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Abstract

The question of deciding when a locally invertible map admits a global

inverse is one of obvious importance, with applications and connections

to many different areas of mathematics. In this paper we survey some of

the recently discovered invertibility mechanisms, rooted in global analy-

sis, algebraic and differential geometry, topology, complex analysis and

dynamical systems.

1 Introduction

Various existence and uniqueness problems arising in algebraic geometry, com-

plex analysis, nonlinear analysis and dynamical systems, as well as various

branches of applied mathematics, can be subsumed under a single, unifying

theme:

Programme. Let M be an n-dimensional non-compact differentiable mani-

fold, and f : M → R
n a smooth local diffeomorphism. Identify the general

topological, analytic and geometric mechanisms that force the map f to be in-

jective.

The aim of this paper is to report on some of the work done in recent years

by the present author and his collaborators on various aspects of the above

Programme. To be sure, the issue of global invertibility has been examined by

many other authors in the past, but mainly from the analytic and algebraic

standpoints. For a sampler, we refer the reader to [B1], [B2], [BW], [CMe],

[D], [E], [Fe], [H], [G], [GLS], [Gu], [M], [O], [P], [R], [So], [W], [Y], [Z], and the

references therein. Here, we shall concentrate on other aspects of the problem,

most notably the ones that have a topological or geometric flavor.
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Since this (admittedly incomplete) survey is meant to appear on a Volume

commemorating the many scientific accomplishments of Manfredo do Carmo –

the founder of the Brazilian School of Differential Geometry –, special emphasis

will be placed on interactions with differential geometry itself but, to the extent

possible, we will also discuss results originating in other areas of mathematics.

The organization of this paper is as follows. In Section 2 we provide several

examples of central topics where the issue of global invertibility comes up nat-

urally, explaining along the way how the topics themselves are interconnected.

In the remaining sections we elaborate on some fairly recent topological, ana-

lytic, dynamic and geometric results that complement our discussion in Section

2.

The presentation is interspersed with several open problems, no doubt an

attempt to lure the unsuspecting mathematician to this beautiful corner of our

discipline.

2 A cornucopia of topics

We begin with a brief discussion of some important topics related to the above

Programme. Although at first they look disparate, as we shall see in the course

of our discussion they are actually connected at several different levels.

Topic I: The classical theory of univalent functions. A conformal

orientation-preserving local diffeomorphism that is defined in the open unit

disc D = {z ∈ C : |z| < 1} and takes values into R2 can be viewed as a

holomorphic function f : D → C. Of special interest is the case when f is

univalent, that is, injective. The class S of all holomorphic univalent functions

in D satisfying f(0) = 0 and f ′(0) = 1 was the object of much study in the last

century, culminating with the solution by de Branges [Br], [S] of the celebrated

Bieberbach conjecture: for any f ∈ S, the estimate |f (k)(0)| ≤ kk! holds for

all k ≥ 2. Equivalently, |f (k)(0)| ≤ kk!|f ′(0)| for any injective holomorphic
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function on D.

The case k = 2, due to Bieberbach, yields the so-called distortion theorems

which, in turn, imply the compactness of the class S ([S], p. 264). Thus, the

basic estimate |f ′′(0)| ≤ 4 for f ∈ S, most commonly written in the form

|a2| ≤ 2 where f(z) = z + a2z
2 + · · · , already yields important qualitative

information. In particular, it follows from the compactness of S that there

are constants Ck such that |f (k)(0)| ≤ Ck|f ′(0)| for every k ≥ 2 and injective

holomorphic function f on D. The Bieberbach conjecture (the de Branges

theorem) asserts that one can take Ck to be kk!.

The Bieberbach estimate |f ′′(0)| ≤ 4|f ′(0)| has recently been generalized by

F. Fontenele and the author [FX] to the case of arbitrary conformal injective f :

D → Rn, n ≥ 3. The new estimate involves two correction terms. The first one

is geometric, coming from the second fundamental form of the image surface.

The second term is of a dynamical nature and involves certain Riemannian

quantities associated to conformal attractors. As we shall see in Section 4, this

generalized Bieberbach estimate leads to a natural conjecture in the theory of

embedded minimal surfaces.

Topic II: The asymptotic stability conjecture. Consider a smooth vector

field X on the plane, vanishing at zero. If the eigenvalues of DX(0) have

negative real parts, an elementary result shows that every trajectory of X

that starts near 0 will be attracted to the origin. The asymptotic stability

conjecture, also known as the Markus-Yamabe conjecture, claimed that if the

eigenvalues of DX(z) have negative real part, for all z ∈ R2, then 0 is a global

attractor in the sense that every positive trajectory of X converges to the

origin.

