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STABILITY OF MINIMAL AND CONSTANT MEAN

CURVATURE SURFACES WITH FREE BOUNDARY

A. Ros

Abstract

We prove that stable balance minimal surfaces with free boundary
in a centrally symmetric mean-convex region of R

3 are topological disks.
For surfaces with constant mean curvature and free boundary, we prove
that volume-preserving stability implies that the surface has either genus
zero with at most four boundary components or genus one with 1 or 2
curves at its boundary.

1 Introduction

Given a smooth region W ⊂ R
3, we can consider compact orientable surfaces

S of stationary area among surfaces in W whose boundary lies on ∂W and

whose interior lies on the interior of W . Then S is a minimal surface (i.e. it

has mean curvature zero) and it meets orthogonally ∂W along its boundary.

We will then say that S is a minimal surface with free boundary in W . These

surfaces have been considered by Courant and Davies [4], Meeks and Yau [8],

Smyth [24], Jost [7], Tomi [26], Moore and Schulte [10] and other authors. For

the case of general dimension and codimension see the survey by Schoen [23].

In applications there is an interest into area minimizing and stable minimal

surfaces with free boundary, i.e. stationary surfaces with nonnegative second

variation of the area.

We can also consider surfaces with free boundary in a region W and sta-

tionary area under other natural geometric constraints. In this paper we will

assume that W is a mean-convex region, i. e. ∂W has nonnegative inward

mean curvature HW ≥ 0, and we will study the stability of the area for sur-
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faces with free boundary in W in two different contexts related with the above:

balance minimal surfaces and volume-preserving stationary surfaces.

Assume that the region W ⊂ R
3 is mean-convex and invariant under the

central symmetry x 7→ −x in R
3. Following Fischer and Koch [5], we say that an

embedded proper surface S ⊂W with −S = S is a balance surface if it divides

W into two regions, W −S = W1 ∪W2, interchanged by the central symmetry

−W1 = W2. A balance minimal surface is a balance surface in W which is

minimal and meets the boundary of W orthogonally. This is the same to say

that S is a critical point of the area among balance surfaces. More generally,

given a group G of symmetries of W and an index two subgroup H ⊂ G, we can

consider (G,H)-balance surfaces. These are proper surfaces S invariant under

G and such that the components of W − S are preserved by the symmetries

in H and interchanged by those in G − H. Balance minimal surfaces appear

in geometric crystallography and play a role similar to sphere packing and

space filling polyhedra. A number of interesting examples of balance minimal

surfaces in classical geometry can be found in [5]. Area minimizing balance

surfaces may present singularities at the fixed points of the symmetries of G.

These singularities are described by Morgan [11] (Theorem 5.3 and comments

below its proof). In this paper we will restrict to the particular case G = {±Id}

and it follows from [11] that in this situation area minimizing balance surfaces

exist and are regular embedded minimal surfaces with free boundary in W . We

will prove in Theorem 5 that nonflat stable balance minimal surfaces with free

boundary in W are (topological) disks. We will also prove that nonflat stable

closed balance minimal surfaces in a 3-torus have genus 3.

If S is a critical point of the area, not for any deformation but just for

those preserving the volume enclosed by the surface in W , then S has constant

mean curvature and contact angle π/2 with ∂W . Constant mean curvature

surfaces with free boundary appear as solutions of the isoperimetric problem

in the region W , see Ros [16] and they have been studied, for instance, in

Nitsche [12], Struwe [25], Ros and Vergasta [21] and Bürger and Kuwert [2].
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In particular, volume-preserving stability for constant mean curvature surfaces

with free boundary was considered in [21] in the case W is convex and Ros and

Souam [20] study the stability of capillary surfaces (this is a related situation

where the contact angle between S and ∂W is a prescribed constant). We

show that volume-preserving stable constant mean curvature surfaces with free

boundary in W have either genus 0 and at most four boundary components or

genus 1 and at most two components at its boundary, see Theorem 9.

In Theorem 7 we will prove that the results above extend to piecewise

smooth regions W ⊂ R
3.

