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Abstract

We use a complex analysis trick to provide a description in explicit
coordinates of some fundamental dualities appearing in Bryant surface
theory. In particular, given a Bryant surface, we construct in explicit
coordinates the minimal surface in R3 associated to it via the Lawson
correspondence. We also give in explicit coordinates, for any simply
connected surface (Σ, g) of constant curvature κ, the canonical isometric
immersion of Σ into the model space Q2(κ) in terms of a solution to the
Liouville equation.

1 Introduction

Integrability theorems such as the Frobenius theorem and its modifications

constitute a fundamental tool in surface theory, since they provide in many

cases existence of surfaces with prescribed geometric data, or correspondences

between different classes of surfaces. In this sense, we may quote for instance

the fundamental theorem of surface theory, or the correspondence between

surfaces of constant negative curvature in R3 and solutions to the sine-Gordon

equation.

A limitation of these integrability techniques is that they do not provide

explicit coordinates for the surfaces that they prove to exist. Hence, it is

natural to analyze if some of these correspondences can be made explicit in an

alternative way.
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In this note we will discuss the previous problem for the class of Bryant

surfaces. Let us recall that a Bryant surface is an immersed surface of con-

stant mean curvature H = 1 in the hyperbolic 3-space H3. These surfaces are

special among constant mean curvature (CMC) surfaces in many aspects. For

instance, they are connected to minimal surfaces in R3 by the so-called Lawson

correspondence: if (I, II) denote the first and second fundamental forms of a

simply connected Bryant surface, then there exists a minimal surface in R3

whose first and second fundamental forms are (I, II − I). In particular, both

surfaces are locally isometric.

The term Bryant surface comes from the celebrated paper by R.L. Bryant

[Bry], in where a conformal representation for this type of surfaces was ob-

tained. This representation constitutes the basic tool in the global study of

Bryant surfaces, and is basically a correspondence between such surfaces and

the class of holomorphic null curves in SL(2,C).

The Bryant representation uses the Hermitian model for H3 (see Section

3), and tells the following:

Theorem 1 ([Bry]) Let F : Σ→ SL(2,C) be a holomorphic immersion from

a Riemann surface Σ, and suppose that F is null, i.e. det(dF ) = 0. Then

f := FF ∗ : Σ→ H3 (1.1)

is a Bryant surface.

Conversely, any simply connected Bryant surface in H3 can be expressed as

(1.1) for some holomorphic null immersion F : Σ→ SL(2,C).

These two fundamental results, the Bryant representation and the Lawson

correspondence, rely on the Frobenius theorem or some of its variants. Thus,

none of them is explicit at a first sight (although they can actually be reformu-

lated only in terms of first order data on the surfaces).

Our aim in this note is to show how, by means of a very simple classical

trick of complex analysis (see Section 2), we can make both correspondences
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explicit. As a corollary, we will also describe in explicit coordinates other useful

dualities of Bryant surface theory, due to Umehara and Yamada, and Mart́ın,

Umehara and Yamada, respectively. This will be done in Section 3.

Besides, in Section 4, we will provide explicit coordinates for the canonical

isometric immersion of a simply connected surface with constant curvature

surface κ into the 2-dimensional model space Q2(κ). This is another basic

result of surface theory that relies on auxiliary integrability results. We make

this existence result explicit by using complex analysis and the connection of

the problem with Liouville’s equation ∆u+ aeu = 0.

It is a pleasure for us to dedicate this paper to Prof. Manfredo do Carmo,

from whom we have learned so much through his books, articles, conferences

and personal conversations.

2 The extension operation

Let a(s, t) : Ω ⊂ R2 → C denote a real analytic function with complex

values, where Ω is a simply connected domain. We shall identify R2 ≡ C by

means of (s, t) 7→ s+ it.

By real analyticity, we may extend a(s, t) to a complex function

a(w1, w2) : Ω̃ ⊂ C2 → C,

where a(w1, ·), a(·, w2) are holomorphic functions on their corresponding do-

mains.

Let us remark that the complex function a(w1, w2) extends the original real

analytic function a(s, t), in the sense that

Ω ⊂ {(w1, w2) ∈ Ω̃ : Imw1 = 0 = Imw2}.

So, formally, the extension is performed just by replacing the real variable s

(resp. t) by the complex variable w1 (resp. w2) in the expression a(s, t).

