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Abstract

Following [Ch] and [dCF], we give sufficient conditions for a disk type
surface, with piecewise smooth boundary, to be totally umbilicalal for a
given Coddazi pair. As a consequence, we obtain rigidity results for sur-
faces in space forms and in homogeneous product spaces that generalizes
some known results.

1 Introduction

It is well known that a totally umbilical surface in R3 is part of either a round

sphere or a plane. Using this result, H. Hopf [Ho] proved that an immersed

constant mean curvature (CMC) sphere in R3 must be a round sphere by

introducing a quadratic differential that turns out to be holomorphic on CMC

surfaces, and that vanishes at the umbilic points of the surface. Thus, the proof

follows from the fact that any holomorphic quadratic differential on a sphere

must vanish identically and the previous classification.

In the case of constant Gaussian curvature (CGC) surfaces, the Liebmann

Theorem states that the only complete surfaces with positive constant Gaussian

curvature in R3 are the totally umbilical round spheres. T. K. Milnor [Mi] gave

a proof of the Liebmann Theorem similar to the one due to Hopf. In fact,

she proved that the (2, 0)-part of the first fundamental form of the surface is
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holomorphic for the structure given by the second fundamental form if and

only if the Gaussian curvature is constant. Also, the zeroes of this quadratic

differential are the umbilic points.

Thus, the existence of a certain holomorphic quadratic differential is the

main tool for the classification of immersed spheres with constant mean or

Gaussian curvature. The underlying idea for the construction of these two

differentials relies on an abstract structure, the Codazzi pairs, that can be

defined on a differentiable surface (for example, in the above situations, the

Codazzi pair consists of the first and second fundamental forms of the surface).

Under some geometrical conditions, a Codazzi pair gives rise to a holomorphic

quadratic differential on the surface that can be used to classify those surfaces

that are topological spheres.

In this line, U. Abresch and H. Rosenberg (see [AR] and [AR2]) recently

showed the existence of such a differential for CMC surfaces in the homogeneous

spaces with a 4-dimensional isometry group. These homogeneous space are

denoted by E(κ, τ), where κ and τ are constant and κ− 4τ2 6= 0. They can be

classified as: the product spaces H2×R if κ = −1 and τ = 0, or S2×R if κ = 1

and τ = 0, the Heisenberg space Nil3 if κ = 0 and τ = 1/2, the Berger spheres

S3
Berger if κ = 1 and τ 6= 0, and the universal covering of PSL(2,R) if κ = −1

and τ 6= 0. Using this differential they were able to classify all the immersed

CMC spheres in these spaces, putting the study of surfaces in homogeneous

spaces in a new light (see [AR], [AR2], [CoR], [FM1], [FM2], [EGR], [ER] and

references therein).

In the same spirit, J. A. Aledo, J. M. Espinar and J. A. Gálvez [AEG1]

proved that for a large class of surfaces of CGC in H2 × R and S2 × R there

exists a Codazzi pair related with the the first fundamental form, second funda-

mental form and height function. In addition, this pair has constant extrinsic

curvature, which gives the existence of a holomorphic quadratic differential for

any surface of positive constant curvature in H2 × R and constant curvature

greater than one in S2 × R. Moreover, the holomorphic quadratic differential



totally umbilicalAL DISKS AND APPLICATIONS TO SURFACES 43

vanishes at the umbilic points of the introduced Codazzi pair, which allows

them to classify the complete CGC surfaces.

Regarding surfaces with non-empty boundary, a natural problem is to de-

termine whether such a surface is part of a totally umbilical sphere. In this

way, J. Nitsche [N] showed that an immersed disk type CMC surface in R3

whose boundary is a line of curvature must be a part of a totally umbilicalal

surface. On the other hand, J. A. Gálvez and A. Mart́ınez [GM] proved a

Liebmann-type theorem for immersed CGC disks in R3 when the boundary is

a line of curvature.

When the boundary is non regular, but piecewise differentiable, J. Choe [Ch]

extended Nitsche’s Theorem under some additional conditions on the singular

points at the boundary. Its proof is based on the control of the zeroes of the

holomorphic quadratic differential introduced by Hopf.