Stable surfaces with involved topology can be obtained from the Schwarz

P minimal surface in Figure 1. Ross [22] proved that this surface is volume-

preserving stable in the cubic 3-torus and from that we can deduce that it is

a stable balance minimal surface in the 3-torus and that the piece at the right

of Figure 1 is stable among balance surfaces in the cube (note that the area-

minimizing balance surface in the cube is the flat horizontal planar section,

[16]). We can also see that the part of the surface between two consecutive

planes of symmetry is volume-preserving with free boundary, genus 1 and 2

boundary components. However, in this caseW is not a region in the Euclidean

space but a slab in the 3-torus.

The results of this paper follow by using, as test functions in the second

variation, functions which are constructed from harmonic 1-forms on S. From

the Hodge Theorem, the existence of these 1-forms depends on the topology

of the surface. These test functions where first used in Palmer [13] to study

the index of stability of harmonic Gauss maps and then by Ros [18, 19] to

obtain several stability properties in classical geometry of surfaces. He proves

the following results:

1) Complete stable minimal surfaces (either orientable or nonorientable) in

R
3 are planar. This extends to the nonorientable case the well-known charac-

terization of the plane given by do Carmo and Peng [3], Fischer-Colbrie and

Schoen [6] and Pogorelov [14].
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Figure 1: Schwarz P minimal surface provides interesting examples of stable sur-
faces with free boundary. The piece at the right is both balance stable and volume-
preserving stable in the unit cube. The same holds for the whole surface in the cubic
3-torus. The piece of the P surface between two consecutive horizontal planes of
symmetry is a volume-preserving stable surface in the flat region T 2× [0, 1

2
], T 2 being

the square 2-torus, of genus 1 and two boundary components.

2) If Γ ⊂ R
3 is a discrete group of translations of rank 1 or 2, then area

minimizing surfaces (mod 2) in R
3/Γ, are either planar or (a quotient of) the

Helicoid or the doubly periodic Scherk surfaces (in the last two cases, the total

curvature of the surface is −2π), [18]. This result gives the first progress toward

the classification of area minimizing surfaces in flat 3-manifolds.

3) If Γ ⊂ R
3 is a group of translations of rank k, then closed volume-

preserving stable surfaces in R
3/Γ have genus ≤ k. This extends to the periodic

context the characterization by Barbosa and do Carmo of the sphere as the

unique stable constant mean curvature surface in R
3, [1], and provides the

basic theoretical support for some mesoscopic phase separation phenomena

appearing in material sciences, [19].

4) Closed volume-preserving stable constant mean curvature surfaces in a

3-manifold of nonnegative Ricci curvature have genus ≤ 3, [18]. This improves

partial results by several authors and gives the optimal bound for the first time

as the Schwarz P minimal surface is volume-preserving stable in the cubic flat
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3-torus, Ross [22].

This paper is dedicated to Manfredo do Carmo on his 80th Birthday.

2 Preliminaries

Let W ⊂ R
3 be a smooth region. Denote by σW and HW the second fundamen-

tal form (with respect to the inward pointing unit normal vector) and the mean

curvature of ∂W . The region is convex if and only if σW ≥ 0 and W is said to

be mean-convex if HW ≥ 0. A proper surface in W is an immersed orientable

compact surface S with S ∩ ∂W = ∂S. We assume that the immersion of S is

smooth even at the boundary and we denote by D and ∇ the usual derivative

in R
3 and the covariant derivative operator in S, respectively. Let N , σ, and A

be the unit normal vector, the second fundamental form and the Weingarten

endomorphism of the immersion. So, σ(v, w) = 〈Av,w〉 for any v, w tangent

vectors to S at p ∈ S. Denote by H , K and κ the mean curvature (normalized

so that H = 1 for the unit sphere in R
3), the Gauss curvature of S and the

inward geodesic curvature of ∂S in S, respectively.

A variation of S is a smooth family of proper surfaces in W given by im-

mersions ψτ : S →W , with |τ | < ε and ψ0 equal to the initial immersion of S.