In order to simplify our reasoning, we will assume (0, 0) ∈ Ω. Thus, the
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image of the complex curve

Γ : Ω −→ C× C

z 7→
(z

2
,
z

2i

)
.

lies on Ω̃ for |z| small enough.

Therefore, sufficiently close to the origin, the holomorphic function

a
(z

2
,
z

2i

)
(2.1)

is well defined. Formally, (2.1) is obtained just by making the substitutions

s 7→ z/2, t 7→ z/(2i) on a(s, t).

At this point, it is important to observe that if a(s, t) is holomorphic and

we denote z = s + it, then the extension (2.1) is actually the proper function

a(s + it). Contrastingly, if a(s, t) is antiholomorphic, i.e. a(s, t) = f(s − it)

where f is holomorphic, then

a
(z

2
,
z

2i

)
= f(0) = const.

Thus, the idea behind the above extension operation is that (2.1) preserves the

holomorphic parts of a(s, t) and kills the antiholomorphic parts, turning them

into constants.

3 Bryant surfaces

Let L4 be the Minkowski 4-space with canonical coordinates (x0, x1, x2, x3)

and the Lorentzian metric 〈, 〉 = −dx2
0 +dx2

1 +dx2
2 +dx2

3. The Hermitian model

for L4 identifies L4 ≡ Herm(2) as

(x0, x1, x2, x3) ∈ L4 ←→

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
∈ Herm(2).

The metric 〈, 〉 on this model is determined by 〈m,m〉 = − det(m) for all

m ∈ Herm(2). In addition, the complex Lie group SL(2,C) acts on L4 through

the isometric and orientation-preserving action

Φ ∈ SL(2,C) 7→ Φ ·m = ΦmΦ∗, m ∈ Herm(2), Φ∗ = Φ̄t.
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This implies that the hyperbolic 3-space H3 = {x ∈ L4 : 〈x, x〉 = −1, x0 > 0}

may be regarded as H3 = {ΦΦ∗ : Φ ∈ SL(2,C)}, where in this decomposition

Φ is unique up to right multiplication by an element of SU(2).

The next result recovers the holomorphic null immersion F in the Bryant

representation from the explicit coordinates of the surface, using the extension

procedure explained in the previous section.

Theorem 2 Let f(s, t) : Ω ⊂ C → H3 denote a simply connected Bryant

surface, where z = s + it is a conformal parameter of the surface. Assume

without loss of generality that (0, 0) ∈ Ω and that f(0, 0) = Id2.

Then, the holomorphic null immersion F : Ω→ SL(2,C) such that F (0) =

Id2 given by the Bryant representation can be explicitly obtained from f by the

formula

F (z) = f
(z

2
,
z

2i

)
. (3.1)

Proof: Define F̂ (z) := F ∗(z̄), which is a holomorphic curve in SL(2,C). Then,

from the Bryant representation, and using the real parameters (s, t) with z =

s+ it, we have

f(s, t) = F (s+ it) F̂ (s− it).

Now, we are in the conditions to apply the extension technique of Section 2,

from which we get

f
(z

2
,
z

2i

)
= F (z)F̂ (0).

Finally, using that f(0, 0) = Id2 and the SU(2) ambiguity of F , we can assume

that F (0) = Id2, and hence we obtain (3.1).

2

Remark: It is interesting to observe that for establishing (3.1) we did not

use that F is null, or that z = s + it is conformal for the first fundamental

form of the surface. In other words, Theorem 2 is also true for any class of

surfaces in H3 for which a representation formula of the type f = FF ∗ holds
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(F : Σ → SL(2,C) being holomorphic). This is the case, for instance, of flat

surfaces [GMM1] and, more generally, of linear Weingarten surfaces of Bryant

type [GMM2].

Example 3 An example of a Bryant surface invariant by hyperbolic transla-

tions is

f(s+ it) =

(
es cosh t −ieit sinh t

ie−it sinh t e−s cosh t

)
: C→ H3 ⊂ Herm(2). (3.2)

The characteristic property of this example is that it contains the axis of the

hyperbolic translation group, see Figure 3.