A similar result for surfaces in the product spaces S2 × R and H2 × R was

proved by M.P. do Carmo and I. Fernández in [dCF]. Nevertheless, in this

work the mean curvature of the surface is not assumed to be constant, and

therefore the Abresch-Rosenberg differential is not holomorphic. On the other

hand, the required regularity of the surface is more restrictive than in [Ch]. The

control of the zeroes of the Abresch-Rosenberg differential is achieved here by a

more general condition on the mean curvature, following a technique first used

in [AdCT] and [AdCFT], based on the following result (see either [J] Lemma

2.7.1, pp 75] or [AdCT]):

Lemma 1. Let f : U → C be a differentiable function defined on a complex do-

main U ⊂ C, and suppose that there exists a continuous real-valued (necessarily

non negative) function µ such that

|fz̄| ≤ µ(z)|f(z)|, ∀ z ∈ U. (1)

Then either f ≡ 0 in U or it has isolated zeroes. Moreover, if z0 is an isolated
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zero of f , there exists a positive integer k such that locally around z0

f(z) = (z − z0)kg(z), (2)

where g is a continuous non-vanishing function.

Our aim in this work is to show that the results in can be adapted to

the general setting of Codazzi pairs (see Theorem 1 for a precise statement,

and Theorems 2 and 3 for its apliccations). In particular, applied to CMC

surfaces in S2×R or H2×R this result gives the do Carmo-Fernández’s Theo-

rem. Moreover, it also generalizes the Mart́ınez-Gálvez’s Theorem to piecewise

smooth boundary, and extends to other homogeneous product spaces.

It should be remarked that Lemma 1 has been also a fundamental tool in

the classification of topological spheres with either constant positive extrin-

sic curvature in H2 × R and S2 × R (see [EGR]), or constant mean curvature

H > 1/
√

3 in Sol3 (see [DM]). Furthermore, it would not be surprising if

Lemma 1 is a key for the classification of topological spheres either with con-

stant positive extrinsic curvature or constant positive Gaussian curvature in the

other homogeneous spaces, or with constant mean curvature H > 0 in Sol3.

2 Preliminaries

First, we need to state some basic facts on Codazzi pairs (see [Mi] for details).

Let Σ be an orientable surface and (A,B) a pair of real quadratic forms on

Σ such that A is a Riemannian metric and B a quadratic form, such a pair

(A,B) is called a fundamental pair. Associated to a fundamental pair (A,B),

we define the shape operator of the pair as the unique self-adjoint endomorphism

of vector fields S on Σ given by

B(X,Y ) = A(SX, Y ), X, Y ∈ X(Σ).

We define the mean curvature, the extrinsic curvature and the principal
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curvatures of (A,B) as half the trace, the determinant and the eigenvalues of

the endomorphism S, respectively.

In particular, given local parameters (u, v) on Σ such that

A = E du2 + 2F dudv +Gdv2, B = e du2 + 2f dudv + g dv2,

the mean curvature and the extrinsic curvature of the pair are given, respec-

tively, by

H(A,B) =
Eg − 2Ff +Ge

2(EG− F 2)
, (3)

Ke(A,B) =
eg − f2

EG− F 2
, (4)

and the skew curvature

q(A,B) = H(A,B)2 −Ke(A,B). (5)

Associated to any fundamental pair (A,B) we define the lines of curvature

form W = W (A,B) by√
EG− F 2W = (Ef − Fe) du2 + (Eg −Ge) dudv + (Fg −Gf)dv2. (6)

The integral curves for the equation W = 0 are level lines for doubly or-

thogonal coordinates and they are called lines of curvature associated to the

pair (A,B). Umbilics points are those where W ≡ 0 for all values of du and

dv or, equivalently, if q = 0 at this point. Thus, a fundamental pair (A,B) is

said to be totally umbilicalal if q(A,B) vanishes identically on Σ. If we take

z = u + iv a local conformal parameter for the Riemannian metric A, we can

define

Q = Q(A,B) :=
1
4

(e− g − 2if) dz2,

that is, Q is the (2, 0)−part of the complexification of B for the conformal

structure given by A. Also, in this setting, it is easy to check that

−2 Im(Q) = W
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thus, the lines of curvature associated with a fundamental pair (A,B) are given

by

Im(Q) = 0.