We denote by A(τ) the area of ψτ . The first variation formula of the area is

A′(0) = −2

∫
S

HudA+

∫
∂S

〈
dψ

dτ
(0), N〉ds. (1)

We say that the surface S is a minimal surface with free boundary if it is a

critical point of the area functional among proper surfaces or, equivalently,

if H = 0 and S intersects ∂W orthogonally along ∂S. In this case, if we

consider a function u : S −→ R, smooth even at the boundary, then there

exists a variation ψτ of S by proper surfaces whose velocity vector at τ = 0 is

dψ
dτ

(0) = uN . For such a surface S, the second variation formula of the area is

A′′(0) = Q(u, u) = −

∫
S

(u∆u+ |σ|2u2)dA+

∫
∂S

(u
∂u

∂n
− σW (N,N)u2)ds, (2)
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where ∆ is the Laplacian of S and n the (outward pointing) unit conormal

vector of S along its boundary, [1, 21]. Note that, S being orthogonal to ∂W

along ∂S, N is tangent to ∂W and so σW (N,N) is well defined. The operator

∆ + |σ|2 is called the Jacobi operator of the surface and the solutions of the

equation ∆u+ |σ|2u = 0 are called Jacobi functions. After integration by parts,

the second variation can be written as

Q(u, u) =

∫
S

(|∇u|2 − |σ|2u2)dA−

∫
∂S

σW (N,N)u2ds. (3)

The first term is the usual one in the second derivative of the area functional

and the integral along ∂S is the contribution of the free boundary condition.

A minimal surface with free boundary is said to be stable if it has nonnegative

second variation Q(u, u) ≥ 0, for all u.

If W is symmetric with respect to the origin, −W = W then we can con-

sider a version of the above adapted to the symmetric context. We say that

an embedded proper surface S is a balance surface if −S = S and the two

components of W − S are interchanged by the central symmetry. A balance

surface has stationary area among balance surfaces if and only if it is a minimal

surface with free boundary in W . This kind of surfaces can be constructed by

area minimizing arguments and they are free of singularities, see Morgan [11],

and they play a important role in surface crystallography, Fischer and Koch

[5].

Another natural variational problem for proper surfaces appears when we

consider volume preserving variations. It follows form (1) that a proper surface

S is a critical point of the area functional, among proper surfaces enclosing a

fixed volume in W if and only if the mean curvature H is constant and S meets

∂W orthogonally, see [12, 21]. We say that S is a constant mean curvature

surface with free boundary in W . If S is either non embedded or does not

enclose any volume, we consider variations ψτ by proper surfaces in W which
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joint with S bound a net oriented volume 0, that is

∫
[0,τ ]×S

Ω = 0,

where Ω is the pullback of the euclidean volume element by the map (τ, p) 7→

ψτ (p), with |τ | < ε and p ∈ S. As for minimal surfaces, given a smooth

function u on S with
∫
S
u dA = 0 there exists a variation of S by proper

surfaces enclosing the same volume than S and such that the velocity vector

at τ = 0 is given by uN (this follows from a modification of the arguments

given in [1]). The second variation formula (2) still holds for constant mean

curvature surfaces with free boundary if we consider functions u with mean

value zero. The Jacobi operator ∆ + |σ|2 and Jacobi functions, functions u

satisfying ∆u + |σ|2u = 0, are defined as in the minimal case. The surface S

is said to be volume-preserving stable if Q(u, u) ≥ 0 for all u with
∫
S
u dA = 0.

This stability notion is related with the isoperimetric problem which consists

of studying least area surfaces among the ones enclosing a given volume, see

Ros [16, 17].

2.1 Harmonic 1-forms

Let S be a compact, connected and orientable Riemannian surface with smooth

boundary and denote by t, n the unit tangent vector and the (outward pointing)

conormal vector along ∂S. So t, n is an orthonormal basis of the tangent plane

of S at the points of its boundary.

Let ω be an harmonic 1-form on S (smooth even at the boundary). This

means that ω is closed and coclosed, i.e. dω = 0 and divω = 0. Thus the

covariant derivative ∇ω is a symmetric tensor with trace 0 or, equivalently, in

a neighborhood of each point of S, ω is the differential of a harmonic function.

