parabolic surface and Σ the vector space of classes

of functions u ∈ C∞(L) that satisfy (30), where for ε = 0 we identify two

functions when they differ by a constant. Consider L2 with the induced metric

by g. Then (30) takes the form

Hessu(Z,Z) + εu = 0 (31)

where Z ∈ TL is an unit asymptotic field.
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Given a parabolic submanifold f : Mn → QN
ε , we denote

τf∗ =

{
τ if N − n is even

τ − 1 if N − n is odd.

Let Γr, 1 ≤ r ≤ τg∗ , be the vector space of classes of r–cross sections of L2

where we identify two sections when, up to a constant, they differ by a section

of Ng
r+1 ⊕ . . . ⊕ N

g
τg . Take [h ] ∈ Γr with r < τg∗ and 1 ≤ r < s ≤ τg∗ . Then,

set Pr(h) = (µ1, µ2) ∈ νr. By Corollary 10, there exists an unique section

γr+1 ∈ Ng
r+1 such that

Pr(h) = Pr(−γr+1).

Thus h̄r+1 = h + γr+1 satisfies that h̄r+1 = h + γr+1 ∈ Γr+1. Using the

above argument, it follows easily that there exist unique sections γj ∈ Ng
j ,

r + 1 ≤ j ≤ s, such that

h̄ = h+ γr+1 + . . .+ γs (32)

satisfies
[
h̄
]
∈ Γs.

We show next that all the Γr’s are isomorphic to Σ. Given [h ] ∈ Γr, set

h = εϕg +W + δ

where W ∈ TL, δ ∈ T⊥L and ϕ ∈ C∞(L) if ε = 1. Given Y ∈ TL, we have

h∗(Y ) = ε((Y (ϕ)− 〈Y,W 〉)g + ϕY ) +∇YW + αg(Y,W )−Agδ(Y ) +∇⊥Y δ.

Since the TL-component of h∗(Y ) vanishes, we obtain

εϕY +∇YW = AgδY. (33)

In particular, the map (Y, U) 7→ 〈∇YW,U〉 is symmetric. Thus, if ε = 0

and setting Θ(U) = 〈W,U〉, we have dΘ(Y,U) = 0. Thus W = ∇ϕ, for ϕ ∈
C∞(L2). If ε = 1, that the span{g}-component of h∗(Y ) vanishes gives Y (ϕ) =

〈Y,W 〉, and again W = ∇ϕ. In both cases, we obtain from (33) we that

Hessϕ + εϕI = Agδ . (34)
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Consider the linear map Υ: Γr → Σ defined by Υ([h]) = [ϕ]. Assume that

Υ([h]) = 0. Then (h)TgL = ∇ϕ = 0. From (34) we obtain Agδ = 0, which

means (h)Ng1 = 0. Using (iii) in Corollary 10 we obtain h ∈ Ng
r+1 ⊕ . . .⊕N

g
τg .

We conclude from the definition of Γr that Υ is injective.

Take ϕ ∈ Σ and set

S = {ψ ∈ Lsim(TL, TL) : 〈ψZ,Z〉 = 0}.

Let Φ: Ng
1 → S be the injective linear map defined by Φ(υ) = Agυ. From (31)

and dimNg
1 = 2, we have that Φ is an isomorphism. It follows that there exists

a unique γ1 ∈ Ng
1 such that

Agγ1 = Hessϕ + εϕI.

We define ĥ = εϕg +∇ϕ+ γ1. Then,

ĥ∗X = εX(ϕ)g + εϕX + ∇̃X∇ϕ+ ∇̃Xγ1 = αg(X,∇ϕ) +∇⊥Xγ1,

and thus [ ĥ ] ∈ Γ1. We conclude from (32) that Υ is an isomorphism. In this

way, we obtain the following recursive procedure for the construction of the

r–cross sections for the parabolic surfaces.

