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Abstract

We give proofs of Alexandrov, Bernstein and Hopf Theorems. Then,
we discuss the developments of the theory of constant mean curvature
surfaces ensuing from them.

1 Introduction

The followings are very impressive theorems in the theory of constant mean

curvature hypersurfaces in Euclidean space.

Alexandrov Theorem. [1] A compact constant mean curvature hypersurface

embedded in Rn+1 is a round sphere.

Bernstein Theorem. [2], [6], [21], [31], [53], [56] A minimal hypersurface

in Rn+1, n < 7, which is a complete graph over a hyperplane Rn ⊂ Rn+1 is a

hyperplane.

Do Carmo and Lawson in [23] emphasized that Alexandrov’s and

Bernstein’s Theorems together give a characterization of the (complete) totally

umbilical hypersurfaces embedded in Rn+1, among those of constant mean cur-

vature (we recall that, at any point of a totally umbilical hypersurface, all the

principal curvatures are equal). Actually, the characterization of totally um-

bilical hypersurfaces with constant mean curvature was known previously: all

the principal curvatures of an umbilical hypersurface with constant mean cur-

vature are equal to a constant, in particular the hypersurface is isoparametric.

Isoparametric hypersurfaces have been classified in [41], [55], [13] (for the case

of R3, Rn with n > 3, space forms, respectively).
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This unified view over Alexandrov’s and Bernstein’s Theorems, leads Do

Carmo and Lawson to prove some results in hyperbolic space Hn+1. Among

their results, the following natural generalization of the Alexandrov Theorem

sticks out.

Theorem 1.1 (Do Carmo-Lawson). [23] Let S be a complete properly

embedded hypersurface in Hn+1, with constant mean curvature and exactly one

point in the asymptotic boundary. Then S is a horosphere.

The asymptotic boundary will be defined in Section 2.

Later on, this kind of results were pursued by many authors and this subject

is still very fruitful. The aim of this survey is to describe results in the theory

of constant mean curvature surfaces from this point of view.

In order to generalize the Alexandrov Theorem to ambient spaces differ-

ent from Rn+1, it is worth to make some remarks about rotationally invariant

spheres, geodesic spheres and totally umbilical hypersurfaces. In space forms,

rotationally invariant constant mean curvature hypersurfaces are totally um-

bilical. This is not the case in a general homogeneous manifolds, as for example

the simply connected homogeneous 3-manifolds with isometry group of dimen-

sion four: H2 × R, S2 × R, Heisenberg group Nil3, the Berger spheres and

P̃SL2(R), and with isometry group of dimension three: Sol3.

Moreover, while in space forms, geodesic spheres have constant mean cur-

vature, this is not the case in a general homogeneous manifold. Hence, in

order to obtain Alexandrov type result in homogeneous simply connected 3-

manifold, one has to understand first, which may be the surface for which one

is looking for uniqueness. As we will see later, when the isometry group of

the homogeneous simply connected 3-manifold has dimension four, the desired

surface is a rotationally invariant sphere with the same mean curvature, while

in Sol3, where no rotation is avaiable, it is a deformation of the solution of the

isoperimetric problem (we will be more precise in Section 4).

It is worth to introduce the Hopf Theorem as an aspect of the discussion.
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Hopf Theorem. [34] A constant mean curvature sphere immersed in R3 is

a round sphere.

Hopf Theorem can be generalized immediately to H3 and S3 with the same

proof as in [34]. Furthermore Hopf Theorem still holds for surfaces in space

forms of dimension higher than three, provided the mean curvature vector is

parallel [65].

In general, a Hopf type theorem is an uniqueness theorem about constant

mean curvature immersed topological spheres. In simply connected homoge-

neous manifold with isometry group of dimension four, the surface that will be

unique by a Hopf type theorem is a rotationally invariant sphere. In the case of

Sol3, the surface that will be unique by a Hopf type theorem is a deformation

of the solution of the isoperimetric problem (as in the case of Alexandrov type

theorem).

The paper is organized as follows. Each section is devoted to one of the

Theorems by Alexandrov, Bernstein and Hopf: the section contains a proof of

the corresponding theorem and a discussion about its generalizations.

As a general reference for surfaces theory we suggest [24], while for basic

notions about the theory of submanifolds we suggest [25].

2 Alexandrov Problem

Alexandrov Theorem. [1] A compact constant mean curvature hypersurface

S embedded in Rn+1 is a round sphere.