By a theorem of Olech [O], it was known that the conjecture would follow

if it could be established that X , when viewed as a map from R2 into itself, is

injective. This was accomplished by Gutierrez [Gu] (see also Glutsiuk [G] and
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Fessler [Fe]). The solution by Gutierrez is specially interesting to us. In fact,

he proved the following stronger result: If a local diffeomorphism F : R2 → R2

is such that [0,∞) ∩ Spec DF (z) = ∅ for every z ∈ R2, then F is injective. In

Section 5 we propose a considerable strengthening of the Gutierrez theorem,

casting the result in a differential-geometric context.

Topic III: The jacobian conjecture. This well-known problem in algebraic

geometry claims that if K is an algebraically closed field and F : Kn → Kn,

n ≥ 2, is a polynomial map with constant jacobian determinant, then F must be

bijective [BW], [E]. It is known that it suffices to consider the case K = C, and

to show that F is injective. Notice that for polynomial maps F : Cn → Cn, the

jacobian determinant is constant if and only if F is a holomorphic immersion. In

short, the jacobian conjecture can be reformulated as follows: Every polynomial

local biholomorphism F : Cn → Cn is injective.

Despite considerable work, which led to the solution of the conjecture in

some special cases, in its full generality the problem remains open, even in case

of two variables. In [NTX], topological arguments are used to prove that the

jacobian conjecture is true in a ”generic” sense (see Section 4 for details).

The search for a solution to the jacobian conjecture can be seen as being part

of the much larger (and seemingly harder) task of understanding the structure

of the group of biholomorphisms of Cn, when n ≥ 2. This is the subject of the

next topic.

Topic IV: Automorphisms of Cn. The group Aut (Cn) of biholomorphisms

of Cn is largely unknown if n > 1. In stark contrast, Aut (C) is rather small,

consisting of the non-constant affine linear maps. The description of Aut (C)

follows from the observation that an injective holomorphic function f : C → C

satisfying f(0) = 0 and f ′(0) = 1 must be the identity. These considerations

suggest that similar characterizations of the identity might be useful in under-

standing the structure of Aut (Cn).
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On the other hand, any expectations in this regard should be tempered by

the fact that injective entire maps are not necessarily in Aut (Cn) if n ≥ 2, as

shown by the classical examples given by Fatou and Bieberbach ([BM], p. 45),

where the image of the map omits a non-empty open set. Another consideration

is the fact that the identity cannot be characterized, if n ≥ 2, solely by finitely

many pointwise conditions at zero. In order to see this, one can take the

automorphisms of C
2 given by F (x, y) = (x + p(y), y), where the polynomial p

is arbitrary. In particular, F can be made to coincide with the identity up to

an arbitrarily high order simply by taking p(y) = yd with d sufficiently high.

The above discussion shows that some kind of global condition is necessary

if one is to prove a rigidity theorem for the identity ICn in higher dimensions.

Such a condition was found in [X3] and will be discussed in Section 4.

3 Global Inversion: Topological and real-analytic
arguments

A basic result in Riemannian geometry, the Cartan-Hadamard theorem, states

that the exponential map at any point of a complete simply-connected mani-

fold of non-positive sectional curvature is a diffeomorphism. From a geometric

standpoint, what makes the theorem true is the fact that the exponential map

does not decrease distance or, what is the same, that the inverse of the differ-

ential of the exponential map has norm bounded by one.

The same kind of argument applies to local diffeomorphisms of Rn, yielding

what is known as the Hadamard Theorem in the classical literature on the

theory of ordinary differential equations. In fact, the topological arguments

involved are fairly basic facts about covering spaces and proper maps (but not

local compactness), and so they work for infinite dimensional spaces as well:

Theorem 1 ([P]). Let X be a Banach space and f : X → X a smooth local
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diffeomorphism. If

sup
x∈X

||Df(x)−1|| < ∞,

then f is bijective.

In [NX1] the authors used degree theory to show that the above theorem

can be substantially improved if dim X < ∞:

Theorem 2 ([NX1]). Let f : Rn → Rn be smooth. For v ∈ Rn, let Sv =

{Df(x)∗v : x ∈ Rn}.

(a) If 0 /∈ Sv for each non-zero v ∈ Rn, then f is locally invertible.

(b) If 0 /∈ Sv for each non-zero v ∈ Rn, then f is globally invertible.

Observe that condition (b) amounts to

inf
x∈Rn

||Df(x)∗v|| = inf
x∈Rn

||∇〈f, v〉(x)|| > 0, v 6= 0.

Part (a) is the usual inverse function theorem and is included in the statement

of the theorem for comparison purposes only. Thus, the passage from local to

global injectivity is achieved by stipulating that 0 should not be in the closure

of Sv, for every non-zero v. Consider the containment

⋃
v 6=0

Sv ⊂
⋃
v 6=0

Sv.

Condition (b) asks only that

0 /∈
⋃
v 6=0

Sv.