The conjugate harmonic 1-form of ω is another harmonic 1-form ω∗ given by

ω∗(e1) = ω(e2) and ω∗(e2) = −ω(e1), e1, e2 being positive orthonormal basis

in the tangent plane of S. The Hodge Theorem gives a relation between the

cohomology of S and the space of harmonic 1-forms. When ∂S 6= ∅ there are



228 A. ROS

several natural boundary conditions for ω. In this paper we will consider the

space H(S) of harmonic 1-forms ω on S with Neumann boundary condition

ω(n) = 0.

Lemma 1 (Hodge Theorem) Given a compact orientable surface with bound-

ary S, there is an isomorphism between the space H(S) of harmonic 1-forms on

S with Neumann boundary condition and the first the Rham cohomology group

H1(S,R) of S.

Proof. From the divergence theorem we get that for any harmonic function f

on S, ∫
S

|∇f |2dA =

∫
S

div(f∇f)dA =

∫
∂S

f
∂f

∂n
ds.

Therefore, if df(n) = 0 we get that f is constant. This means that if the

cohomology class of ω ∈ H(S) is zero then ω = 0. It follows that the map

H(S) −→ H1(S,R)

which applies a harmonic form ω into its cohomology class [ω] is injective. Let

α a closed 1-form on S and f be a smooth function given as a solution of the

Neumann Problem

∆f = divα in S and
∂f

∂n
= α(n) in ∂S. (4)

It follows that ω = α − df lies in H(S) and defines the same class than α in

H1(S,R). This proves the lemma.

�

Note that in the case ∂S 6= 0, from the unique continuation property, it is

not possible to have both ω ∈ H(S) and ω∗ ∈ H(S), unless ω = 0.

3 Minimal surfaces

In this section S will be a compact orientable minimal surface with free bound-

ary in a mean-convex region W ⊂ R
3. We first prove the following simple but

interesting fact.
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Proposition 2 Let W be a smooth mean-convex region and S a connected

stable minimal surface with free boundary in W . Then S is a (topological) disk

with total curvature smaller than 2π

Proof. As S meets ∂W ortogonally, along ∂S the conormal vector of S coin-

cides with the outward pointing normal vector of ∂W and we get

σW (t, t) = 〈Dt n, t〉 = 〈∇t n, t〉 = κ, (5)

κ being the geodesic curvature of the boundary curve of S. Therefore, from

the mean-convexity of W , we have σW (N,N) = 2HW − σW (t, t) ≥ −κ. From

the nonnegativity of the second variation (3) we obtain

0 ≤

∫
S

(|∇u|2 − |σ|2u2)dA+

∫
∂S

κu2ds, (6)

for any u ∈ C2(S) and the equality holds if and only if ∆u + |σ|2u = 0 on S

and ∂u
∂n

+ κu = 0 on ∂S. Taking u = 1, using the Gauss equation 2K = −|σ|2

and the Gauss-Bonnet theorem, we conclude that

0 ≤ 2

∫
S

KdA+

∫
∂S

κ ds =

∫
S

KdA+ 2πχ(S).

This implies that S is either a disk or an annulus. In the case of the annulus,

the function u = 1 gives the equality in (6) and so S is planar and κ vanishes

along ∂S, which is impossible.

�

In the proof of our results, we will use dual vector fields of harmonic 1-

forms as test functions in the nonnegativity of the second variations formula,

see Palmer [13] and Ros [18, 19] for other applications of these functions. For

any harmonic 1-form ω on S we consider its dual vector field X : S −→ R
3,

viewed as a vector valued function. Thus X(p) is tangent to S for each point

p ∈ S and 〈X, v〉 = ω(v), for any vector v tangent to S at p. The dual vector

field of the conjugate harmonic form ω∗ will be denoted by X∗. The minimality

of S implies that the differentials of the linear coordinates of the immersion
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dx1, dx2, dx3 and their conjugates dx∗1, dx
∗
2, dx

∗
3 span two spaces of harmonic

1-forms denoted by L(S) and L∗(S), respectively. If ω ∈ L(S), then there is a

vector a ∈ R
3 such that, for any vector v tangent to S, ω(v) = 〈a, v〉 and the

dual vector fields of ω and ω∗ are given by X = a− 〈N, a〉N and X∗ = a ∧N ,

respectively. We will need the following result.