We learned the proof of Alexandrov’s result in [34], where Hopf proves

the Alexandrov Theorem for the case n = 3 and S of class C3. We report a

simplified version of that proof. Hopf himself wrote:

...It is my opinion that this proof by Alexandrov, and especially the geometric

part, opens important new aspects in differential geometry in the large...

The following developments of the theory of constant curvature surfaces
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show that Hopf’s sentence was very far-sighted. In fact, the geometric part of

the Alexandrov’s proof is what is now known as Alexandrov reflection method

or technique of moving planes and it is a very powerful tool.

We use the following characterization of the sphere in R3.

Lemma 2.1 A compact embedded surface in R3 that has a plane of symmetry

in every direction, is a round sphere (Lemma 2.2. Chapter VII in [34]).

Then we need some results from PDE’s theory. Let p be a point of a surface

S of constant mean curvature H. Locally around the point p, one can write the

surface S as a graph of a C2 function u(x, y) over the tangent plane to S at p.

Then, the function u satisfies

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy − 2H(1 + u2
x + u2

y)
3
2 = 0 (1)

Denote by p = ux, q = uy, r = uxx, s = uyy, t = uxy, then equation (1)

writes as

Φ(p, q, r, s, t) = (1 + q2)r − 2pqs+ (1 + p2)t− 2H(1 + p2 + q2)
3
2 = 0

As the quadratic form ∆ = Φrλ2 + Φsλµ + Φtµ2 = λ2 + µ2 + (qλ − pµ)2

is positive definite, Φ = 0 is an elliptic partial differential equation of second

order. Then, we are able to prove the following result.

Theorem 2.1 Let Φ = 0 be a partial differential equation of second order

elliptic in a neighborhood of (0, 0). Let u1 and u2 be two C2 solutions of Φ = 0

such that at (0, 0)

u1(0, 0) = u2(0, 0), p1(0, 0) = p2(0, 0), q1(0, 0) = q2(0, 0) (2)

but u1 6= u2 in any neighborhood of (0, 0). Then, w = u2 − u1 does not have a

sign in any neighborhood of (0, 0).

The geometric version of the previous theorem is known as the Maximum

Principle and it claims as follows.
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Maximum Principle. Let S1 and S2 be two surfaces with the same constant

mean curvature H, that are tangent at a point p ∈ int(S1) ∩ int(S2). Assume

that the mean curvature vectors of S1 and S2 at p coincide and that, around p,

S1 lies on one side of S2. Then S1 ≡ S2. When the intersection point p belongs

to the boundary of the surfaces, the result holds as well, provided further that the

two boundary are tangent and both are local graphs over a common neighborhood

in TpS1 = TpS2.

Proof of Theorem 2.1. By the proof of Theorem 10.1 in [32], w satisfies a

linear elliptic partial differential equation of second order whose highest order

terms are of the form ∆+aijDij , where each aij is C∞ and O(|x|2), x = (x1, x2)

(one must do the computation in the proof of Theorem 10.1 in [32], keeping

in mind that u1(0, 0) = u2(0, 0) and ∇u1(0, 0) = ∇u2(0, 0)). This allows us to

use Theorem 1.1 in [43], to conclude that

w(x) = h(x) +O(|x|n+1)

for some n ≥ 2 and h is a homogeneous harmonic polynomial of degree n.

Let z = x1 + ix2. It follows that h = h(z) is the real part of a holomorphic

function. Since h is homogeneous of degree n, we have h(z) = Re(czn), for

some nonzero complex constant c. By rotating the coordinates, if necessary, we

may assume that c is real. Hence

h(z) = h(reiθ) = crn cosnθ

As h changes sign in any neighborhood of (0,0), so does w.

�

We are now ready to prove the Alexandrov Theorem.

Proof of the Alexandrov Theorem. The proof relies on Alexandrov reflec-

tion method. Let Pt, t ∈ R, be the family of parallel planes in R3 orthogonal to

a given direction of R3. Denote by P−t the halfspace containing Pt′ with t′ ≤ t
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and let P+
t = (R3 \ P−t ) ∪ Pt. Denote by S(t)− = S ∩ P−t , by S(t)+ = S ∩ P+

t

and by S(t)∗ the reflection of S(t)+ across Pt.