Proposition 25. Let g: L2 → QN
ε be a regular parabolic surface. Then, any

r–cross section, 1 ≤ r ≤ τg∗ can be written as

hϕ = εϕg + g∗∇ϕ+ γ0 + γ1 + · · ·+ γr, (35)

where ϕ satisfies (30) and is unique (up to a constant if ε = 0), γ0 is any section

of Ng
r+1 ⊕ . . .⊕N

g
τg , γ1 ∈ Ng

1 is the unique solution of Agγ1 = Hessϕ + εϕI and

γj , 2 ≤ j ≤ r, are the unique sections given by (32). Conversely, any function

hϕ with the form (35) is a r–cross section to g.

6 The parametrizations

In this section, we provide a parametrically description of all regular parabolic

Euclidean submanifolds. There are two alternative representation, the polar
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and bipolar parametrizations, each of which is determined by a parabolic sur-

face and a solution of a differential equation.

Our starting point, is to show how to construct parabolic submanifolds

using parabolic surface with non vanishing normal vector ξτ2 , in particular, any

nonruled parabolic surface.

Let g: L2 → QN
ε a parabolic surface with Z ∈ TL asymptotic and whose

normal vector field ξτ
g

2 does not vanish at any point. Let h be a s–cross section

to g and Λs = Ng
s+1⊕ . . .⊕N

g
τg for 1 ≤ s ≤ τg∗ . Let Ψ: Λs → RN+ε be the map

Ψ(δ) = h(x) + δ

where δ ∈ Λs(x).

Proposition 26. At regular points, Mn = Ψ(Λs) is a regular parabolic sub-

manifold. Moreover, Mn is nonruled if g is nonruled.

For the proof we use the following general results.

Lemma 27. Let f : Mn → RN be a parabolic submanifold. Then, we have:

(i) If dimNf
k+1 = 2, then there exists η ∈ Nf

k+1 such that the components of

Pk(η) form a base of Nf
k .

(ii) Suppose that N − n is odd, dimNf
τf−1

= 2 and that ξτ
f

2 never vanishes.

Then Pτf−1(ξτ
f

2 ) is a base of Nf
τf−1

.

Proof: We prove (i). From Corollary 10 we have that Pk|Nfk+1
is an isomor-

phism and from Lemma 5 that dimNf
k = 2. Since Nf

k has dimension 2, there

exists at least one vector (µ1, µ2) ∈ νk with µ2 6= 0. Thus µ1 andµ2 are linearly

independent and form a base of Nf
k .

For the proof of (ii) it is sufficient to show that (∇⊥Zξτ
f

2 )Nf
τf−1
6= 0. If the

vector field vanishes, from the definition of ντf−1 we have 〈∇⊥Xξτ
f

2 , ξτ
f−1

2 〉 = 0.

Thus ξτ
f

2 = 0 from Proposition 3, and this is a contradiction.

�
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Lemma 28. Let β: Mn → RN+ε a s–cross section to f , 1 ≤ s ≤ τf . Then,

(∇̃Zβ∗(Z))Nfs−1
= 0.

Proof: For s ≥ 2, we have that 〈β∗(Z), ξs−1
2 〉 = 0. Then,

0 = Z〈β∗(Z), ξs−1
2 〉 = 〈∇̃Zβ∗(Z), ξs−1

2 〉+ 〈β∗(Z), αs+1(Z,Z,X, . . . ,X)〉

= 〈∇̃Zβ∗(Z), ξs−1
2 〉.

Using Lemma 7, is easy to prove by a similar argument that

〈∇̃Zβ∗(Z), ξs−1
1 〉 = 0.

For s = 1, since Nf
0 = ∆⊥, ξ0

1 = X and ξ0
2 = Z, the proof follows easily.

�

We now prove Proposition 26.

Proof: Take a coordinate system (x, z) of L2 such that Z = ∂/∂z is asymptotic

and let {η1, . . . , ηk} be an orthonormal frame of Λs. We parametrize Mn by

Ψ(x, z, t1, . . . , tk) = h(x, z) +
k∑
j=1

tjηj(x, z)

where k = N−2s and (t1, . . . , tk) ∈ Rk. From Lemma 27, we have TM = Λs−1

and ∆δ = Λs. We claim that Ψ∗(Z) is asymptotic, that is, ∇̃ZΨ∗(Z) ∈ TM .