Lemma 3 ([18]) Let S be an orientable minimal surface immersed in R
3, ω

a harmonic 1-form on S and X its dual tangent vector field, viewed as a R
3-

valued function. Then we have

∆X + |σ|2X = 2〈∇ω, σ〉N. (7)

Moreover, if S is nonflat, then X is a Jacobi function, i.e. 〈∇ω, σ〉 ≡ 0, if and

only if ω ∈ L∗(S).

Lemma 4 Let S be a proper surface immersed in a smooth region W ⊂ R
3

which intersects ∂W orthogonally along ∂S (no assumption about the mean

curvature of the immersion) and ω ∈ H(S) a harmonic 1-form with Neumann

boundary condition. If X and X∗ are the dual vector fields of ω and ω∗ respec-

tively, then, along the boundary of S we have

〈X,
∂X

∂n
〉 = 〈X∗,

∂X∗

∂n
〉 = −σW (t, t)|X |2. (8)

Proof. Given a local orthonormal basis ei, i = 1, 2, of tangent vector fields to

S, we have the duality relation ω(ei) = 〈X, ei〉 and its derivative (∇ω)(ej , ei) =

〈∇ej
X, ei〉. As ω(n) = 0, the normal derivative ofX at the points of ∂S satisfies

〈X,
∂X

∂n
〉 = 〈X,∇nX〉 = (∇ω)(n,X) = (∇ω)(n, t)ω(t).

Derivating ω(n) = 0 with respect to t, we obtain

0 =
d

dt
ω(n) = (∇ω)(t, n) + ω(∇t n) = (∇ω)(t, n) + ω(t) 〈∇t n, t〉 =

= (∇ω)(t, n) + ω(t)σW (t, t),
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where we have used (5) and from the above calculation we obtain

〈X,
∂X

∂n
〉 = −σW (t, t)|X |2.

The conjugate vector field X∗ is obtained from X by a rotation of 90 degrees

in the tangent planes of S. As this rotation is parallel, we have

〈X∗,
∂X∗

∂n
〉 = 〈X∗,∇nX

∗〉 = 〈X,∇nX〉 = −σW (t, t)|X |2,

and this proves the lemma.

�

3.1 Balance minimal surfaces

If the region W is symmetric with respect to the origin and S is a balance sur-

face with stationary area among balance surfaces, then it is a minimal surface

with free boundary in W . The surface S is stable if it minimizes area up to

second order among balance surfaces, i. e., it has nonnegative second variation

for odd infinitesimal variations u ∈ C2(S) with u(−p) = −u(p) for any point

p ∈ S. In the following result we describe the topology of these surfaces.

Theorem 5 Let W ⊂ R
3 be a centrally symmetric mean-convex region and

S ⊂ W a nonflat stable balance minimal surface. Then, the connected compo-

nents of S are disks.

Proof. If S has a connected component S0 not equal to −S0, then S0 is a

stable minimal surface with free boundary in W , and Proposition 2 gives that

S0 is a disk. Therefore we can assume that S is connected. Let φ : S −→ S be

the central symmetry φ(p) = −p and note that φ preserves orientations and the

Gauss map N of S satisfies N ◦ φ = N . The quotient surface S′ = S/{Id, φ}

has a structure of Riemann surface and so, harmonic 1-forms are well defined

over S′. The Euler characteristic of these two surfaces are related by either

χ(S) = 2χ(S′) − 1 (if 0 ∈ S) or χ(S) = 2χ(S′) (when 0 /∈ S). If S′ is not a

disk, then dimH1(S′,R) ≥ 1. Therefore, from Lemma 1 it admits a nonzero
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harmonic 1-form with Neumann boundary condition. This 1-form lifts to a