Let W be the compact region of R3 with boundary S. As W is compact,

we can choose a Pt disjoint from W. Move Pt parallel to itself (decreasing

t, say) until t0 such that Pt0 touches S at a first point q. Then continue to

decrease t. At the beginning S(t)+ is a graph of bounded slope over a part of

Pt and int(S(t)∗) is contained in W. Furthermore the mean curvature vector

at any point of S(t)∗ is the reflection of the mean curvature vector at the

corresponding point of S(t)+. Now continue to decrease t till the first τ where

one of the following conditions fails to hold:

(a) int(S(τ)∗) ⊂ W.

(b) S(τ)+ is a graph of bounded slope over a part of Pτ .

If (a) fails first, one applies the Maximum Principle to S(τ)− and S(τ)∗

at the point where they touch to conclude that Pτ is a plane of symmetry

of S. If (b) fails first, then the point p where the tangent space of S(τ)+

becomes orthogonal to Pτ belongs to ∂S(τ)+ = ∂S(τ)− ⊂ Pτ and one apply

the boundary Maximum Principle to S(τ)∗ and S(τ)− to conclude that Pτ is

a plane of symmetry of S.

Thus, for any direction, one finds a plane of symmetry of S orthogonal to

that direction. Hence S has a plane of symmetry in any direction and one

concludes that it is a sphere, by Lemma 2.1.

�

As it is clear from the proof, the key properties for the Alexandrov Theorem

holding are:

• The surface must satisfy an elliptic equation.

• The ambient space must have ”many” totally geodesic surfaces that are

symmetry submanifolds by an ambient isometry.

It is easy to see that the analogous of the Alexandrov Theorem holds in Hn+1

and in a hemisphere of Sn+1 with the same proof as in [1]. In the case of
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Sn+1, the hypersurface S must be contained in a hemisphere, in order to start

Alexandrov reflection method with a totally geodesic hypersurface Sn disjoint

from S.

Furthermore, one can extend the Alexandrov Theorem to embedded hyper-

surfaces of Rn+1 having positive constant scalar curvature, or such that any

other symmetric function of the principal curvatures is a positive constant [52].

Alexandrov type results where obtained for Weingarten surfaces [11], [58] and

for constant mean curvature surfaces bounded by convex curves in space forms

[12], [59], [60].

The following Theorem is a generalization of Alexandrov’s result to H2×R

and to a hemisphere of S2 times R.

Theorem 2.2 (Hsiang-Hsiang) [36] A compact embedded constant mean

curvature surface in H2 × R or in a hemisphere of S2 times R is a rotational

sphere.

The proof of Theorem 2.2 is similar to the proof of Alexandrov Theorem.

In fact, any reflection about a vertical plane (i.e. a horizontal geodesic times

R) is an isometry of H2 × R and S2 × R. In H2 × R one applies Alexandrov

reflection method with vertical planes in order to prove that for any horizontal

direction, there is a vertical plane of symmetry of the surface, orthogonal to

that direction. This means that the surface is invariant by rotation about a

vertical axis i.e. it is a rotational sphere. The proof is analogous in S2×R. We

have only to notice that in order to start Alexandrov reflection method with

vertical planes, one need to find, for any horizontal direction, a vertical plane

orthogonal to that direction, non intersecting the surface. In S2 × R, this fact

is guaranteed by the hypothesis that the surface is contained in a hemisphere

times R.

Alexandrov’s problem in Nil3, P̃ SL2(R) and in the Berger spheres is still

open, since no reflections are available in these spaces.

In [29], Espinar, Galvez, Rosenberg remarked that in Sol3 there are two
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orthogonal foliations by totally geodesic surfaces such that each leaf of the two

orthogonal foliations is a symmetry submanifold by an ambient isometry and

thus the Alexandrov reflection method can be used to prove that a compact

embedded surface with constant mean curvature is a topological sphere. Then,

once a Hopf type theorem is proved in Sol3, an Alexandrov type result is proved

too (see Theorem 4.2 and the discussion there).

Do Carmo-Lawson extension of Alexandrov Theorem (Theorem 1.1 in the

Introduction) was suggested by the fact that in hyperbolic space, umbilical

hypersurfaces are somewhat more interesting than in Euclidean space. We

recall that that Hn+1 has a natural compactification Hn+1 = Hn+1 ∪ Sn(∞)

where the points of Sn(∞) can be viewed as classes of geodesic rays in Hn+1

(two rays are identified if their distance tends to zero at infinity). If Σ is a

submanifold of Hn+1, the asymptotic boundary of Σ is defined as Σ ∩ Sn(∞)

and it is denoted by ∂∞Σ. Umbilical hypersurfaces in Hn+1 are of three types,

according to the value of the mean curvature (and their asymptotic boundary):

• 1 < H <∞ : spheres (compact case).

