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Abstract

This article is a brief survey on some recent results about the struc-
ture of the set of solutions to the Yamabe Problem. We will discuss a
compactness theorem for n ≤ 24 and some noncompactness results for
n ≥ 25, which together give a complete answer to a conjecture of R.
Schoen.

1 Introduction

Let (Mn, g) be a smooth compact Riemannian manifold of dimension n ≥ 3.

The conformal class of g is the set

[g] = {g̃ = φ2g : φ ∈ C∞(M), φ > 0}.

The Yamabe Problem consists of finding a metric g̃ ∈ [g] of constant scalar

curvature.

This problem is equivalent to showing the existence of a positive solution

to the partial differential equation

∆gu− c(n)Rgu+Ku
n+2
n−2 = 0 on M, (1.1)

where ∆g is the Laplace-Beltrami operator associated with g, Rg is the scalar

curvature of g, c(n) = n−2
4(n−1) , and K is a constant. If u > 0 is a solution to the

equation (1.1), then the scalar curvature of the metric g̃ = u
4

n−2 g is constant

and equal to c(n)−1K.

The Yamabe Problem also has a variational structure. The constant scalar

curvature metrics g̃ ∈ [g] are the critical points of the following energy func-
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tional, also known as the normalized total scalar curvature functional:

Q(g̃) =

∫
M
Rg̃ dvg̃( ∫

M
dvg̃

)n−2
n

.

It follows from the combined works of Yamabe [34], Trudinger [32], Aubin

[2], and Schoen [23], that the Yamabe Problem always admits a minimizing

solution.

The conformal classes of compact Riemannian manifolds can be classified

in three types, according to the sign of the Yamabe quotient:

Q(M, g) = inf
g̃∈[g]

Q(g̃).

If the Yamabe quotient is negative, it follows from the Maximum Principle that

the solution (of negative constant scalar curvature) is unique. If the Yamabe

quotient is zero, the solution (of zero scalar curvature) is unique up to a constant

factor.

The structure of the set of solutions in the positive Yamabe quotient case

can be very rich though. The simplest and most important example is given

by the standard sphere (Sn, g0). It is special because the standard sphere is

the only compact manifold which admits a noncompact group of conformal

transformations Conf(Sn). It follows from a theorem of Obata (see [21]) that

the full set of solutions to the Yamabe Problem in this case is given by

{λψ∗(g0) : λ ∈ R+, ψ ∈ Conf(Sn)}.

Every solution is minimizing in this particular example.

In [25], R. Schoen studied the example of S1(L) × Sn−1 with the product

metric (L denotes the length of the circle factor), and verified the existence

of a large number of high energy solutions with high Morse index. In fact, a

theorem of Pollack ([22]) shows that every compact Riemannian manifold of

positive scalar curvature can be perturbed, in the C0 topology, to have as many

solutions as desired. These solutions generally have high energy and index.
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In a topics course at Stanford in 1988 (see also [26] and [27]), motivated by

the study of the locally conformally flat case, R. Schoen proposed the following

conjecture:

Compactness Conjecture

The set of solutions to the Yamabe Problem, in the positive Yamabe quotient

case, is always compact unless the manifold is conformally equivalent to the

standard sphere.

The cases which were covered in the Stanford notes are the locally confor-

mally flat case, published in [26] and the three dimensional case, the argument

for which is in the paper of Schoen and Zhang [31] (used there to establish a

single simple point of blow-up for the prescribed scalar curvature problem on

S3). In dimensions 4 and 5, the conjecture was proved by O. Druet (see [8]).

It follows from basic arguments in blow-up analysis that non-converging

sequences of solutions to the Yamabe Problem have to concentrate and form

bubbles at some points of the manifold, referred to as blow-up points. The

main difficulty in establishing compactness in dimensions greater than or equal

to 6 consisted in proving a related statement, known as the Weyl Vanishing

Conjecture, concerning the location of possible blow-up points:

If x ∈ M is a blow-up point of a sequence of solutions g̃ν = u
4

n−2
ν g to the

Yamabe Problem, then the Weyl tensor of the metric g should satisfy

∇kWg(x) = 0

for all 0 ≤ k ≤ [n−6
2 ].

Over the past several years many people have worked on these problems.

It follows from the works of the author ([18]) and Y. Y. Li and L. Zhang ([14])

that compactness holds for n ≤ 7 in general, and for arbitrary n under the

assumption that the Weyl tensor vanishes nowhere to second order. In [15], Li

and Zhang proved compactness for n ≤ 11.
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We should also point out that non-smooth blow-up examples were obtained

by A. Ambrosetti and A. Malchiodi in [1], and by M. Berti and Malchiodi in

[3]. In [9] O. Druet and E. Hebey have also obtained blow-up examples for

Yamabe-type equations.