harmonic 1-form ω ∈ H(S) such that its pullback image by the involution φ

satisfy φ∗ω = ω. The conjugate harmonic form satisfies φ∗ω∗ = ω∗, too. As

a consequence, the dual tangent vector fields X and X∗ of ω and ω∗ satisfy

X ◦ φ = −X and X∗ ◦ φ = −X∗. Now we use the linear coordinates of

X∗ = (X∗
1 , X

∗
2 , X

∗
3 ) as test functions in the stability inequality given by second

variation formula (2), and with the notation Q(X∗, X∗) =
∑3

j=1Q(X∗
j , X

∗
j ),

we conclude that

0 ≤ Q(X∗

, X
∗) = −

∫
S

〈∆X
∗+|σ|2X∗

, X
∗〉dA+

∫
∂S

(〈X∗

,
∂X∗

∂n
〉−σW (N, N)|X∗|2)ds.

(9)

From (7) we have that ∆X∗ + |σ|2X∗ is normal to S and therefore the

integral over S in (9) vanishes. Along the boundary of S, the vectors t and

N form an ortonormal basis of the tangent plane of ∂W and so σW (t, t) +

σW (N,N) = 2HW . Hence, using (8), the inequality (9) transforms into

0 ≤ Q(X∗, X∗) = −2

∫
∂S

HW |X∗|2ds ≤ 0. (10)

As W is mean-convex, this implies that Q(X∗, X∗) = 0 and so the linear

coordinates of X∗ lie in the kernel of Q, i.e. Q(X∗, Y ) = 0, for all R
3-valued

C2 function Y on S with Y ◦φ = −Y . In particular, from linear elliptic theory,

we get

∆X∗ + |σ|2X∗ = 0 on S and
∂X∗

∂n
= σW (N,N)X∗ on ∂S. (11)

As S is nonflat, from Lemma 3 we deduce that ω∗ ∈ L∗(S). This implies that

ω ∈ L(S). Hence ω is exact and using Lemma 1 we conclude that ω = 0, which

is a contradiction. Therefore S′ is a disk and the same holds for the surface S.

�

Remark 1 In the same way, by applying the stability condition to the dual
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vector field X, from (8) and (7) we obtain

0 ≤ Q(X,X) = −2

∫
∂S

HW |X |2ds ≤ 0 (12)

and from Lemma 3 we have that ω ∈ L∗(S), too.

Each torus T 3 admits a central symmetry −Id and several classical periodic

minimal surfaces are balance minimal surfaces for the case G = {±I⌈}. In

particular, minimal surfaces of genus 3 are all balance. The proof of Theorem

5 applies to this case, and gives the following.

Theorem 6 Let S be a closed balance minimal surface embedded in a flat three

torus T 3. If S is stable and nonflat, then genus(S) = 3.

Proof. First we observe that for any closed minimal surface in T 3, genus(S) ≥

3. For any balance minimal surface S, denote by φ the central symmetry of

T 3 restricted to the surface. Then φ has 8 fixed points on S. If the Riemann

surface S′ = S/{Id, φ} is not a sphere, then it admits a non zero harmonic 1-

form which lifts to a harmonic 1-form ω on S such that φ∗ω = ω and φ∗ω = ω.

Following the proof of Theorem 5, we get that ω ∈ L(S). As the 1-forms

α ∈ L(S) verify φ∗α = −α, we have a contradiction. So S′ is the Riemann

sphere and, as the projection S → S′ has exactly 8 branch points, it follows

that genus(S) = 3 .

�

3.2 Piecewise smooth regions

We say that W is a piecewise smooth mean-convex region in R
3 if it satisfies

the following conditions:

i) ∂W is a union of smooth surfaces with piecewise smooth boundary (the

faces of W ),

ii) the faces of W have nonnegative mean curvature and the angles at each

one of its vertices satisfy 0 < θ < 2π, and
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iii) two of these faces are either disjoint or meet at some vertices and/or

along some common edges. If two faces meet along an edge, then their interior

angle is everywhere bigger that 0 and smaller than π.

These are natural regions to solve the Plateau Problem, see Meeks and Yau

[9]. We say that a proper minimal surface S ⊂ W is a minimal surface with

free boundary if S has piecewise smooth boundary and meets the faces and the

edges of W but omits the vertices of ∂W . The edges of S sit orthogonally on

the faces of W and its corners lie on the edges of W . Proposition 2 extends

trivially to piecewise smooth regions in R
3. In the next result we prove that

the same holds for Theorem 5. The argument applies to volume-preserving

stability, and so Theorem 9 below extends to piecewise smooth regions, too.