Now, we recall the definition of the Codazzi Tensor and Function associated

to any fundamental pair (A,B) introduced in [AEG3] (see also [Es]).

Definition 1. Given a fundamental pair (A,B), we define its Codazzi Tensor

as

TS : X(Σ)× X(Σ) −→ X(Σ),

TS(X,Y ) = ∇XSY −∇Y SX − S[X,Y ] , X, Y ∈ X(Σ),

here ∇ stands for the Levi-Civita connection associated to A and S denotes the

shape operator.

Moreover, we define the Codazzi function associated to S as

TS : Σ −→ R

p 7−→ ‖TS(Xp, Yp)‖2

‖Xp ∧ Yp‖2

where X,Y ∈ X(U) are linearly independent vector fields defined in a neighbor-

hood U of p and

‖X ∧ Y ‖2 := ‖X‖2 ‖Y ‖2 −A(X,Y )2,

‖·‖ is the norm with respect to A.

It is easy to check that the Codazzi Tensor is skew-symmetric and the

Codazzi function is well defined.

Definition 2. A fundamental pair (A,B) is said to be a Codazzi pair if its asso-

ciated Codazzi Tensor vanishes identically. This means it satisfies the classical

Codazzi equations for surfaces in a 3-dimensional space form, that is,

ev−fu = eΓ1
12+f(Γ2

12−Γ1
11)−gΓ2

11, fv−gu = eΓ1
22+f(Γ2

22−Γ1
12)−gΓ2

12, (7)

where Γkij are the Christoffel symbols for the Riemannian metric A w.r.t. the

Riemannian connection of A.
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Now, we establish a result (proved in [AEG3], see also [Es]) that relates the

Codazzi function associated to (A,B) to the quadratic differential Q defined

before.

Lemma 2. Let (A,B) be a fundamental pair on Σ with associated shape op-

erator S. Set S̃ = S −H Id, where H = H(A,B). Then

TS̃ = 2
|Qz̄|2

λ3
,

or equivalently

|Qz̄|2 =
λ

2
TS̃
q
|Q|2,

where z is a local conformal parameter for A, i.e., A = 2λ |dz|2, and Q is the

(2, 0)-part of the complexification of B for the conformal structure given by A.

Moreover, if (A,B) is Codazzi, then

TS̃ = ‖dH‖2 .

3 Totally umbilicals disks

Our main theorem gives a sufficient condition for a disk-type surface (with

non regular boundary) to be totally umbilicalal for a given Codazzi pair. It is

inspired in the results of [Ch] and [dCF]. We will give the proof of the theorem

in Section 5.

Theorem 1. Let Σ be a compact disk with piecewise differentiable boundary.

We will call the vertices of the surface to the finite set of non-regular boundary

points. Assume also that Σ is contained as an interior set in a differentiable

surface Σ̃ without boundary.

Let (A,B) be a Codazzi pair on Σ̃. Assume that the following conditions

are satisfied:

1. On Σ̃ we have ‖dH‖ ≤ h
√
q , where H and q are the mean and skew

curvature of the pair (A,B), h is a continuous function, and ‖·‖ means

the norm with respect to the metric A.
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2. The number of vertices in ∂Σ with angle < π (measured with respect to

the metric A) is less than or equal to 3.

3. The regular curves in ∂Σ are lines of curvature for the pair (A,B).

Then, Σ is totally umbilicalal for the pair (A,B).

It should be remarked that, even the outline of the proof follows the ideas in

[Ch], our hypothesis on the regularity on the surfaces is a bit more restrictive.

Indeed, in [Ch] the Codazzi pair is assumed to be extended around the points

regular points of the boundary, but (possibly) not around the vertices. How-

ever, in that case the holomorphicity of the Hopf differential makes possible

to control the behavior at these points, whereas in the general case of a non

holomorphic differential Q it is necessary to impose more regularity to obtain

a estimate of the rotation index at the vertices. This is the same strategy em-

ployed in [dCF].