By applying Theorem 2 we get directly that its associated null immersion is

F (z) = f
(z

2
,
z

2i

)
=

(
ez/2 cos(z/2) −ez/2 sin(z/2)

e−z/2 sin(z/2) e−z/2 cos(z/2)

)
: C→ SL(2,C).

Indeed, a straightforward computation yields that F is null with f = FF ∗.

Application: the Lawson correspondence.

Any holomorphic null immersion F : Σ→ SL(2,C) satisfies (see [UY1])

F−1dF =

(
g −g2

1 −g

)
ω, (3.3)

where g is meromorphic and ω is a holomorphic 1-form. As F is an immersion,

the quantity (1 + |g|2)2|ω|2 is a well defined Riemannian metric, and (g, ω) are

the Weierstrass data of a minimal surface ψ : Σ→ R3 given by

ψ(z) = Re

∫ z

z0

(
(1− g2)ω, i(1 + g2)ω, 2gω

)
, (3.4)

provided that Σ is simply connected. In this situation, ψ is the cousin surface

of f = FF ∗, i.e. ψ and f are connected by the Lawson correspondence.

Once here, it comes clear from Theorem 2 and (3.4) that the cousin surface

ψ : Σ → R3 can be obtained from the coordinates of f : Σ → H3, just by
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Figure 1: Hyperbolic invariant Bryant surfaces in the Poincaré model contain-
ing the axis of the hyperbolic translation

performing an integration. Specifically, if

f(s, t) =

(
a(s, t) b(s, t)
b̄(s, t) c(s, t)

)
: Σ→ H3, (3.5)

we have that

ψ(z) = Re

∫ z

z0




cbz − bcz + ab̄z − b̄az

i(bcz − cbz + ab̄z − b̄az)

2(caz − bb̄z)



(w

2
,
w

2i

)
dw. (3.6)

Here, by definition,
∂

∂z
:=

1

2

(
∂

∂s
− i

∂

∂t

)
.

Example 4 Let us explain how formula (3.6) works if we start with the specific

Bryant surface of Example 3. In this case, the coordinates (3.5) are given by

(3.2), and so we have




cbz − bcz + ab̄z − b̄az

i(bcz − cbz + ab̄z − b̄az)

2(caz − bb̄z)



 (s, t) =




sinh(s− it)− i cosh(s− it) sinh(2t)

i cosh(s− it) + sinh(s− it) sinh(2t)

cosh(2t).



 .
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Applying now the substitution in (3.6) and integrating yields

ψ(s, t) = (cos s cosh t,−t, sin s cosh t) : C→ R3,

i.e. the standard conformal parametrization of (the universal covering of) an

Euclidean catenoid.

Application: dual Bryant surfaces.

An extremely useful notion in Bryant surface theory is the following duality

introduced in [UY2]: if F : Σ→ SL(2,C) is a null holomorphic immersion, then

so is F−1. By applying the Bryant representation to F−1, and if Σ is simply

connected, we obtain a new Bryant surface f ♯ : Σ→ H3 that is called the dual

of the Bryant surface f = FF ∗. This duality switches the roles played by the

meromorphic function g and the hyperbolic Gauss map G of the surface, and

one is complete if and only if the other one is complete, see [Yu].

With this, it is immediate from Theorem 2 that if f : Σ → H3 is a Bryant

surface given in coordinates by (3.5), then its dual surface f ♯ is explicitly given

by

f ♯(z) =

(
c
(

z
2 ,

z
2i

)
−b
(

z
2 ,

z
2i

)

−b̄
(

z
2 ,

z
2i

)
a
(

z
2 ,

z
2i

)
)(

c
(

z
2 ,

z
2i

)
−b̄
(

z
2 ,

z
2i

)

−b
(

z
2 ,

z
2i

)
a
(

z
2 ,

z
2i

)
)

: Σ→ H3.

Application: a correspondence for null curves in C3 and SL(2,C).

In [MUY], the following correspondence was used to prove the existence of

complete bounded Bryant surfaces à la Nadirashvili :

T : {(x1, x2, x3) ∈ C3 : x3 6= 0} ↔ {(yij) ∈ SL(2,C) : y11 6= 0},

T (x1, x2, x3) =
1

x3

(
1 x1 + ix2

x1 − ix2 x2
1 + x2

2 + x2
3

)
.