In view of (3) it is sufficient to show for υ ∈ Ng
s−1 that 〈∇̃ZΨ∗(Z), υ〉 = 0. Let

X = ∂/∂x ∈ TL. We have that

〈∇̃ZΨ∗(Z), ξs−1
1 〉 = 〈∇̃Zh∗(Z), ξs−1

1 〉+
k∑
j=1

tj〈∇̃Z∇̃Zηj , αsΨ(X, . . . ,X)〉

= 〈∇̃Zh∗(Z), ξs−1
1 〉 −

k∑
j=1

tj〈ηj , ∇̃Zαs+1
Ψ (Z,X, . . . ,X)〉

= 〈∇̃Zh∗(Z), ξs−1
1 〉.

By a similar argument, we obtain

〈∇̃ZΨ∗(Z), ξs−1
2 〉 = 〈∇̃Zh∗(Z), ξs−1

2 〉.



PARABOLIC SUBMANIFOLDS OF RANK TWO 219

Now Lemma 28 and Ng
s−1 = span{ξs−1

1 , ξs−1
2 } give the claim. Observe that it

follows from Lemma 27 that NΨ
k = Ng

s−k. This concludes the first part of the

proof.

Assume that g is nonruled. From Lemma 7 we have that ξs2 and Ψ∗(Z)

are orthogonal. Being ηs ∈ ∆⊥Ψ = Ng
s a unit asymptotic vector field to Ψ, we

obtain that Ψ is ruled if and only if (∇̃Zηs)Ngs = 0. Now the proof follows from

Corollary 18.

�

Our goal now is to show that any parabolic submanifolds with non vanishing

normal vector field ξτ2 , in particular, all nonruled regular parabolic submani-

folds, can be locally parametrized by a parabolic surface using Proposition 26.

Given a parabolic submanifold f : Mn → QN
ε , due to the local nature of our

work, we may assume that f is the saturation of a fixed cross section L2 ⊂Mn

to the relative nullity foliation. From Proposition 4, each Nf
k can be viewed as

a plane bundle along L2.

Definition 29. Let f : Mn → QN−ε
ε be a regular parabolic submanifold. A

polar surface to f is an immersion of a cross section L2 as above, defined as

follows:

(i) If N − n− ε is odd, then g: L2 → SN−1 is defined by

span{g(x)} = Nf
τf

(x).

(ii) If N − n− ε is even, then g: L2 → RN is any surface such that

Tg(x)L = Nf
τf

(x),

up to parallel identification in Rn.

Proposition 30. Any regular parabolic submanifold f : Mn → QN
ε with non

vanishing normal vector field ξτ
f

2 admits a polar surface g locally. Moreover, g

is parabolic and nonruled if f is nonruled and has no Euclidean factor.
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We will use the following fact.

Lemma 31. Assume that f has even codimension. Let η ∈ Nf
τf

and

µ1 = (∇̃Xη)Nf
τf−1

, µ2 = (∇̃Zη)Nf
τf−1

be such that µ2 6= 0. Then,

ντf−1 = {(aµ1 + bµ2, aµ2) : a, b ∈ C∞(M)}.

Proof: Since 〈(∇̃Zη)Nf
τf−1

, ξτ
f−1

2 〉 = 〈η, ∇̃Zξτ
f−1

2 〉 = 0, the definition of ντf−1

and Lemma 3 yield (µ2, 0) ∈ ντf−1. Since dimNf
τf−1

= 2, we easily conclude

that Nf
τf−1

= span{(µ1, µ2), (µ2, 0)}, and the proof follows.

�

Remark 32. Notice that η = ξτ
f

2 /‖ξτf2 ‖ ∈ N
f
τf

satisfies (∇̃Zη)Nf
τf−1

6= 0. In

fact, from Proposition 3 it is easy to see that 〈∇̃Zη, ξτ
f−1

1 〉 6= 0.

We now prove Proposition 30.

Proof: In the case of odd codimension, the existence of a polar surface follows

from (ii) of Lemma 27. Assume that dimNf
τf

= 2. Let {η1, η2} be a base of

Nf
τf

constant along ∆. We show that there exist linearly independent 1−forms,

θ1, θ2 so that the differential equation

dg = θ1η1 + θ2η2 (36)

has solution.