Theorem 7 Let S be a nonflat balance stable minimal surface with free bound-

ary in a piecewise smooth mean-convex region W ⊂ R
3. Then S is a topological

disk.

Proof. Given ε > 0, let ϕε : S −→ R be a logarithmic smooth cutoff function

vanishing in a neighborhood of the corners of S, equal to 1 at the points whose

distance to each vertex is larger than ε, with 0 ≤ ϕε ≤ 1 on S and such that∫
S
|∇ϕε|2dA converges to zero when ε→ 0.

If u is a smooth function on S minus the vertices and ϕ = ϕǫ, then after

integration by parts we get

Q(ϕu, ϕu) =

∫
S

(|∇(ϕu)|2 − |σ|2ϕ2u2)dA−

∫
∂S

σW (N,N)ϕ2u2ds2 =

∫
S

(|∇ϕ|2u2 + |∇u|2ϕ2 +
1

2
〈∇ϕ2,∇u2〉−|σ|2ϕ2u2)dA−

∫
∂S

σW (N,N)ϕ2u2ds =

∫
S

(|∇ϕ|2u2+|∇u|2ϕ2−
1

2
ϕ2∆u2−|σ|2ϕ2u2)dA+

∫
∂S

(ϕ2u
∂u

∂n
−σW (N,N)ϕ2u2)ds =

∫
S

(|∇ϕ|2u2 − ϕ2(∆u+ |σ|2u)u)dA+

∫
∂S

ϕ2(u
∂u

∂n
− σW (N,N)u2)ds2.

The surface S is piecewise smooth with angles at most π at its corners. Then

it follows that the solution of the Neumann boundary problem (4) is smooth
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in S minus its corners and C1 in S, see Wigley [27]. Therefore the harmonic

forms ω ∈ H(S) in the Hodge Theorem of Lemma 1 are smooth in S minus

the corners and belong to C0(S) and the same hold for ω∗ and the dual vector

fields X and X∗.

So, if in the computation above we take u equal to the linear coordinates

of X∗, using (7) and (8) we obtain

Q(ϕεX
∗, ϕεX

∗) =

∫
S

|∇ϕε|
2|X∗|2dA− 2

∫
∂S

ϕ2
εHW |X∗|2ds

and taking ε → 0 we conclude that X∗ belongs to the Sobolev space L1,2(S)

and Q(X∗, X∗) ≤ 0. Now we finish as in the proof of Theorem 5.

�

In particular, we can take W to be a convex polyhedron in R
3. Minimal

surfaces with free boundary in these regions have been constructed by Smyth

[24] and Jost [7].

4 Constant mean curvature surfaces.

Let S be a proper surface in a mean-convex region W ⊂ R
3. Assume that S

has constant mean curvature H .

Lemma 8 ([19]) Let ω be a harmonic 1-form on a surface S in R
3 of constant

mean curvature H and X : S → R
3 its dual vector field. Then

∆X + |σ|2X = 4H2X − 2HAX + 2〈∇ω, σ〉N, (13)

where A denotes the Weingarten endomorphism of S.

In this section we will prove that if S has nonnegative volume-preserving

second variation, then the topology of S is controlled. Earlier results in this

direction were obtained by Ros and Vergasta [21]. They proved that if W is

convex then genus(S) ∈ {0, 1} and S has at most three boundary components,

or genus(S) ∈ {2, 3} and ∂S is connected. In the next theorem we improve

that result.
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Theorem 9 Let W ⊂ R
3 be a smooth mean-convex region and S ⊂W a non-

flat surface of constant mean curvature with free boundary. If S has nonnegative

second variation for volume-preserving variations, then either

i) genus(S) = 0 and S has at most 4 boundaries components, or

ii) S has genus 1 and ∂S has at most two components.

Proof. Let ω ∈ H(S) a harmonic 1-form with Neumann boundary condition.