This correspondence takes holomorphic null immersions in C3 into holomorphic

null immersions in SL(2,C). As every minimal surface in R3 is the real part
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of a null holomorphic immersion in C3, we can associate to any Bryant surface

f : Σ→ H3 a new minimal surface ψ♭ : Σ→ R3 by the formula

ψ♭ = Re(T −1 ◦ F ),

where F is the null SL(2,C) immersion associated to f of Bryant’s represen-

tation.

Thus, again, we can recover ψ♭ explicitly from the coordinates of f , by

means of Theorem 2. We omit the final formula, as the process is clear.

4 The Liouville equation

The Liouville equation is the quasilinear elliptic PDE

∆u+ aeu = 0, (4.1)

where a ∈ R is a constant that can be assumed to be a = 2ε, ε ∈ {−1, 0, 1},

up to a change of the form u 7→ u+ c, c ∈ R. This equation has a geometrical

nature. Indeed, on a given planar domain Ω, the conformal metric eu(ds2+dt2)

has constant curvature a/2 if and only if u is a solution to (4.1). This tells in

particular that (4.1) is conformally invariant.

The Liouville equation admits a resolution in terms of holomorphic data,

mainly due to Liouville [Lio] (see also [Bry, ChWa, GaMi1, GaMi2]).

Theorem 5 Let u : Ω ⊂ R2 ≡ C→ R denote a solution to ∆u+2ε eu = 0 in a

simply connected domain Ω. Then there exists a locally univalent meromorphic

function g (holomorphic with 1 + ε|g|2 > 0 if ε ≤ 0) in Ω such that

u = log
4|g′|2

(1 + ε|g|2)2
. (4.2)

Conversely, if g is a locally univalent meromorphic function (holomorphic with

1 + ε|g|2 > 0 if ε ≤ 0) in Ω, then (4.2) is a solution to ∆u+ 2εeu = 0 in Ω.

The function g in the above theorem is called the developing map, and is unique

up to a transformation of the form

g 7→
αg − β̄

εβg + ᾱ
, |α|2 − ε|β|2 = 1. (4.3)
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Consider now dσ2 = eu(ds2 + dt2) = eu|dz|2 a Riemannian metric of con-

stant curvature ε ∈ {−1, 0, 1} defined on a simply connected complex domain

Ω ⊂ C. Let g denote the developing map of u. Then g : (Ω, dσ2)→ Q2(ε) is an

isometric immersion, where Q2(ε) is the 2-dimensional space form of constant

curvature ε:

Q2(1) = (C ∪ {∞}, 4|dw|2

(1+|w|2)2 ), Q2(0) = (C, 4|dw|2),

Q2(−1) = (D, 4|dw|2

(1−|w|2)2 ).

Observe that the change (4.3) amounts to compose g with an isometry of Q2(ε),

i.e. (4.3) is the natural ambiguity of the isometric immersion problem.

Thus, any simply connected surface of constant curvature ε can be isomet-

rically immersed into Q2(ε), and the problem that we address here is: can this

canonical isometric immersion be explicitly described? For that, we only need

to find the developing map g explicitly from dσ2 = eu|dz|2.

Theorem 6 Let dσ2 = eu|dz|2 denote Riemannian metric of constant curva-

ture ε ∈ {−1, 0, 1} defined on a simply connected domain Ω ⊂ C. Assume

without loss of generality that 0 ∈ Ω, and that its developing map g satisfies

g(0) = 0 and g′(0) ∈ R. Then g is explicitly given by

g′(z) =
1

2 exp (u(0)/2)
exp

(
u
(z

2
,
z

2i

))
. (4.4)

Proof: Observe first that the conditions on g are not restrictive, by the ambi-

guity (4.3).

Writing g∗(z) = g(z̄), by (4.2) we have

eu(s,t) =
4|g′(s+ it)|2

(1 + ε|g(s+ it)|2)2
=

4g′(s+ it)(g∗)′(s− it)

(1 + εg(s+ it)g∗(s− it))2
.

By the extension operation of Section 2 we have

exp
(
u
(z

2
,
z

2i

))
= 4(g∗)′(0)

g′(z)

(1 + εg(z)g(0))2
. (4.5)

Now, as g′(0) ∈ R and g(0) = 0, we have

(g∗)′(0) = g′(0) =
1

2
exp(u(0)/2).
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Thus, we obtain (4.4) from (4.5).

2
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