Take a non vanishing asymptotic vector field Z ∈ TM and consider the iso-

morphism P : ∆⊥ → TL. Let U = P (Z) ∈ TL and (u,w) a coordinate system

on L2 such that U = ∂/∂u. Set W = ∂/∂w ∈ TL and X = P−1(W ) ∈ ∆⊥.

Endow L2 with the metric which makes the base {U,W} orthonormal and posi-

tively oriented. Let η1, η2 ∈ Nτf be linearly independents vector fields constant

along ∆. Without loss of generality, we my assume µ2 = (∇̃Zη1)Nf
τf−1

6= 0.

According to Lemma 31, there are a, b ∈ C∞(M) with b 6= 0 such that

Pτf−1(η1) = (µ1, µ2) and Pτf−1(η2) = (aµ1 + bµ2, aµ2). (37)
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Consider 1-forms

θ1 = a1du+ a2dw e θ2 = b1du+ b2dw, (38)

where a1, a2, b1, b2 ∈ C∞(L2). We show that we can choose a1, a2, b1, b2 ∈ C∞(L)

such that (36) has solution . The integrability condition for (36) is

0 = dθ1η1 + dθ2η2 + θ1 ∧ dη1 + θ2 ∧ dη2

= dθ1η1 + dθ2η2 + (a1 ∂η1

∂w
− a2 ∂η1

∂du
)dV + (b1

∂η2

∂v
− b2 ∂η2

∂u
)dV

= dθ1η1 + dθ2η2 + (∇̃a1W−a2U η1 + ∇̃b1W−b2U η2)dV

where dV stands for the volume element of L2. Then, we must have

(∇̃a1W−a2U η1 + ∇̃b1W−b2U η2)N
τf−1

= 0.

From (37) we may rewrite the above equation as{
a1 + ab1 = 0

a2 − bb1 + ab2 = 0.
(39)

Then, let e, ` ∈ C∞(L) be such that

∇̃a1W−a2U η1 + ∇̃b1W−b2U η2 = eη1 + `η2.

We claim that there exist a1, a2, b1, b2 ∈ C∞(L) such that θ1, θ2 satisfy(39) and{
dθ1 = e dV

dθ2 = ` dV,

or equivalently, {
a2
u − a1

w = e

b2u − b1w = `.
(40)

From (39) and (40) we have
a1 = −ab1

a2 = bb1 − ab2

bub
1 + bb1u − aub2 − a(b2u − b1w) + awb

1 = e

b2u − b1w = `.
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The two last equations give{
bub

1 + bb1u − aub2 + awb
1 = e+ a`

b2u − b1w = `.
(41)

We assume au 6= 0 without loss of generality. The first equation of (41) yields

b2 = − 1
au

(e+ a`− (bu + aw)b1 + bb1u).

We take b1 to be a solutions of the above linear parabolic equation (see p. 367

of [10]), and now the claim follows easily.

If f has a Euclidean factor, take T a parallel subbundle of the relative nullity

subbundle of f . It is easy to see that under these conditions the subbundle

T ⊕∇⊥ ⊕Ng
1 is a normal parallel subbundle of g. Thus, the codimension of g

can be reduced. The converse is similar.

We claim that g has an asymptotic vector. First observe that Ng
1 = Nf

τf∗−1
.

Thus, in odd codimension, we have from (36) and (39) that

g∗∂/∂u = a1η1 + b1η2 = −ab1η1 + b1η2. (42)

Therefore, in view of (37) we obtain

(∇̃Zg∗∂/∂u)Nf
τf−1

= −ab1µ2 + ab1µ2 = 0.

For even codimension, the claim follow from Lemma 28. Hence g is parabolic.

To complete the proof suppose that f is nonruled. We show that g is also

nonruled. If the codimension of f is odd, since ξτ
f

2 6= 0, then TL is spanned by

{(∇̃Xξτ
f

2 )Nf
τ
f
∗

, (∇̃Zξτ
f

2 )Nf
τ
f
∗

}, being (∇̃Zξτ
f

2 )Nf
τ
f
∗

an asymptotic field.