As a particular case of Theorem 1 we can consider the case of an immersed

surface Σ ⊂ M2(ε) × R, where M2(ε) denotes the complete simply connected

surface of constant curvature ε ∈ {+1, 0,−1}.
Denote by h the height function of the surface, H its mean curvature, and

(I, II) the first and second fundamental forms respectively. Then if we define

B = 2H II − εdh2 +
ε

2
‖∇h‖2 I,

it is easy to check that the pair (I,B) is a Codazzi pair when H is constant.

Note that when ε = 0, B is nothing but a constant multiple of the second

fundamental form. Our theorem then implies the result in [dCF] when the

surface has constant mean curvature (notice that in this case the first hypothesis

trivially holds).

Remark 1. We should point out that the (2, 0)−part of the complexification of

B for the conformal structure given by I agrees with the Abresch-Rosenberg dif-

ferential (see [AR] and [AR2]). In these papers, it is proved that this differential
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is holomorphic for the conformal structure given by I if the mean curvature,

H, of the surface is constant.

Moreover, the gradient term in the definition of B makes that

H(I,B) = 2H2. Thus, we can apply [Mi, Lemma 6] for ensuring:

(I,B) is Codazzi if, and only if, the Abresch-Rosenberg differential is

holomorphic.

This is reason for adding the gradient term in the definition of B, to use the

Codazzi pair theory.

To prove the result in [dCF] in all generality, we could establish Theorem

1 in a more general version. Actually, we have imposed the condition to be

Codazzi in Theorem 1 because we can not control the Codazzi Tensor of a

surface immersed in a general three-manifold. But, it is still possible in a

homogeneous three-manifold since it depends on the mean curvature and the

height function.

4 Applications to surfaces in homogeneous
3-manifolds

Throughout this section, Σ will denote a compact disk immersed in a homoge-

neous three-manifold.

We will assume that Σ has piecewise differentiable boundary. We will call

the vertices of the surface the (finite) set of non-regular boundary points. We

will also assume that Σ is contained in the interior of a differentiable surface Σ̃

without boundary.

4.1 Surfaces in space forms

Let M3(ε) denote the complete simply connected Riemannian 3-manifold of

constant curvature ε. That is, M3(ε) is S3 if ε = 1, R3 if ε = 0, or H3 if

ε = −1. It is well known that for an immersed surface Σ in M3(ε) the first
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and second fundamental forms, I and II, are a Codazzi pair. Moreover, the

mean, extrinsic and skew curvature, as well as the lines of curvature for the

pair (I, II) agree with the usual definitions for an immersed surface.

The classification of totally umbilical surfaces in these spaces is well-known

(see [Spi]). Roughly speaking, they are part of round spheres, planes, or horo-

spheres (in the case of M3(−1) = H3).

We say that an immersed surface Σ ⊂M3(ε) is a special Weingarten surface

if its mean curvature is of the form H = f(H2 − Ke) for a smooth function

f , where Ke is the extrinsic curvature. This class of surfaces includes the case

of constant mean curvature surfaces for H = f(q) := c, as well as the surfaces

with constant positive extrinsic curvature (equivalently, constant Gaussian cur-

vature, since in this setting the Gaussian curvature, K, is K = Ke + ε) for

H = f(q) :=
√
q + c, in both cases c is the positive constant so that H = c or

Ke = c.

Then, we have:

Theorem 2. Let Σ̃ ⊂ M3(ε) be a special Weingarten surface, and Σ ⊂ Σ̃

a compact disk with the regularity conditions assumed at the beginning of the

Section. Assume also that the following conditions are satisfied:

1. The number of vertices in ∂Σ with angle < π is less than or equal to 3.

2. The regular curves in ∂Σ are lines of curvature.

Then, Σ is a piece of one of the totally umbilicalal surfaces described above.

Proof: Let us show that there exists a continuous function h such that

‖dH‖ ≤ h√q. Since H = f(H2 −Ke) = f(q), then

dH = f ′(q) dq =
f ′(q)
λ2

(d(|Q|2)− d(λ2)q),

where we have used that |Q|2 = λ2q. Now just observe that∥∥d(|Q|2)
∥∥ =

∥∥d(QQ̄)
∥∥ ≤ |Q|(‖dQ‖+

∥∥dQ̄∥∥), and so the desired condition holds

for h = |f ′(q)|
λ

(
‖dQ‖+

∥∥dQ̄∥∥+ 2
√
q dλ

)
.
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Thus, the result follows from Theorem 1 applied to the Codazzi pair (I, II)

and the classification of totally umbilicalal surfaces in space forms described in

[Spi].