• H = 1 : horospheres (asymptotic boundary: one point).

• 0 ≤ H < 1 : equidistant spheres, in particular hyperplanes when H = 0

(asymptotic boundary: a codimension two sphere).

Notice that properly embedded hypersurfaces with compact connected asymp-

totic boundary and constant mean curvature H ≥ 1, do not exist in Hn+1. Fur-

thermore, Anderson [3], proved that any closed submanifold Np−1 immersed

in Sn(∞) is the asymptotic boundary of a minimal submanifold Mp of Hn+1.

Hardt-Lin [37], [40] discussed the regularity at infinity in the case of hyper-

surfaces of Hn+1. Tonegawa extended their results to submanifolds of different

codimension [64].

Hence, it is clear that the asymptotic boundary has a crucial role in the

discussion about constant mean curvature hypersurfaces in hyperbolic space.
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Before stating next result we need to recall the following notion. Let Σ be a

hypersurface in Hn+1 such that ∂∞Σ is a codimension two sphere. Then ∂∞Σ

can be assumed to be an equator of Sn(∞). We say that Σ separates poles if

the north pole and the south pole with respect to such equator are in different

component of Hn+1 \ Σ (see [23]).

Theorem 2.3 (Do Carmo-Lawson) [23] Let Σ be a complete constant mean

curvature hypersurface properly emebedded in Hn+1 and let ∂∞Σ be the asymp-

totic boundary of Σ.

1. If ∂∞Σ is one point, then Σ is a horosphere.

2. If ∂∞Σ is codimension two sphere and Σ separates poles, then Σ is a

equidistant sphere.

The first part of Theorem 2.3 is Theorem 1.1 stated in the Introduction. Notice

that it is false without the assumption of embeddedness [42].

Proof of Theorem 2.3 Part 1.

The proof is a smart variation of the Alexandrov reflection method. Consider

the half-space model for Hn+1, that is

Rn+1
+ = Rn0 × R = {(x, xn+1) ∈ Rn+1 | xn+1 > 0}

Assume that the asymptotic boundary ∂∞Σ = ∞ i.e. the point at infinity

of Rn+1
+ . Then, Σ separates Hn+1 into two connected components, W+ and

W− such that ∂∞W+ = ∞ and ∂∞W− = Rn0 . In the half-space model, the

horospheres whose asymptotic boundary is∞ are xn+1 = const. The geodesics

orthogonal to this family of horospheres are vertical half-lines, parameterized

as follows: γx = (x, t), t > 0, x ∈ Rn0 . Each geodesic γx determines a family of

hyperbolic hyperplanes Hγx(t) orthogonal to γx. Geometrically, each Hγx(t) is

a half-sphere centered at x, that is
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Hγx(t) = {x ∈ Rn+1
+ | ‖x− (x, 0)‖ = t}.

As ∂∞Σ =∞, then, for any geodesic γx and t small

Hγx(t) ∩ Σ = ∅.

Recall that any inversion with respect to a halfsphere Hγx(t) orthogonal to

Sn(∞) is a hyperbolic isometry, called the reflection with respect to Hγx(t).

We apply Alexandrov reflection method with the family of hyperplanes

Hγx(t).

Let Hγx(t)+ and Hγx(t)− be the two halfspaces determined by Hγx(t)

Hγx(t)+ = ∪{Hγx(s) | s ≥ t}, Hγx(t)− = ∪{Hγx(s) | s ≤ t}

Let Σ(t)+ = Σ∩Hγx(t)+ and Σ(t)− = Σ∩Hγx(t)−. As the asymptotic boundary

of Σ is∞, for t small, Σ(t)− = ∅. Let Σ(t)∗ be the hyperbolic reflection of Σ(t)−

across Hγx(t). Let t0 > 0 be the smallest t such that Hγx(t) ∩ Σ 6= ∅. Then,

increase t. At the beginning int(Σ(t)∗) ⊂ W+ and Σ(t)− is not orthogonal to

Hγx(t) along the boundary.

Now continue to increase t till the first τ where one of the following condi-

tions fails to hold:

(a) int(Σ(τ)∗) ⊂ W+.

(b) Σ(τ)− is not orthogonal to Hγx(τ) along the boundary.

This yields that Σ(τ)∗ and Σ(τ)+ are tangent at an interior or boundary point

p. Furthermore, in a neighborhood of p, Σ(τ)∗ lies on one side of Σ(τ)+ and

the mean curvature vectors coincide. Then, by the maximum principle, Σ(τ)∗

and Σ(τ)+ must coincide. This yields that Σ is compact. Contradiction.