The stronger condition

0 /∈
⋃
v 6=0

Sv

turns out to be simply a rewriting of the Hadamard condition in Theorem 1

above. This subtle distinction is illustrated by the simple map f : R2 → R2,
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given by f(x, y) = (x + y3, y). The map f is clearly injective, a fact that is

picked up by Theorem 2 but not by Theorem 1 (see [NX1], p. 19).

The basic idea in the proof of Theorem 2 is to create a mechanism that

works as a “non-linear adjoint”, transforming injectivity questions into prob-

lems about surjectivity that can then be handled using degree theory.

Example 1. Every quadratic polynomial local diffeomorphism of Rn into

itself is bijective. Indeed, for a given v 6= 0 the set Sv is an affine hyperplane,

hence closed. Since f is a local diffeomorphism, 0 /∈ Sv = Sv, and the result

follows from the above theorem. The first proof of the invertibility of quadratic

polynomial with constant jacobian determinant was given by Wang [W], using

algebraic arguments. Thanks to the work of Yagzhev [Y], Druzkowski [D], and

Bass-Connell-Wright [BW], it is known that it suffices to settle the jacobian

conjecture for certain types of cubic polynomial maps.

�

As it was mentioned before, the proof of Theorem 2 is based on arguments

involving degree theory, and so they cannot be directly extended to the infinite

dimensional setting. On the other hand, various degree theories have been

introduced in infinite dimensions, for suitably restricted classes of maps. The

main argument in [NX1] extends verbatim to the infinite dimensional situation,

but it is not clear what kind of differential condition on f should be imposed

in order for the relevant maps to be admissible for degree theory. A positive

solution to the problem below would quite likely have interesting applications

in non-linear analysis.

Problem 1. Under what additional structural conditions on the differential

of a smooth Banach space local diffeomorphisms f : X → X is the condition

inf
x∈X

||Df(x)∗v|| > 0, v 6= 0,

sufficient to guarantee that f is bijective? What if Df(x) is a suitable Fredholm
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operator, perhaps a compact perturbation of the identity?

Another insight into the global injectivity question, one that has been

proven rather fruitful, is the following nearly tautological observation: a lo-

cal diffeomorphism f : Rn → Rn is injective if and only if the pre-image of

every point is a connected set. Can one infer injectivity from the knowledge

that the pre-images of certain positive dimensional submanifolds are connected?

In regards to this question, it can be shown that (b) in Theorem 2 implies

directly that the pre-image of every affine hyperplane is connected. Earlier, S.

Nollet and the author had noticed that any map satisfying the hypotheses of

the jacobian conjecture (Topic III) automatically possesses the property that

the pre-image of every real hyperplane in R2n ∼= Cn is connected. This is a

consequence of a classical theorem of Bertini in algebraic geometry (apart from

some exceptional situations, the generic element in a pencil is irreducible). We

were then led to ask

Problem 2. Let f : Rn → Rn be a local diffeomorphism satisfying the prop-

erty that the pre-image of every affine hyperplane is non-empty and connected.

Must f be bijective?

In his 2006 University of Notre Dame Dissertation (see also [B1]), E. Cabral

Balreira gave an affirmative solution to this problem under a stronger assump-

tion on the topology of the pre-images of the affine hyperplanes. Recall that a

topological space is called acyclic if it has the homology of a point.

Theorem 3 ([B1]). Let f : Rn → Rn be a local diffeomorphism.

(a) If the pre-image of every affine hyperplane is empty or acyclic, then f is

injective.

(b) If the pre-image of every affine hyperplane is non-empty and acyclic, then

f is bijective.
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Observe that the second part of Theorem 3 provides a condition that is

both necessary and sufficient for a local diffeomorphism to be bijective. As

remarked before, Theorem 1 follows from Theorem 2. Using simple arguments

from Morse theory one can see that Theorem 2 is a consequence of Theorem 3.

Recent discoveries have added considerably to our understanding of the

phenomenon of global injectivity. This is exemplified by the three theorems

discussed in this section, based on increasingly more sophisticated topological

arguments: covering spaces theory, degree theory, and intersection theory.

4 Global Inversion: Topological and complex-

analytic arguments

We now turn our attention to the jacobian conjecture (Topic III). Let then

F : Cn → Cn be a polynomial local biholomorphism. Recall that (JC) claims

that F must be injective. From general principles in algebraic geometry, it is

known that there exists an algebraic complex hypersurface D ⊂ Cn (possibly

reducible and with singularities) such that the induced map Cn − F−1(D) →
Cn −D is a d-sheeted covering map where d < ∞. Injectivity will follow if one

can show d = 1.

We summarize below the study made in [NTX] of the topological properties

of D in a possible counterexample to the jacobian conjecture.