By applying the stability quadratic form (2) to (the linear coordinates of) X ,

from (13) we have

Q(X,X) = −

∫
S

〈∆X + |σ|2X,X〉dA+

∫
∂S

(〈X,
∂X

∂n
〉 − σW (N,N)|X |2)ds =

−

∫
Σ

(4H2|X |2 − 2Hσ(X,X))dA− 2

∫
∂S

HW |X |2ds.

If we put X∗, the dual tangent vector field of ω∗, in the second variation, (13)

and (8) give

Q(X∗, X∗) = −

∫
Σ

(4H2|X∗|2 − 2Hσ(X∗, X∗))dA− 2

∫
∂S

HW |X∗|2ds.

As in Palmer [13], from the identities |X∗| = |X | and 〈X,X∗〉 = 0, we obtain

Q(X,X) +Q(X∗, X∗) = −4H2

∫
S

|X |2dA− 4

∫
∂S

HW |X |2ds ≤ 0. (14)

In order to apply the stability assumption in (14) we need that both X and

X∗ have mean value zero. As ω satisfies the Neumann condition ω(n) = 0, for

each vector a ∈ R
3 we have div(〈p, a〉ω) = 〈X, a〉 + 〈p, a〉divω = 〈X, a〉, where

p represent a point of S, and therefore

∫
S

XdA =

∫
∂S

ω(n)pds = 0, (15)

and so X has mean value zero. However this does not hold in general for X∗.

If dimH1(S,R) ≥ 4, we can find a nonzero harmonic 1-form ω ∈ H(S) such

that
∫
S
X∗ = 0. Thus 0 ≤ Q(X,X) + Q(X∗, X∗) and (14) implies that S is
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a minimal surface and that Q(X,X) = Q(X∗, X∗) = 0. Therefore Q(X,Y ) =

Q(X∗, Y ) = 0 for any Y with mean value zero. Thus, there exist a, b ∈ R
3 such

that

∆X + |σ|2X = a and ∆X∗ + |σ|2X∗ = b

and using (7) we conclude that 2〈∇ω∗, σ〉N = b.

As S is nonflat, the Gauss map of S is an open map which implies that b = 0

and 〈∇ω∗, σ〉 = 0. Therefore Lemma 3 gives that ω∗ belongs to L∗(S). Then

ω ∈ L(S), ω is exact and Lemma 1 gives that ω = 0, a contradiction. Hence

dimH1(S,R) ≤ 3, which means that S is either a genus zero surface with at

most 4 boundary components or a surface of genus 1 with 1 or 2 boundary

components.

�

If W is convex, then the case genus(S) = 0 and four components at the

boundary cannot hold by Theorem 5 in Ros and Vergasta [21].

A wide vertical annulus in a horizontal slab give an example of a volume-

preserving stable surface with nontrivial topology. In fact it follows from the

results in Ros [19], that a volume-preserving stable constant mean curvature

surface with free boundary immersed in a horizontal slab is either a half-sphere

or a flat vertical cylinder (for the embedded case, see also [15]). A more involved

example in a related situation if given by Schwarz P minimal surface in the

cubic 3-torus R
3/Z3, see Figure 1. Ross [22] proved that the Schwarz P surface

is volume-preserving stable. So, if we take the piece of the surface between two

consecutive horizontal planes of symmetry, we get a volume preserving stable

surface in T 2 × [0, 1/2], where T 2 is the flat 2-torus generated by (1, 0), (0, 1).

This surface has genus 1 and two boundary components. We remark that part

of the arguments in the proof of Theorem 9 do not apply to surfaces in T 2×[0, a]

because in this case, the mean value property
∫
S
X = 0 in (15) is no longer

valid.

Remark 2 If W is a ball, then a volume-preserving stable surface with free
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boundary S must be either a planar equator, a spherical cap or a surface of

genus 1 with at most two boundary components, see [21]. We don’t know ex-

amples of surfaces S of genus 1 with free boundary in a ball and nonnegative

volume-preserving second variation, but it is worth noticing that although the

reasoning in [21] is different from the one used in the proof of Theorem 9, both

arguments give the same bound on the topology of S.
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