As (a) and (b) hold for every vertical geodesic γx and every t, one can conclude

that the tangent plane to Σ is horizontal at any point, and Σ is a horosphere.

�
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Remark 2.1 In H3, horospheres are unique also in another sense. A properly

embedded, constant mean curvature one, simply connected surface is a horo-

sphere, while the only annulus in such hypothesis is a rotational surface with

two point at infinity, known as the catenoid cousin [16]. The deep reason of

this fact is that, in H3, a properly embedded annular end of a surface with

constant mean curvature one has finite total curvature. On the contrary, the

analogous assertion for a minimal surface in R3 is false: the end of the helicoid

is annular, properly embedded but does not have finite total curvature (see [16]

for details).

Remark 2.2 In H2 × R, the constant mean curvature H = 1
2 plays a role

analogous to that of H = 0 in R3 and H = 1 in H3. It is worth to notice that

in H2 ×R there exists a complete, non umbilic, rotationally invariant, vertical

graph with constant mean curvature H = 1
2 [44], [48], [54], [57]. Discussions

and conjectures about the uniqueness of complete, H = 1
2 surfaces in H2 × R

can be found in [33], [45]. Recently Berard and Sa Earp described rotational

hypersurfaces in Hn × R and discussed about their classification [10].

3 Bernstein Problem

Bernstein Theorem. [2], [6], [21], [31], [53] A minimal hypersurface M in

Rn+1, n < 7, which is a complete graph over a hyperplane Rn ⊂ Rn+1 is a

hyperplane.

There are different proofs of Bernstein Theorem, according to the dimen-

sion. In R3, Bernstein himself [6], Heinz [35] and Osserman [49] proved Bern-

stein’s result. The methods they used are strictly two dimensional. Simons [53]

settled the result for n ≤ 6. Bombieri-De Giorgi-Giusti [9] proved the existence

of complete minimal graphs over Rn, provided n ≥ 7, hence a Bernstein type

result is false for n ≥ 7.

Let us explain the relations between minimal graphs, area minimizing hy-
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persurfaces and stable hypersurfaces. A minimal hypersurface (H = 0) is a

critical point of the volume with respect to deformations with compact support.

A minimal hypersurface is called stable if the second variation of the volume

is nonnegative for all compactly supported deformations. An area minimizing

hypersurface is a minimum for the volume and of course an area minimizing

hypersurface is stable. Furthermore a minimal graph M over a domain of Rn

is stable. This is a well known fact, but we think it is worth to give a proof of

it. Let |A| be the second fundamental form of M. A hypersurface M is stable

if and only if the first eigenvalue λ of the Jacobi operator L = ∆− |A|2, acting

on C∞0 (M) is non negative (see [7]). By contradiction, let D be a domain in M

with compact closure, assume that λ < 0 and let f be the first eigenfunction.

Then, Lf = −λf, f|∂D = 0 and one can assume f|D > 0. Let Φt be the vari-

ation of D such that < dΦt
dt |t=0

, N >= f, where N is the unit normal vector

field to M pointing upward. The first variation of the mean curvature for the

normal variation fN is given by

Ḣ(0)f = Lf = −λf > 0.

Hence, for positive small t, at any interior point of the variation Φt(D), the

mean curvature is greater than zero. Now, translate D upward, such that

D∩Φt(D) = ∅. Then, translate D downward: at the first contact point between

the translation of D and Φt(D), the mean curvature of D (zero) is smaller than

the mean curvature of Φt(D), but D is above Φt(D). This is a contradiction

by the maximum principle. Hence a minimal graph is stable.

The key point in Simons’ proof of the Bernstein Theorem is Simons inequal-

ity.

Let M be a minimal hypersurface in Rn+1, ∆ the laplacian on M and |A| the

norm of the second fundamental form of M. Simons’ inequality is the following:

∆|A|2 ≥ −2|A|4 + 2(1 +
2
n

)|∇|A||2
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Simons was able to prove that no non trivial n-dimensional stable minimal

cones exist in Rn+1 for n ≤ 6. By a result of Fleming [31], the non existence

of non trivial stable minimal cones in Rn+1 implies that the only area min-

imizing hypersurfaces in Rn+1 are hyperplanes. Hence any area minimizing

hypersurface in Rn+1, n ≤ 6, is a hyperplane.