The definition of ντf∗
allows us to conclude that the unit asymptotic field

γ is normal to ξ
τf∗
2 Then, g is ruled if and only if (∇̃Zγ)Nf

τ
f
∗

= 0. Thus g is

nonruled by Corollary 18. In the even codimension case, we have

Ng
1 = span{(∇̃Zη1)Nf

τf−1
, (∇̃Xη1)Nf

τf−1
}.

From (37) and (42) it is easy to conclude that

ξ1 g
2 = bµ2 = b(∇̃Zη1)N

τf−1
. (43)
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Let λ = ‖b(∇̃Zη1)N
τf−1
‖−1. It follows from (5) that g is ruled if and only if

(∇̃Uλ(∇̃Zη1)N
τf−1

)Nf
τf−1

= 0.

From our assumption that η1 is constant along ∆f , it follows that

0 = (∇̃Uλ(∇̃Zη1)Nf
τf−1

)Nf
τf−1

= U(λ)(∇̃Zη1)Nf
τf−1

+λ(∇̃Z(∇̃Zη1)Nf
τf−1

)Nf
τf−1

.

Thus,

(∇̃Z(∇̃Zη1)fN
τf−1

)Nf
τf−1

∈ (∇̃Zη1)Nf
τf−1

.

Since (∇̃Zη1)N
τf−1

is normal to ξτ
f−1 f

2 , we obtain

(∇̃Z ξτ
f−1 f

2 /‖ξτ
f−1 f

2 ‖)Nf
τf−1

= 0,

and conclude from Corollary 18 that f is ruled. This is a contradiction.

�

The following is the polar parametrization.

Theorem 33. Given a parabolic surface g: L2 → QN
ε with non vanishing

normal vector ξτ
g

2 and 1 ≤ s ≤ τg∗ , consider the smooth map Ψ: Λs → RN

defined by

Ψ(δ) = h(x) + δ (44)

where δ ∈ Λs = Ng
s+1 ⊕ . . . ⊕ N

g
τg and h is any s–cross section to g. Then,

at regular points, Mn = Ψ(Λs) is a regular parabolic submanifold with polar

surface g. Moreover, if g is nonruled, then Mn = Ψ(Λs) is nonruled.

Conversely, any parabolic submanifold f : Mn → RN without local Euclidean

factor and with non vanishing normal vector ξτ
f

2 admits a local parametrization

(44), where g is a polar surface to f .

Proof: The direct statement follows from Proposition 26. For the converse,

take a polar surface g: L2 → QN
ε to f . It is easy to see that under these

conditions that ∆f = Λτf∗ and TM = Λτf∗−1 along L2. Thus, the section

h = f|L2 is a τf∗ –cross section to g. �
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Observe that picking a different γ0 in (35) only results in a reparametrization

of Ψ(Λs). Hence, it is convenient to take γ0 = 0 when using the recursive

procedure to generate s–cross sections.

The polar parametrization is very effective for submanifolds in low codi-

mension since the recursive procedure has few iterations. For instance, in

codimension two it suffices to take a 1–cross section of the form hϕ = ∇ϕ+ γ1,

where γ1 ∈ Nf
1 is unique satisfying Aγ1 = Hessϕ for a given solution ϕ of (30).

Definition 34. We define the bipolar surface to a parabolic submanifold f to

be any polar surface to a polar surface to f .

Proposition 35. Any nonruled parabolic submanifolds admits locally a bipolar

surface.

Proof: From Proposition 30, f admits locally a nonruled polar surface g.

Then, Proposition 17 gives ξτ
g

2 6= 0. The proof now follows from Proposition

30

�

Definition 36. Let g: L2 → QN
ε be a parabolic surface and 0 ≤ s ≤ τg∗ − 1.

We call dual s–cross section to g any element h ∈ C∞(L2,RN+ε) satisfying

h∗(TL) ⊂ ε span{g} ⊕Ng
0 ⊕ . . .⊕Ng

s

at any point.

Notice that a dual 0-section to a parabolic surface in Euclidean space is just

a bipolar surface.

Proposition 37. Let g: L2 → QN
ε be a regular parabolic surface with polar

surface ĝ. Any dual s-section to g is a ([N/2]− s− 1)-section to ĝ.
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Proof: We have τg∗ = τ ĝ∗ = [N/2] − 1 and Ng
s = N ĝ

τ ĝ∗−s
. The proof follows

easily.