An algebraic hypersurface D ⊂ Cn is given by a polynomial equation

f(z1, · · · , zn) = 0. A theorem of Verdier [V] states that the corresponding

map f : Cn → C is a locally trivial topological fibration away from a finite

set subset of C. The smallest such set is called the bifurcation locus of f , and

is denoted by Bf . The bifurcation locus contains the images of critical points

of f , but it may also contain other points, coming from “singularities at infin-

ity”. The hypersurface D will be called non-bifurcated if 0 /∈ Bf , where f is a

polynomial of minimal degree defining D.
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Theorem 4 ([NTX]). Fix n > 1 and let D ⊂ Cn be a smooth connected non-

bifurcated hypersurface. If F : X → Cn is a local diffeomorphism of simply

connected manifolds which is a d-fold covering map away from D, then d = 1

or d = ∞.

The proof of the above dichotomy is based on: i) a counting argument that

uses the orientability of complex hypersurfaces in a crucial way, ii) separation

properties of real hypersurfaces, and iii) arguments from surgery theory.

After certain geometric constructions, the relevant question becomes the

following: Given an algebraic hypersurface D of C
n, is there a real hypersurface

V such that ∂V = D and Cn−V is simply-connected? When n = 1 an algebraic

hypersurface is simply a finite number of points in C, and one can take V to

be the union of non-intersecting infinite rays emanating from the points of

D. Realizing the condition ∂V = D is easy in any dimension, but there are

obstructions if n ≥ 2 to make the complement of V simply-connected. It is

precisely to achieve this that surgery theory is used, in order to kill certain

homotopy classes.

If the map F in Theorem 4 is algebraic the alternative d = ∞ cannot occur,

and thus one obtains the following application to the jacobian conjecture.

Theorem 5 ([NTX]). Let D ⊂ Cn be a smooth connected non-bifurcated

hypersurface. If F : Cn → Cn is a polynomial map with non-vanishing jacobian

determinant and #F−1(q) = deg F for q /∈ D, then F ∈ Aut (Cn).

Next, we consider the global invertibility problem in the context of gen-

eral local biholomorphisms, not necessarily algebraic. But first we discuss an

example where differential geometry plays a key role.

Example 2. Let F : Cn → Cn, n ≥ 2, be a local biholomorphism with the

property that the pre-image of every complex line is both connected and simply

connected. We claim that F is injective.
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Indeed, if F is not injective we may suppose that F (p) = F (q) = 0, with

p 6= q, so that F−1(l) contains both p and q for all one-dimensional complex

subspaces l. It is easy to see that the complex curve F−1(l) (= an open Riemann

surface) is properly embedded in Cn, whether F is a proper map or not. Hence,

with respect to the induced flat Riemannian metric of Cn, F−1(l) is a complete

simply connected real surface.

Since F−1(l) is a complex submanifold of Cn, it has non-positive curvature.

Hence, F−1(l) is a Hadamard surface, so that any two points can be joined

by a unique geodesic. Given l ∈ Pn−1, let w(l) denote the initial vector of

the (unique) unit-speed geodesic along F−1(l) joining p to q, and set v(l) =

dF (p)w(l) ∈ Tl,0.

Notice that, as l varies inside CP
n−1, all geodesic segments are contained

in a fixed compact set of Cn. The map v is continuous because geodesics con-

verge to geodesics in the C2 topology (which, after passing to subsequences, is

a consequence of C3 uniform boundedness) and from the uniqueness of the

geodesic along F−1(l). Since v is non-vanishing, it is clear that the map

CPn−1 → S2n−1, given by l → v(l)/|v(l)|, is a continuous section of the Hopf

map π : S2n−1 → CPn−1 (the latter is the natural map that associates to a

point in the unit sphere the unique complex line joining the origin to the point

in question). But this is a contradiction since, as it is well known, the Hopf map

admits no continuous sections. For instance, the composite map in cohomology

H2(CP
n−1) → H2(S2n−1) → H2(CP

n−1),

induced by a continuous section, would be the identity. But this is impossible,

since H2(CPn−1) 6= 0 whereas H2(S2n−1) = 0.

�

For some questions in complex analysis curvature considerations are in-

dispensable. For instance, the invariant form of the Schwarz lemma simply

says that every holomorphic self-map of the open unit disc in C is distance
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non-increasing, relative to the Poincaré metric. The question then arises as to

whether the role of curvature in the above example is essential, or merely a

technical artifact. In [NX2], the authors prove a theorem, using similar argu-

ments, that is curvature-free.

To explain the result, we start by defining a rigid domain D ⊂ CP1 to be an

open domain that can be holomorphically embedded in CP1 in a unique way,

up to Moebius transformations. For instance, the complement of a finite set in

C (a connected rational curve, in the algebraic geometry terminology) is rigid.

By contrast, any simply-connected subset of C, other than C itself, is highly

non-rigid by the Riemann mapping theorem.

Theorem 6 ([NX2]). Let X be a connected complex manifold of dimension

n ≥ 2, F : X → Cn a local biholomorphism. Fix q ∈ F (X) and suppose

that F−1(l) is conformal to a rigid domain Dl for every complex line l passing

through q. Then q is assumed exactly once by F .