By adding some hyphotesis on the growth of the minimal graph, one obtains

Bernstein type result in any dimension. Caffarelli-Nirenberg-Spruck proved

that there are no complete minimal graphs of a function u : Rn −→ R, such

that |Du| = o(|x| 12 ) [17]. Ecker-Huisken proved that there are no complete

minimal graphs of a function u : Rn −→ R, such that u is at most linear [28].

Schoen-Simon-Yau [56] generalized Simons inequality to different ambient man-

ifolds. Then, they obtain an Lp inequality for the norm of the second fundamen-

tal form of a stable minimal hypersurface. Let us recall the following theorem

from [56].

Theorem 3.1 (Schoen-Simon-Yau)[56] Let Mn be a stable minimal im-

mersion in a manifold Nn+1. Let K1 and K2 be the lower and the upper bound

of the sectional curvatures of Nn+1 respectively and let c be a bound for the

norm of the gradient of the curvature tensor. Then, for each p ∈ [4, 4 +
√

8
n )

and for each non-negative smooth function f with compact support in Mn, one

has

∫
M

|A|pfp ≤ β
∫
M

[|∇f |p + (c
2
3 +K1 −K2 + max{−K2, 0})

p
2 fp] (3)

where β is a constant depending only on n and p.

In [56], using Theorem 3.1, Schoen-Simon-Yau gave a simplified proof of

Bernstein Theorem in the case n < 6. In fact, their proof works for area mini-

mizing hypersurfaces. We give a sketch of the proof in [56].

Proof of Bernstein Theorem. As we remarked before, if M is a complete

minimal graph over Rn, then M is area-minimizing, in particular it is stable.
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Define BR = {x ∈ Rn+1 ∩M | |x| ≤ R}. As M is area-minimizing, vol(BR) ≤
1
2vol(SR) where SR is the Euclidean sphere of radius R in Rn+1. Hence

vol(BR) ≤ (n+ 1)ωn+1

2
Rn, (4)

where ωn+1 is the volume of S1. Let |A| be the norm of the second fundamental

form of M. Schoen-Simon-Yau deduced from (3) (choosing f as a distance

function) that, for any θ ∈ (0, 1) and p ∈ (0, 4 +
√

8
n ), there exists a constant

β depending only on n and p (see [56]) so that

∫
BθR

|A|p ≤ β

(1− θ)p
R−pvol(BR). (5)

Replacing (4) in (5), one has

∫
BθR

|A|p ≤ β(n+ 1)ωn+1

2(1− θ)p
Rn−p. (6)

If n < 6, there is a p > n satisfying (6). For such p, letting R −→ ∞ in (6),

one has |A| ≡ 0 at any point, that is, M is a hyperplane.

�

As the previous proof depends on inequality (3), it is not hard to see that

one can obtain a Bernstein type result in ambient manifolds whose sectional

curvatures satisfy some conditions [56]. Furthermore, as Theorem 3.1 holds for

stable hypersurfaces, many authors try to extend the Bernstein Theorem to

minimal stable hypersurfaces (parametric Bernstein Problem).

Conjecture. [46] [47] The only complete minimal stable hypersurfaces in

Rn+1, 3 ≤ n ≤ 7, are hyperplanes.

Some partial results are contained in [14], [18], [19], [26], [46], [47], [50], [61].

Let us quote some results that we believe especially interesting. In the

following theorem the condition of being a graph is replaced by stability added

to a condition on the L2 norm of the second fundamental form.
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Theorem 3.2 (Do Carmo-Peng) [26] Let M be a stable complete minimal

hypersurface in Rn+1 such that

lim
R−→∞

∫
BR |A|

2

R2+2q
= 0, q <

√
2
n
, (7)

where BR is the geodesic ball of radius R in M. Then M is a hyperplane.

The proof of Theorem 3.2 is based on a refinement of the technique in [56].

In the following theorem the condition of being a graph is replaced by

stability and the topological condition of having at least two ends.

Theorem 3.3 (Cao-Shen-Zhu) [18] For any n ≥ 3, if Mn is a complete,

stable minimal hypersurface in Rn+1, then Mn has only one end.

The technique of the proof of Theorem 3.3 is different in nature from those using

the generalized Simons’ inequality. It relies on the existence of a non-trivial

bounded harmonic function with finite energy on a stable minimal hypersurface,

provided the hypersurface has at least two ends. Then, one uses a Liouville

type theorem [63], to prove that such function does not exist.