�

The following is the bipolar parametrization.

Theorem 38. Given a parabolic surface g: L2 → QN
ε with non vanishing

normal vector ξτ
g

2 and 0 ≤ s ≤ τg∗ − 1, consider the smooth map Ψ̃: Λ̃s → RN

defined by

Ψ̃(δ̃) = h̃(x) + δ̃ (45)

where δ̃ ∈ Λ̃s = ε span{g} ⊕Ng
0 ⊕ . . .⊕N

g
s−1 and h̃ is any dual s–cross section

to g. Then, at regular points, Mn = Ψ̃(Λ̃s) is a nonruled parabolic submanifold

with bipolar surface g.

Conversely, any nonruled parabolic submanifold f : Mn → RN without lo-

cal Euclidean factor admits a local parametrization (45), where g is a bipolar

surface to f .

Proof: The result follows from Theorem 33 and Propositions 35 and 37.

�

Next, we give a simple way to parametrize parabolic submanifolds.

Let g: L2 → QN
ε be a simply connected nonruled parabolic surface endowed

with the metric induced by g and {X,Z} an orthonormal tangent frame with

Z asymptotic. Let J ∈ End (TL) be defined by

J(X) = Z and J(Z) = 0

and let R ∈ End (TL) the reflection defined by

R(X) = X and R(Z) = −Z.

Now consider the linear second order parabolic operator

L(ϕ) = ZZ(ϕ) + Γ2X(ϕ)− Γ1Z(ϕ) + (X(Γ2)− Z(Γ1) + (Γ1)2 − (Γ2)2 − ε)ϕ

where Y = [X,Z] = Γ2Z − Γ1X. Let ϕ ∈ C∞(L) satisfy L(ϕ) = 0 and let ψ

be the 1-form such that dψ(X,Z) = −ϕ.
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Lemma 39. The differential equation

dθ = dϕ ◦ J + ϕY ∗ ◦R+ εψ (46)

is integrable.

Proof: From our assumptions, we easily obtain d2θ(X,Z) = −L(ϕ), and this

concludes the proof.

�

Lemma 40. The differential equation

dh = εψg + dg ◦ (θI + ϕJ) (47)

is integrable, where θ is a solution of (46).

Proof: An easy computation yields

d2h(X,Z) = ε(dψ(X,Z) + ϕ)g + (dθ(X) + ϕΓ1 − Z(ϕ)− εψ(X))Z

− (dθ(Z) + ϕΓ2 − εψ(Z))X.

Thus, we conclude that d2h = 0.

�

Theorem 41. Let g: L2 → QN−ε
ε a simply connected nonruled parabolic sur-

face, ϕ ∈ C∞(L) so that L(ϕ) = 0 and h: L2 → RN a solution of (47). Then,

the map Ψ: L2 × R2s−ε → RN defined by,

Ψ(x, t) = h(x) + ε t0g(x) +
s∑
j=1

(
t2j−1

∂jg

∂v∂uj−1
+ t2j

∂jg

∂uj

)
(x)

where 0 ≤ s ≤ [(N − ε)/2]− 2 and (u, v) is a coordinate system of L2 such that

∂/∂v is asymptotic, parametrizes, at regular points, a parabolic submanifold.

Conversely, any nonruled parabolic submanifold without local Euclidean fac-

tor can be locally parametrized in this way.
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Proof: It is clear for 0 ≤ j ≤ τg∗ that

Ng
j = span

{(
∂j+1g

∂uj∂v

)
Ngj

,

(
∂j+1g

∂uj+1

)
Ngj

}
.

In (45) we take h̃ to be a dual 0–cross section to g without loss of generality.

It remains to show that any dual 0-section to g can be written as a solution of

(47).

Given a dual 0-section h̃ to g, we need a 1-form Ψ and S ∈ End (TL)

such that

dh̃ = εΨg + dg ◦ S.

An easy computation yields

d2h̃(X,Z) = ε(dψ(X,Z)− 〈X,SZ〉+ 〈Z, SX〉)g + (∇XS)Z + αg(X,SZ)

−(∇ZS)X − αg(Z, SX) + ε(ψ(Z)X − ψ(X)Z).