2

The above theorem generalizes the result in [GM] regarding positive con-

stant Gaussian curvature surfaces in R3 with everywhere regular boundary.

4.2 K-surfaces in product spaces

Now we will deal with immersed disks in the product space M2(ε)× R, where

M2(ε) denotes S2 if ε = 1, R2 if ε = 0 or H2 if ε = −1.

Let Σ ⊂ M2(ε) × R be an orientable immersed surface with unit normal

vector field N and let I and II be the first and second fundamental forms, K

its Gaussian curvature. We denote by h : Σ → R the height function of the

immersion, that is, the restriction to the surface of the canonical projection

M2(ε) × R → R. It is easy to show that, if we denote by ξ the unit vertical

vector field in M2(ε)× R (that is, the Killing field ξ = ∂t), then

ξ = ∇h+ νN, (8)

where ν = 〈ξ,N〉.

If we assume that K 6= ε at every point on Σ, we can define the new

quadratic form

A = I +
ε

K − ε
dh2. (9)

Moreover, if K > max{0, ε} then A is a Riemannian metric.

Definition 3. Let Σ ⊂ M2(ε) × R be an immersed surface with constant

Gaussian curvature K. We will say that Σ is a K−surface in M2(ε) × R

if K > max{0, ε}.

In [AEG1], the authors show that the pair (A, II) is Codazzi for aK−surface
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and its extrinsic curvature is

Ke(A, II) = K − ε,

when ε ∈ {−1, 1}. Note that when ε = 0, then M2(0) × R ≡ R3 and this

case was discussed above. In this case, the (2, 0)-part of A with respect to

the conformal structure induced by II, Q(II, A), is holomorphic on Σ ([Mi,

Lemma 8]). This is the main tool for the classification given in [AEG1] of the

complete K-surfaces. It turns out that these surfaces are rotationally invariant

spheres, extending the previously known classification in the euclidean case.

Theorem 3. Let Σ̃ ⊂M2(ε)×R be a K−surface, and Σ ⊂ Σ̃ a compact disk

with the regularity conditions stated at the beginning of the section. Assume

that the following conditions are satisfied:

1. The number of vertices in ∂Σ with angle < π (with respect to the metric

A) is less than or equal to 3.

2. The regular curves in ∂Σ are lines of curvature for the pair (A, II).

Then, Σ is a piece of one of the rotational spheres described in [AEG1].

Proof: Since Σ is a K−surface, (A, II) is a Codazzi pair and

c := Ke(A, II) = K − ε is a positive constant. Set q := q(A, II) and

H := H(A, II), then H = f(q) :=
√
q + c. Thus, ‖dH‖ ≤ h

√
q, where h

is a continuous function. Here, the norm ‖·‖ is with respect to A.

Thus, from Theorem 1, Σ is totally umbilicalal for the pair (A, II), and so

also Q(II, A) vanishes identically on Σ, giving that Σ is a piece of one of the

complete examples described in [AEG1].

2

In a recent paper [ALP], the authors deal with the regular case forK−surfaces

in product spaces, more precisely, they proved the following

Theorem. Let Σ ⊂M2(ε)×R be a compact surface with positive constant

Gaussian curvature K > ε and such that the imaginary part of Q(A, II) van-
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ishes identically along ∂Σ, where ∂Σ is a closed regular curve in M2(ε) × R.

Then Σ is a piece of a rotational complete K−surface.

Thus, the above result is a particular case of Theorem 3.

Despite the case of surfaces in space forms, in the spaces M2(ε) × R the

lines of curvature for the Coddazi pair (A, II) we work with do not agree in

general with the classical lines of curvature (except of course when ε = 0). In

the following lemma we give sufficient conditions on a curve in Σ to be a line

of curvature of (A, II). These conditions are inspired by those given in [dCF]

for the pair (I,B) defined in Section 3.