Many authors try to obtain a Bernstein type theorem for (strongly) stable

constant mean curvature hypersurfaces [15], [22], [27], [30], [38], [62]. For the

definition of (strong) stability for constant mean curvature hypersurfaces, see

[8] and [30].

The following result yields the non existence of complete (strongly) stable

hypersurfaces of constant mean curvature different from zero in Rn+1, provided

n ≤ 4.

Theorem 3.4 (Elbert-Nelli-Rosenberg) [30] Let Nn+1 be a Riemannian

manifold with sectional curvatures uniformly bounded from below. When n =

3, 4, Nn+1 has no complete (strongly) stable hypersurfaces of constant mean

curvature H, without boundary, provided |H| is large enough (with respect to

the absolute value of the bound on the sectional curvatures of Nn+1 ). In par-

ticular there are no complete (strongly) stable H-hypersurfaces in Rn+1 without

boundary, H 6= 0.
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The proof of Theorem 3.4 relies on the following fact. For |H| large enough,

every point of a complete (strongly) stable hypersurface with constant mean

curvature H, must have bounded distance from the boundary of the hypersur-

face. Then, fix a point p on the hypersurface in the hypothesis of Theorem 3.4

and choose balls in the hypersurface centered at the point p, with increasing

radius. The distance from p to the boundary of the ball can be made arbitrarily

large. Contradiction.

We notice that, the technique of the proof of Theorem 3.4, can be applied

to many other cases in order to prove non-existence results [44], [51].

4 Hopf Problem

Hopf Theorem. [34] A constant mean curvature topological sphere immersed

in R3 is a round sphere.

Let us recall the definition of Hopf differential on a surface S. Let E,F,G

and e, f, g be the coefficients of the first and the second fundamental form of S,

respectively. Denote by κ1 and κ2 the eigenvalues of the second fundamental

form (i.e. the principal curvatures of the surface S). Let (u, v) isothermal

parameters on S, that is ds2 = E(du2 + dv2). Then, the Gauss curvature and

the mean curvature of S are

K = κ1κ2 =
eg − f2

E2
, H =

1
2

(κ1 + κ2) =
e+ g

2E
, (8)

while Codazzi equations can be written as

(
e− g

2

)
u

+ fv = EHu,

(
e− g

2

)
v

− fu = −EHv, (9)

and the lines of curvature of S are given by −fdu2 + (e− g)dudv + fdv2 = 0.

Introduce the complex parameters w = u+ iv, w = u− iv and let

Φ(w,w) =
e− g

2
− if. (10)
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Φ is known as the Hopf fuction of S and Φ(dw)2 as the Hopf differential of S.

From (8) and (10), it follows that

|Φ|
E

=
|κ1 − κ2|

2
.

As we wrote in the Introduction, if κ1 = κ2 at a point p ∈ S, the point p is

called umbilic. Hence the umbilic points of S are the zeros of Φ.

Isothermal parameters give to S the structure of a Riemann surface such

that the Hopf differential is a complex quadratic differential on S. In terms of

Φ, Codazzi equations write as

Φw = EHw.

If the surface S has constant mean curvatureH thenHv = Hu = 0, and Codazzi

equations are equivalent to the real and the imaginary part of Φ satisfying the

Cauchy-Riemann equations. Hence Φ is an analytic function of w.

We report the proof of the Hopf Theorem as it is in [34]. We use the

following characterization of the sphere in R3.

Lemma 4.1 The spheres are the only close surfaces in R3 for which all points

are umbilics (Lemma 1.2. Chapter V in [34]).

Proof of the Hopf Theorem. The zeros of the Hopf differential are the

umbilic points, hence one should prove that Φ ≡ 0 on a compact Riemann

surface of genus zero. We cover S by two coordinate neighborhoods: w ∈ C

and z = 1
w , w 6= 0. Then Φ(dw)2 = Ψ(dz)2 are related by

Φ(w) = Ψ(z)
(
dz

dw

)2

= Ψ(z)w−4 = Ψ(z)z4 (11)

Being Φ an entire function of w and being Ψ regular for z = 0, then Φ = 0 for

w =∞. Hence Φ ≡ 0 by Liouville’s Theorem.

�
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As we wrote in the Introduction, the Hopf Theorem can be extended easily

to space forms H3 and S3, because of the fact that Hopf differential is defined

as in R3 and because rotational surfaces are umbilic. On the contrary, in other

homogeneous 3-manifolds one has much more work to do. Abresch and Rosen-

berg extended Hopf’s result to simply connected homogeneous 3-manifolds with

isometry group of dimension four.