Thus, the integrability conditions reduces to the equations

αg(X,SZ) = αg(Z, SX), (48)

(∇XS)Z − (∇ZS)X = ε(ψ(X)Z − ψ(Z)X), (49)

and for ε = 1 the additional equation

dψ(X,Z) = 〈SZ,X〉 − 〈SX,Z〉. (50)

From (48) and since αg(X,X) and αg(X,Z) are linearly independent, we have

S = θI + ϕJ

where θ, ϕ ∈ C∞(L). The left side of (49) gives us

∇XθZ−∇Z(θX+ϕZ)+Γ1SX−Γ2SZ=(dθ(X)+ϕΓ1−dϕ(Z))Z−(dθ(Z)+ϕΓ2)X.

Thus (49) is equivalent to{
dθ(X) = −Γ1ϕ+ dϕ(Z) + εψ(X)

dθ(Z) = 〈Y,−Z〉ϕ+ εψ(Z).
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Hence,

dθ = dϕ ◦ J + ϕY ∗ ◦R+ εψ,

and from (50) we easily get dψ(X,Z) = −ϕ. The result follows from Theo-

rem 38 and Lemma 40.

�

7 The singularities

In this section we show that the nowhere nonruled complete parabolic sub-

manifolds are surface-like, that is, they are isometric to L2 × Rn−2. We also

describe the singular set of nonruled parabolic submanifolds of dimension at

least four.

The complete submanifolds f : Mn → RN with rank ρ ≤ 2, had been studied

in [7]. If Mn does not contain an open set L3×Rn−3 with L3 unbounded, then

the following holds in the open set M∗ ⊂Mn where ρ = 2.

(i) M∗ is an union of smoothly ruled strips.

(ii) If f is completely ruled on M∗, then it is completely ruled everywhere

and a cylinder on each component of the complement of the closure of

M∗.

A ruled submanifold is called completely ruled if each leaf is a complete

affine space. The leaves in each connected component of Mn, called a ruled

strip, form an affine vector bundle over a curve with or without end point [7].

Given a ruled parabolic submanifold f : Mn → RN , let M̃n be the extension

of f(Mn) (with possible singularities) obtained by extending each leaf to a

complete affine Euclidean space Rn−1. We have the following result.

Proposition 42. Let f : Mn → RN a ruled parabolic submanifold. Then M̃n

is a ruled strip. Moreover, if c is complete and the function a1 defined in (18)

satisfy |a1(s)| ≤ K < +∞, then M̃n is complete.
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Proof: Using (23) we parametrize Mn by

f(s, t1, . . . , tn−1) = c(s) +
∑
j≥1

tjej(s)w

where
de1

ds
= a1e0 + δ + η and

dej
ds

= bje1, 2 ≤ j ≤ n− 1,

δ = (de1/ds)∆ and η ⊥ span{e0, e1} ⊕ ∆ is nonsingular for every s ∈ I. We

have,

TM = span{(1 + t1a1)e0 + t1η} ⊕ span{e1, . . . , en−1},

and is now easy to conclude that f is nonsingular. Thus M̃n is a ruled strip.

Next, suppose that c is complete. Notice that

‖fs‖2 ≥ (1 + t1a1(s))2 + t21‖η(s)‖2.

We claim that M̃n is complete. If |t1| ≤ M < ∞, from our assumption that

|a1(s)| ≤ K < ∞ we obtain ‖fs‖2 ≥ L > 0. On the other hand, it is easy to

see that any divergent curve γ(u) = f(s(u), t1(u), ..., tn−1(u)), u ∈ [0,+∞), in

M̃n with at least one ti, 1 ≤ i ≤ n − 1, unbounded has infinity length. Thus,

any divergent curves in M̃n has infinity length, and the proof follows.

�

Observe that any ruled parabolic submanifold parametrized by (23) with

bj = 0, 2 ≤ j ≤ n− 1, everywhere is a product L2×Rn−2. On the other hand, if

there exist j ∈ {2, . . . , n−1} such that bj 6= 0 everywhere then the submanifold

does not contain an open set L2 × Rn−2.