Next, we turn our attention to Topic IV in Section 2. As we indicated there,

in [X3] we were able to prove a rigidity theorem for the identity in Cn, among

univalent local biholomorphisms:

Theorem 7 ([X3]). An injective local biholomorphism f : C
n → C

n is the

identity if and only if

(i) The power series at 0 of f − I has no terms of order ≤ 2n + 1.

(ii) The function | detDf(z)| |z|2n |f(z)|−2n is subharmonic on C
n.

Problem 3. One would like to improve the vanishing condition in (i) to

≤ 2n − 1, or even replace it with f(0) = 0, Df(0) = I. If this could be done

the resulting statement would be sharp, regarding the dimension, already when

n = 1. Indeed, when n = 1 the function in (ii) can be realized as the abso-
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lute value squared of a holomorphic function, and therefore it is automatically

subharmonic.

�

The arguments in [X3] are essentially of a real-variables nature, although

they are inspired by the proof of the classical Bieberbach estimate (see Topic

I). In the classical setting, an important role is played by the complex inversion

z → z−1. The main idea in the higher dimensional case is to use the inversion

in the unit sphere, to the extent that is possible, as a substitute for the complex

inversion. At the conceptual level, Fourier (power) series are then replaced by

spherical harmonics.

We close this section by making some comments about the embeddednes

question for minimal surfaces in R3. Although we are no longer working in the

realm of local diffeomorphisms, embeddednes of surfaces can clearly be cast

as an injectivity question. A simply-connected immersed minimal surface M

in R3 is obtained as the image of a conformal harmonic immersion f : Ω →
R3, where Ω is either the open unit disc D ⊂ C, or C itself. The only such

examples M that are proper and embedded (i.e., f is injective) are planes and

helicoids. This important theorem was established by Meeks-Rosenberg [MR]

using, among other arguments, results from the Colding-Minicozzi theory of

embedded minimal discs (see, e.g. [CM1]-[CM4]).

The classical link between the theory of minimal surfaces and complex

analysis has been explored, with great success, to tackle other fundamental

geometric problems. Given the history of the subject, one would like to have a

complex-analytic interpretation of the works of Colding-Minicozzi and Meeks-

Rosenberg, with the hope that more could be revealed about the structure of

embedded minimal discs.

In this context, a central theme is the role of the conformal type in the

embeddedness question for minimal surfaces. In particular, one would like to
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know, in the Meeks-Rosenberg theorem, if parabolicity alone suffices:

Problem 4. If g : C → R3 is a non-flat conformal harmonic embedding, must

g(C) be a helicoid?

There is a vague and yet compelling analogy between the theory of confor-

mal harmonic embeddings of the open unit disc D into R3, and the theory of

holomorphic univalent functions on D (Topic I). Below is one aspect of this

relationship.

It is an easy matter to use the Bieberbach estimate |f ′′(0)| ≤ 4|f ′(0)| and a

scaling argument to retrive the well known fact that the only univalent entire

functions are of the form f(z) = az + b, a 6= 0. One ought to regard the

last statement as the complex analytic form of the (much harder) Problem 4.

Indeed, in both cases one would have scarcity of injective objects.

As mentioned in our discussion of Topic I in Section 2, the Bieberbach

estimate |f ′′(0)| ≤ 4|f ′(0)| has been generalized recently by F. Fontenele and

the author [FX] to the case of arbitrary conformal embeddings f : D → R
n. At

present, however, it is not clear how these results can be used to study Problem

4.

5 Global Inversion: Geometric and dynamical
arguments (I)

We begin by elaborating on our comments about Topic III, Section 2. The

global stability conjecture (also known as the Markus -Yamabe conjecture),

stated that if X is a sufficiently smooth vector field in the plane such that

X(0) = 0 and the real parts of the eigenvalues of the matrices DX(z) have

negative real part, for all z ∈ R2, then the origin is a global attractor. In other

words, every forward trajectory φt(z) of X is defined for all positive times and

satisfies limt→∞ φt(z) = 0.
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We recall the famous Gutierrez Injectivity Theorem [Gu], which implies the

Markus-Yamabe conjecture: If a local diffeomorphism F : R2 → R2 is such

that [0,∞) ∩ Spec DF (z) = ∅ for every z ∈ R2, then F is injective. Before we

go on to propose a geometric framework for the Gutierrez theorem, we provide

some elementary examples to illustrate the truly global nature of his result.

It is natural to inquire if injectivity is a consequence of the spectral condition

[0,∞) ∩ Spec DF (z) = ∅, where the map F is now defined only on a convex

subset Ω of the plane. This question has a negative answer, as shown by the

following simple example. Take Ω to be the open upper half plane in C and

consider the real map underlying F : Ω → C, F (z) = z3. For z ∈ Ω, the

derivative F ′(z) = 3z2 misses [0,∞) and yet F is not one-to-one.