Lemma 3. Let Σ ⊂ M2(ε) × R be a K−surface, and γ ⊂ Σ a differentiable

curve. Assume that γ satisfies one of the following conditions,

1. γ is contained in a horizontal slice.

2. γ is an integral curve of ∇h, where h is the height function of Σ (here ∇
is the gradient with respect to I).

Then γ is a line of curvature for the pair (A, II) if and only if it is a line of

curvature of Σ in the classical sense.

Proof: This follows from the fact that the orthogonal vectors to γ′ for the

metrics A and I agree. Indeed, if γ is horizontal then dh(γ′) = 0, whereas in

the second case dh(n) = 0 for any vector n orthogonal to γ′ with respect to I.

Thus, by the very definition of A (see Equation (9)) we are done.

2

The following result is then a straightforward consequence of Theorem 1

and the above lemma.

Corollary 1. Let Σ ⊂M2(ε)×R be disk-type K−surface satisfying the regular-

ity conditions stated at the beginning of this section. Assume that the following

conditions are satisfied:
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1. The number of vertices in ∂Σ with angle < π (with respect to the induced

metric A) is less than or equal to 3.

2. Every regular component γ of ∂Σ is a line of curvature (in the classical

sense) satisfying one of the following properties:

• γ is contained in a horizontal slice.

• γ is an integral curve of ∇h, where h is the height function of Σ.

Then, Σ is a piece of one of the complete examples described in [AEG1].

Remark 2. The hypothesis 1 in Theorem 3 is sharp. Indeed, consider the

revolution surface Σ0 with positive constant Gaussian curvature in R3 given by

ψ(s, t) = (sin(s)k(t), cos(s)k(t), h(t))

with

k(t) = b sin(
√
Kt)

h(t) =
∫ t

0

√
1− b2K cos2(

√
Kr) dr

(10)

The complete example is when b = 1. Also, up to scaling, we can assume

that K = 1. Thus if we consider b ∈ (0, 1) in (10) we obtain a constant

Gaussian curvature (CGC) surface with non vanishing Q(A, II).

We take Σ a simply-connected region bounded by two meridians and two

horizontal circles (and therefore lines of curvature), then Σ is a compact em-

bedded disk type CGC bounded by lines of curvature meeting at 4 vertices with

angle π/2.

Similar examples can be constructed in S2 ×R and H2 ×R by constructing

a non-complete rotational following the computations in [AEG1, Section 3].

These surfaces have non vanishing holomorphic quadratic differential Q(A, II),

so we can choose a local conformal parameter (for the second fundamental form)

z so that Q(A, II) = dz2. Thus the piece of the surface corresponding to the

square {|Re z| ≤ t0, |Im z| ≤ t0} in the parameter domain gives an example
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of a disk type CGC surface bounded by lines of curvature (for the associated

Codazzi pair) meeting at 4 vertices with angle equal to π/2.

5 Proof of the Main Theorem

We now prove the Theorem 1 stated in Section 3. From now on, Σ satisfies the

regularity conditions as the previous Section.

Proof of Theorem 1: Consider on Σ̃ ⊃ Σ the Riemannian metric given by A,

and let z be a conformal parameter. Set Q̃ the (2, 0)−part of the complexifica-

tion of B for the conformal structure given by A on Σ̃, and Q = Q̃|Σ. Assume,

reasoning by contradiction, that Σ is not totally umbilicalal, that is, Q does

not vanish identically.

At every non umbilical point in Σ̃ there exist two orthogonal (for the metric

A) lines of curvature, whereas at an umbilic point (that is, a zero of Q̃) the

lines of curvature bend sharply. Since ImQ̃ = 0 on these curves, if we write

Q̃ = f(z)dz2 in a neighborhood of z0, the rotation index at an umbilic point

z0 is given by

I(z0) =
−1
4π

δargf,

where δargf is the variation of the argument of f as we wind once around the

singular point.