Theorem 43. Let f : Mn → RN , n ≥ 3, be a complete submanifold which

is nonruled in any open set and parabolic in an open dense set O. Then, any

connected component of O is isometric to L2 × Rn−2 and f splits accordingly.

Proof: From Lemma 6 in [7] it is easy to see that either C = 0 or

CT =
[

0 0
n 0

]
(51)



230 M. DAJCZER P. MORAIS

where T ⊥ Ker C. We have a disjoint decomposition O = M0 ∪M1, where M0

is the closet set where C = 0. We now argue that the open set M1 is empty.

It follows from Lemma 1.8 in [7] that M0 and M1 are saturated, i.e. they are

unions of complete leaves of ∆. We have from Lemma 1.5 in [7] and (51) that

0 = (∇XCT )Z − (∇ZCT )X = n〈∇XZ,X〉Z − Z(n)Z − n〈∇ZZ,X〉X

where T ⊥ kerC is an unit field. Therefore 〈∇ZZ,X〉 = 0, i.e., M1 is ruled.

We conclude that M1 = ∅ and the result follows from Lemma 1.1 in [7].

�

Observe that if f : Mn → RN is a complete, simply connected parabolic

submanifold, then Mn is diffeomorphic to Rn since its sectional curvature sat-

isfies KM ≤ 0. In the ruled case, we have from Theorem 23 that Mn ad-

mits an isometric immersion as a ruled hypersurface with the same rulings.

There are many examples of complete ruled hypersurfaces [7]. A simple ex-

ample goes as follows: take c: I ⊂ R → Rn+1 any unit speed curve, and let

E0 = dc/ds,E1, . . . , En a Frenet frame. It is easy to see that the hypersurface

(s, t1, . . . , tn−1) 7→ c(s) +
n−1∑
j=1

tjEj+1

is complete.

Given a nonruled parabolic submanifold f : Mn → RN without Euclidean

factor, let M̃n be the extension of f(Mn) in RN obtained by extending each leaf

of relative nullity of f to a complete affine Euclidean space in Rn−2. Our next

and last result, describes the singular set of nonruled parabolic submanifolds

without Euclidean factor and dimension n ≥ 4.

Proposition 44. Let f : Mn → RN , n ≥ 4, be a nonruled parabolic submani-

fold without Euclidean factor. Then the hypersurface given by

{λ ∈ M̃n : 〈λ, ξs+1
2 〉 = 0}

is the singular set of M̃ .



PARABOLIC SUBMANIFOLDS OF RANK TWO 231

Proof: Let Ψ(δ) = h(x)+δ, δ ∈ Λs(x), be the parametrization in Theorem 33,

where h is any s–cross section of a polar surface g to f . Without loss of

generality, we assume that h is a τg∗ -section. Being (x, z) a coordinate system

of g with Z = ∂/∂z asymptotic and {η1, . . . , ηk} an orthonormal frame of Λs,

we can write

Ψ(x, z, t1, . . . , tk) = h(x, z) +
k∑
j=1

tjηj(x, z)

where k = N − 2s and (t1, . . . , tk) ∈ Rk. Recall that TM = Λs−1 and ∆ = Λs.

Thus, with X = ∂/∂x, we have that Ψ(x, z, t1, . . . , tk) is a singular point if and

only if

t1(∇⊥Xη1)Ns + t2(∇⊥Xη2)Ns and t1(∇⊥Zη1)Ns + t2(∇⊥Zη2)Ns

are linearly independents. By the definition of νs, we have

〈∇⊥Zη1, ξ
s
2〉 = 〈∇⊥Zη2, ξ

s
2〉 = 0.

Thus t1(∇⊥Zη1)Ns + t2(∇⊥Zη2)Ns and ξs2 are normal fields. The above condition

is now equivalent to

〈t1(∇⊥Xη1)Ns + t2(∇⊥Xη2)Ns , ξ
s
2〉 = 0

and, from Proposition 3, equivalent to

〈t1η1 + t2η2, ξ
s+1
2 〉 = 0.

It follows that λ ∈ M̃n is a singular point if and only if 〈λ, ξs+1
2 〉 = 0.

�
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