Despite the observation in the last paragraph, under a suitable spectral

condition a local diffeomorphism defined on a convex set can be shown to be

injective: If Ω ⊂ R2 is open, convex and F : Ω → C satisfies the stronger

spectral condition R ∩ Spec DF (z) = ∅ for all z ∈ Ω, then F is injective.

To see this, suppose F (a) = F (b), with a 6= b, and set v = b − a. The

function g on [0, 1] given by g(t) = 〈F (a + tv), v⊥〉 satisfies g(0) = g(1). By

the mean value theorem, there is a point z in the line segment [a, b] such that

〈DF (z)v, v⊥〉 = 0. In particular, v is an eigenvector of DF (z) corresponding

to a real eigenvalue, a contradiction.

Differential geometry provides concrete examples of planar maps whose ja-

cobians have no real eigenvalues. Let M ⊂ R3 be a surface of positive curvature

that is given by the graph of a function f defined on a convex subset Ω of R2.

Consider now the map F : Ω → R2,

F (x, y) = (
∂f

∂y
,−∂f

∂x
) = −J∇f,

where J is the complex structure. Since DF is traceless and detDF > 0, the

eigenvalues of DF are purely imaginary. By the argument in the preceding

paragragh, F is injective.
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Notice that the last conclusion is equivalent to the fact that the Gauss map

G : M → S2,

G(x, y) = (1 + |∇f |2)− 1

2 (−fx,−fy, 1),

of a graph z = f(x, y) of positive curvature, is necessarily injective if (x, y) runs

over a convex domain (recall that the sign of the curvature is the sign of the

quantity fxxfyy − f2
xy). Here, the condition of convexity is essential. Indeed,

there exist graphs of positive curvature (over non-convex domains, obviously)

that have non-injective Gauss maps. One such explicit example was kindly

communicated to us by M. Ghomi (who also draw our attention to [AG], [Gh1]

and [Gh2]). In fact, as it will be shown below, it is not difficult to construct

such examples.

Example 3. Start with the arc Γ of the unit circle given by Γ = {(cos θ, sin θ) |−
π
2 ≤ θ ≤ π}. Let a = a(θ), b = b(θ) be positive smooth functions on [−π

2 , π]

such that ∫ π

−π

2

a(θ) sin θ =

∫ π

−π

2

b(θ) cos θ = 0.

One can see, either arguing directly or by invoking the Whitney extension

theorem, that there is a smooth function f , defined in a neighborhood of Γ,

such that, along Γ, one has fxx = a, fxy = 0, fyy = b. One can then compute,

along Γ,
d

dθ
(fx) = −a sin θ,

d

dθ
(fy) = b cos θ.

The above orthogonality conditions imply that ∇f takes on the same value

at (0,−1) and (−1, 0). In particular, the graph z = f(x, y), for (x, y) in a

sufficiently small (hence non-convex) neighborhood of Γ has positive curvature

(fxxfyy − f2
xy > 0 near Γ) and non-injective Gauss map.

�

To sum up, we have seen that the Gutierrez theorem fails for convex subsets

of the plane; also, under the stronger assumption that the spectra of the jaco-

bians miss the real line, convexity of the domain implies injectivity. Besides,
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the last conclusion may fail if the domain in question is not convex. In [SX],

Thm. 3, we proved a “hybrid ”injectivity theorem, involving both spectral

conditions:

(•) If the C1 map F : B(r) → R2 satisfies [0,∞) ∩ Spec DF (z) = ∅ ∀z ∈ B(r)

and R ∩ Spec DF (z) = ∅ ∀z /∈ B(r/
√

2), then F is injective on B(r/
√

2).

Problem 5. Is the constant
√

2 that appears in the above theorem the best

possible?

In exploring the relationship between the phenomenon of global injectivity

and the eigenvalues of the Jacobian matrix, one cannot fail to mention the

Chamberland conjecture, which is more general than the jacobian conjecture:

Problem 6. (Chamberland) If F : Rn → Rn is a C1 map and the eigenvalues

of DF (p) are globally bounded away from zero, then F is injective.

Next, we return to our original theme of understanding the Gutierrez the-

orem from a geometric point of view. Consider two smooth oriented planar

foliations. We say that they are loosely transversal if, for every point of their

common domain, either the leaves are transversal or they are tangent but have

opposite orientations at the tangency point.

It is not difficult to see that the spectral condition [0,∞)∩Spec DF (z) = ∅
in the Gutierrez theorem is equivalent to the geometric condition that every

foliation of R2 by parallel lines is loosely tranversal to its pull-back foliation

under the local diffeomorphism. Likewise, the stronger spectral condition R ∩
Spec DF (z) = ∅ is equivalent to the condition that the above foliations are

actually transversal.