At an interior umbilic point of Σ, the rotation index of the lines of curvature

of Σ clearly agrees with the one of Σ̃. At a point z0 ∈ ∂Σ the rotation index

of the lines of curvature of Σ is defined as follows (see also [Ch]). Consider

ϕ : D+ → Σ an immersion of D+ = {ξ ∈ C : |ξ| < 1, Im(z) ≥ 0} into Σ,

mapping the diameter of the half disk into ∂Σ. The lines of curvature can be

pulled back to a line field in D+. Moreover, since the regular curves of ∂Σ are

lines of curvature, they can be extended by reflection to a continuous (with

singularities) line field on the whole disc. Thus, we define the rotation index
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I(z0) of Q at z0 ∈ ∂Σ to be half of the rotation index of the extended lines of

curvature.

If all the singularities are isolated, the Poincar-Hopf index theorem gives

that ∑
z∈Σ

I(z) = 1.

The next two claims show that the umbilic points are isolated and give a bound

for the rotation index.

Claim 1. The zeroes of Q in Σ \ ∂Σ are isolated, and the rotation

index I(z0) of X at an interior singular point is ≤ −1/2 , in par-

ticular, it is always negative.

Proof of Claim 1. Let us see first that the singularities are isolated. Taking

into account Lemma 2 and our hypothesis 1 we infer that

|Q̃z̄|2 =
λ

2
||dH||2

q
|Q̃|2 ≤ λ

2
h2|Q̃|2, (11)

on Σ̃, where z is a conformal parameter for the metric A, and λ is the conformal

factor of A in the parameter z. Then, Lemma 1 gives that the zeroes of Q̃ in

Σ̃ are isolated (recall that we are assuming that Q does not vanish identically).

In particular, the zeroes of Q are isolated in Σ. Moreover, locally around a

zero z0 ∈ Σ̃ of Q̃ we have that

Q̃(z) = (z − z0)kg(z)dz2, (12)

where k ∈ N and g(z) is a non-vanishing continuous function. Therefore, the

rotation index is −k/2 ≤ −1/2, in particular, it is always negative.

2

Claim 2. The boundary singular points of X are isolated. More-

over, let z0 ∈ ∂Σ be a singular point, then
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1. if z0 is not a vertex, its rotation index is I(z0) < 0,

2. if z0 is a vertex of angle > π, then I(z0) < 0,

3. if z0 is a vertex of angle < π, then I(z0) ≤ 1/4.

Proof of Claim 2. Consider ϕ : D+ → Σ a conformal immersion as explained

above, with ϕ(0) = z0. Since Q satisfies ImQ = 0 on ∂Σ, its pull-back can

be reflected through the diameter to a continuous quadratic differential on the

whole unit disc D, that will be denoted by Q∗. Notice that when z0 is a vertex

ϕ′ could be zero or infinite.

Let θ be the angle of ∂Σ at z0 (θ = π if z0 is not a vertex). Then ϕ′ grows

as |ξ| θπ−1 at the origin. Around z0, Q̃ is given by (12), although in this case

k could be zero, since when θ = π/2, z0 is not necessarily a zero of Q̃. In

particular, z0 is an isolated singularity. Moreover, there are 2(k + 2) lines of

curvature in Σ̃ emanating from z0, and meeting at an equal-angle system of

angle π/(k + 2). In particular, since the curves in ∂Σ are lines of curvature, θ

must be a multiple of π/(k + 2).

If we write Q∗ = f(ξ)dξ2 for ξ ∈ D, then

f(ξ) =
(
ϕ(ξ)− ϕ(0)

)k(ϕ′(ξ))2g(ϕ(ξ)), ξ ∈ D+.

Then the variation of the argument of f(ξ) as we wind once around the origin

is 2θ(k + 2)− 4π, and the rotation index is

I∗ = 1− θ

2π
(k + 2).

In particular, if θ ≥ π, then I∗ ≤ −k/2 < 0, whereas for θ < π we have

I∗ ≤ 1/2 (as I∗ < 1, and 2I∗ must be an integer). Since I(z0) = I∗/2, the

claim is proved. 2

Taking into account the two previous claims, and since the number of ver-

tices of angle < π is less than or equal to 3, we can conclude that∑
p∈Σ

I(p) ≤ 3/4 < 1,
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which contradicts the Poincar-Hopf theorem and shows that Σ is totally um-

bilicalal.
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