Theorem 4.1 (Abresch-Rosenberg) [4] [5] A constant mean curvature topo-

logical sphere immersed in H2 × R, S2 × R, Nil3, P̃ SL2(R), and in a Berger

sphere is a rotationally invariant constant mean curvature sphere.

As we have seen, the Hopf Theorem’s proof relies on the existence on the

surface of a holomorphic quadratic differential vanishing at umbilic points.

In the ambient spaces of Theorem 4.1, Abresch and Rosenberg succeeded in

defining a quadratic differential as a linear combination of the Hopf differential

and a term coming from a Killing field of the ambient space. Such quadratic

differential is holomorphic on constant mean curvature surfaces and vanishes

on rotationally invariant surfaces. Hence they proved that any constant mean

curvature topological sphere is rotationally invariant, in such ambient spaces.

We now discuss the extension of Alexandrov and Hopf type result to Sol3,

the only simply connected homogeneous 3-manifold with isometry group of

dimension three.

Theorem 4.2 (Daniel-Mira) [20] Let H > 1√
3
. Then:

(a) There exists an embedded sphere SH with constant mean curvature H

in Sol3.

(b) Any immersed sphere with constant mean curvature H in Sol3 differs

from SH at most by a left translation.

(c) Any compact embedded surface with constant mean curvature H in

Sol3 differs from SH at most by a left translation.

Moreover, these canonical spheres SH constitute a real analytic family, they
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all have index one and two reflection planes, and their Gauss maps are global

diffeomorphisms into S2.

It is clear that (b) and (c) in Theorem 4.2 are the Hopf type theorem and

the Alexandrov type theorem in Sol3, respectively.

The proof of Theorem 4.2 is quite articulated. We sketch the main ideas of

it.

As we told in Section 2, (c) follows immediately from (b) and the existence

part (a), by using the standard Alexandrov reflection technique with respect

to the two canonical foliations of Sol3 by totally geodesic surfaces.

In Sol3, there are no known explicit constant mean curvature topological spheres.

Hence Daniel and Mira had to find, first, the sphere for which they were looking

for uniqueness.

As there are no rotations in Sol3, one can not reduce the problem of find-

ing constant mean curvature spheres, to the problem of solving an ordinary

differential equation.

Notice that the solutions of the isoperimetric problem in Sol3 are embedded

spheres. Daniel and Mira proved that the Gauss map of an isoperimetric sphere

(and more generally of an index one constant mean curvature sphere) is a

diffeomorsphim. They also proved that a constant mean curvature sphere,

whose Gauss map is a diffeomorphism, is embedded.

Then, they proved that one can deform (by implicit function theorem) index

one constant mean curvature spheres, and that the property of having index

one is preserved by this deformation. In this way they proved that there exists

an index one sphere SH with constant mean curvature H for all H > 1√
3
. This

last condition comes from the fact that in order to deform, they need a bound

on the diameter of the spheres. Such diameter estimate is a consequence of a

theorem of Rosenberg [51] holding only for H > 1√
3
.

Then, they succeed in proving the existence of a quadratic differential sat-

isfying the Cauchy-Riemann inequality (see [39]) on constant mean curvature

spheres whose Gauss map is a diffeomorphism of S2. This quadratic differential
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is used to prove uniqueness in (b).

It is worth to notice that Daniel and Mira were able to prove the Hopf

Theorem without knowing a-priori explicitly the sphere for which they where

looking for uniqueness. This approach seems to be suitable for Hopf type

theorems in many other cases.
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equation aux dérivées partielles du type elliptique, Soobsc. Har’kov. Math.

Obsc. 15 (1915), 38-45.

[7] Barbosa, J. L.; do Carmo, M., Stability of Hypersurfaces of constant mean

curvature, Math. Zeit. 185 (1984), 339-353.

[8] Barbosa, J. L.; do Carmo, M.; Eschenburg, J., Stability of Hypersurfaces

of constant mean curvature in Riemannian manifolds, Math. Zeit. 197

(1988), 123-138.



A SURVEY ON ALEXANDROV-BERNSTEIN-HOPF THEOREMS 171

[9] Bombieri, E.; De Giorgi, E.; Giusti, E., Minimal cones and the Bernstein

problem, Inv. Math. 7 (1969), 243-268.

[10] Bérard, P.; Sa Earp, R., Examples of H-hypersurfaces in Hn × R and
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