In the context of Hadamard surfaces (i.e., complete simply connected sur-

faces of non-positive curvature), parallel lines are horocycles corresponding to

the same point at infinity. One is thus led to the following problem, meant to
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provide a geometrization of the Gutierrez Injectivity Theorem:

Problem 7. Let f : (M, g) → (M, g) be an orientation-preserving local dif-

feomorphism of an oriented Hadamard surface. Suppose that for every ideal

point v ∈ M(∞), the horocycle foliation Hv and its pull-back foliation f∗(Hv)

are loosely transversal. Is it true that f must be injective?

If (M, g) is the flat plane the answer is yes, as given by the Gutierrez theo-

rem. In [X1] we used degree theory to answer this question in the affirmative,

under the additional assumption that, asymptotically, the foliations Hv and

f∗(Hv) are actually transversal, for all v ∈ M(∞).

The arguments of Gutierrez are based on the analysis of the so-called Half-

Reeb components. It is quite possible that his original arguments carry over

to the geometric setting of Problem 7. Of course, one would still need a “dic-

tionary”to go from the linear (flat) case to general Hadamard surfaces (e.g.,

linear functions correspond to Busemann functions).

One should also point out that the natural generalization of the theorem of

Gutierrez does not hold if n ≥ 3, although one can prove a global injectivity

theorem with nearly spectral hypotheses ([SX]).

6 Global Inversion: Geometric and dynamical

arguments (II)

We end this survey with a class of geometric theorems where the key insight

comes from dynamics. Given a local diffeomorphism f : Rn → Rn, the following

naive idea comes to mind in trying to prove that f is bijective. Let q be a

point in Rn and consider the n affine coordinate hyperplanes through q, say

H1, · · · , Hn. The point q will be in the image of f if and only if the hypersurfaces

f−1(Hj), 1 ≤ j ≤ n, have a non-empty intersection. Furthermore, q is covered

only once if the intersection of these hypersurfaces reduces to a single point.
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One is then led to the following purely geometric question:

Problem 8. Given compact submanifolds with boundary, say M1, · · · , Mk ⊂
Rn, perhaps of different dimensions, under what geometric conditions are the

interiors of the submanifolds going to have a non-empty stable intersection?

Although at first this looks like a hopelessly general question, it is neverthe-

less possible to give a satisfactory answer that allows for some amusing global

applications.

In order to guarantee that the property of non-empty intersection in Prob-

lem 8 is persistent under small deformations, and since one does not know a

priori, where the intersection is going to lie, it is natural to require that for all

choices of points pj ∈ Mj, the normal spaces

[Tp1
M1]

⊥, · · · , [Tpk
Mk]⊥

are in direct sum. Starting from this natural assumption, we proved in [X2]

that the intersection of all submanifolds Mj is non-empty provided a certain

estimate holds. The inequality in question involves what seems to be the three

essential quantitative features of the problem:

i) The Riemannian sizes of the submanifolds (relative to the natural induced

metrics).

ii) A weighed measure of the effect of the Euclidean translations.

iii) The deviation from orthogonality of all direct sums [Tp1
M1]

⊥ ⊕ · · · ⊕
[Tpk

Mk]⊥.

For the sake of illustration, we give here the special case of the main esti-

mate of [X2] that corresponds to two compact hypersurfaces (with boundary)

contained in Rn:

(•) Let α ∈ [0, π
2 ] be the infimum of the angles formed by all normal lines

corresponding to arbitrary points in intM1 and intM2, one point from each
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hypersurface. If α > 0 and

√
1 + cosα

1 − cosα
< sup

q1∈M1,q2∈M2

min{d1(q1, ∂M1), d2(q2, ∂M2)}
|q1 − q2|

,

then (intM1) ∩ (intM2) 6= ∅.

The reader is invited to experiment with flat discs in R3, of various sizes

and normals, in order to show that the above result is sharp.

The global consequences of the general version of the above inequality are

quite pleasing, allowing one to extend the basic intersection properties of linear

affine subspaces to the non-linear context:

Theorem 8 (A non-linear view of linear algebra [X2]). Let M1, · · · , Mk

be connected complete embedded non-compact smooth submanifolds, 1 ≤ dimMj =

mj < n, codim M1 + · · · + codim Mk ≤ n. Let Gj : Mj → G(n − mj , n),

Gj(p) = [TpMj ]
⊥, be the Grassmanian-valued Gauss map of Mj. Assume that

for all points Ej in the closure of Gj(Mj), 1 ≤ j ≤ k, the subspaces E1, · · · , Ek

of Rn are in direct sum. Then M1 ∩ · · · ∩ Mk is non-empty. Moreover, this

intersection reduces to a single point if codim M1 + · · · + codim Mk = n.

Corollary 1. If M1, M2 are complete embedded connected hypersurfaces, then

G1(M1) ∩ G2(M2) = ∅ ⇒ M1 ∩ M2 6= ∅.

Corollary 2. Let M1, · · · , Mn be complete embedded connected hypersurfaces

of Rn. If every hyperplane in RPn−1 ∼= G(1, n) intersects at most n − 1 of the

sets G1(M1), · · · ,Gn(Mn), then M1 ∩ · · · ∩ Mn consists of a single point.

As we pointed out in our remarks preceding Problem 8, there is a clear

dynamical interpretation behind these results, which we now explain.

Suppose M1, · · · , Mk are compact submanifolds with boundary, perhaps of

different dimensions, but for which the sum of the codimensions does not exceed

n. Let us assume that their intersection is empty. We fix M1 and continuously
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translate M2, · · · , Mk along suitable directions until they intersect M1 at the

same point, after one unit of time. The idea is to undo the motion of the

submanifolds M2, · · · , Mk, in the direction of increasing times, starting say at

time t = −1, while keeping track of the evolution of the (local) intersection set.

Since we are assuming that
⋂k

j=1 Mj = ∅, the backwards motion will cease to

have a common intersection sometime before (or when) one unit of time has

elapsed.

One wants to control the speed at which the intersection set is propagating.

Of course, it is technically easier to observe the evolution of a single point (given

by the flow of a vector field, say), rather than that of the entire intersection

set. In order to minimize speed, we choose curves parametrized by time that

move orthogonally to the intersection set. As explained, the intersection must

cease to exist before (or at) time t = 0. But this can only happen if for some

submanifold Mj the appropriate integral curve xj in the interior of Mj reaches

∂Mj before (or at) time 0.

The speed of motion of the intersection set is controlled by the local con-

figuration of normal spaces to the moving submanifolds. In fact, the speed

increases if the normal spaces of the submanifolds tend to “rest ”on each other.

A somewhat similar situation occurs if one rotates a line L1 in the plane about

one of its points. The intersection Lθ
1 ∩ L2 between the line L1 rotated by θ

and a line L2 parallel to L1 moves faster as θ → 0. In other words, the speed

of Lθ
1 ∩ L2 increases when the distortion of the configurations of their normal

spaces, coming from iii) above, tends to ∞.

As we indicated above, one must control the distortion of the direct sum

of normal spaces at the intersection set during the evolution. But since we are

simply translating the submanifolds, the supremum of the distortions of the

configurations of all normal spaces remains constant throughout the motion.

An estimate can then be written down (the above one, in the case of two

hypersurfaces), which guarantees that the intersection set in the backward
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motion will exist for more than one unit of time, a contradiction to the original

assumption that the interiors of the submanifolds are disjoint.

�

Some form of the technique introduced in [X2] should work whenever the

ambient manifold has a large enough group of isometries. In particular, one

would like to know the answer to the following

Problem 9. Given compact submanifolds with boundary of either the n-sphere

or the hyperbolic n-space, under what geometric conditions are the interiors

of the submanifolds going to have a non-empty stable intersection?

The search for new mechanisms of global injectivity remains a lively area

of investigation. The author can only hope that this short survey article will

encourage others to pursue their own exploration of the subject.
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[H] Hadamard, J., Sur les transformations ponctuelles, Bull. Soc. Math.

France, 34, (1906), 71-84.

[M] Miller, J., Some global inverse function theorems, Journal of Math. Anal

and Appl., 100, (1984), 375-384.

[MR] Meeks, W.; Rosenberg, H., The uniqueness of the helicoid, Annals of

Math., 161 (2005), 723-754.

[NTX] Nollet, S.; Taylor, L.; Xavier, F., Birationality of étale maps via surgery,

Journal für die reine und angewandte Mathematik, (to appear)

[NX1] Nollet, S.; Xavier, F., Global inversion via the Palais-Smale condition

Disc. Cont. Dyn. Syst. A, 8, (2002), 17-28.

[NX2] Nollet, S.; Xavier, F., Holomorphic injectivity and the Hopf map, Geom.

Funct. Anal., 14, (2004), 1339-1351.

[O] Olech, C., On the global stability of an autonomous system in the plane,

Contributions Diff. Equations, 1 (1963), 389-400.

[P] Plastock, R., Homeomorphisms between Banach spaces, Trans. Amer. J.

Math. Soc., 200 (1974), 169-183.

[R] Rabier, P., Ehresmann fibrations and Palais-Smale conditions for mor-

phisms of Finsler manifolds, Annals of Math., 146 (2) (1997), 647-691.



THE GLOBAL INVERSION PROBLEM: A CONFLUENCE OF 265

[S] Segal, S., Nine introducions in complex-analysis, Revised edition, North

Holland Mathematical Studies, Elsevier, 208, (2008).

[So] Sotomayor, J., Inversion of smooth mappings, Z. Angew. Math. Phys., 41

(1990), 306-310.

[SX] Smyth, B.; Xavier, F., Injectivity of local diffeomorphisms from nearly

spectral conditions, J. Diff. Eqs., 130 (1996), 406-414.

[V] Verdier, J., Stratifications de Whitney et théoréme de Bertini-Sard, Inven-
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