In a surprising paper ([6]) Simon Brendle has constructed examples of C∞

metrics on spheres of dimension at least 52 for which the compactness statement

fails. In a subsequent paper ([7]) Brendle and the author were able to extend

these examples to the dimensions 25 ≤ n ≤ 51. Finally, in [11], M. Khuri, R.

Schoen and the author have established compactness if n ≤ 24.

The main goal of this survey article is to give an overview of the results and

arguments of the papers [11], [6], and [7]. Their results put together give the

following answer to the Compactness Conjecture:

The Compactness Conjecture is true if and only if n ≤ 24.

We should point out that another recent important development in the

Yamabe Problem is the proof of convergence of the Yamabe flow in high di-

mensions by S. Brendle (see [5]). See also [4] for a related survey on these

developments.

2 Compactness theorem

Let (Mn, g) be a smooth compact Riemannian manifold of dimension n ≥ 3

and positive Yamabe quotient.

For any p ∈ [1, n+2
n−2 ] we define

Φp = {u > 0 | Lgu+Kup = 0 on M},

where Lg = ∆g − c(n)Rg is the conformal Laplacian operator. Although the

geometric problem corresponds to the exponent p = n+2
n−2 , critical with respect

to the Sobolev embeddings, the consideration of the subcritical solutions will



RECENT DEVELOPMENTS ON THE YAMABE PROBLEM 119

be useful for the purposes of computing the total Leray-Schauder degree of the

problem.

The main theorem of [11] is:

Theorem 2.1. Let (Mn, g) be a smooth compact Riemannian manifold of di-

mension 3 ≤ n ≤ 24. If (Mn, g) has positive Yamabe quotient and is not

conformally diffeomorphic to (Sn, g0), then for any ε > 0 there exists a con-

stant C > 0 depending only on g and ε such that

C−1 ≤ u ≤ C and ‖ u ‖C2,α≤ C,

for all u ∈ ∪1+ε≤p≤ n+2
n−2

Φp, where 0 < α < 1.

The proof of this theorem is by contradiction and follows the strategy out-

lined in the notes of R. Schoen ([24]). The basic idea is to use the Pohozaev

Identity as an obstruction tool in order to rule out the formation of bubbles at

blow-up points.

Proposition 2.2 (Pohozaev Identity, [30]). Let (Ωn, g) be a Riemannian do-

main, n ≥ 3. If X is a vector field on Ω, then

n− 2
2n

∫
Ω

X(Rg) dvg +
∫

Ω

〈DgX,Tg〉 dvg =
∫
∂Ω

Tg(X, ηg) dσg.

Here Tg = Ricg − Rg
n g is the traceless Ricci tensor, (DgX)ij = Xi;j + Xj;i −

2
ndivgX gij is the conformal Killing operator, and ηg is the outward unit normal

to ∂Ω.

The strategy has both a local and a global aspect. The global aspect involves

the so-called Positive Mass Theorem of General Relativity. This theorem has

been established by Schoen and Yau [28] for general manifolds in dimensions

n ≤ 7. In [33] E. Witten established it in any dimension for spin manifolds,

while the locally conformally flat case was handled by a special argument in

[29]. The general higher dimensional version has been recently announced by

Lohkamp [17].
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In order to illustrate the idea let us for simplicity restrict ourselves to the

critical exponent p = n+2
n−2 . Suppose there exists a sequence uν ∈ Φ n+2

n−2
such

that maxM uν = uν(xν) → ∞ as ν → ∞. Suppose x = limxν . Since the

scalar curvature of gν = u
4

n−2
ν g is constant, the Pohozaev identity applied to

the geodesic ball Bδ(xν) = {p ∈ M : r = dg(xν , p) ≤ δ}, endowed with the

Riemannian metric gν and the radial vector field X = r ∂∂r , r = dg(xν , ·), yields∫
Bδ

〈DgνX,Tgν 〉 dvgν =
∫
∂Bδ

Tgν (X, ηgν ) dσgν . (2.1)

It turns out that the boundary integrals in the identity (2.1), when apropriately

normalized, converge to a quantity which can be bounded above by −m, where

m is the mass of the asymptotically flat and scalar flat metric ĝ = G
4

n−2
L g. Here

GL denotes the Green’s function of the conformal Laplacian with pole at x.

The vanishing of the Weyl tensor to order [n−6
2 ] at x is necessary in order for

the mass of ĝ to be well-defined.

Since (Mn, g) is not conformally equivalent to the standard sphere, the

metric ĝ is not flat, and hence m > 0 by the Positive Mass Theorem. The con-

tradiction will come if we can establish the nonnegativity of the corresponding

limit of the interior integrals of (2.1). The study of the sign of the interior

integral constitutes the local aspect of the strategy, and it turns out that when

it works the Weyl vanishing at the blow-up point also follows.

The first step is to obtain sharp approximations of the blowing-up sequence

of solutions in a neighborhood of the blow-up point. This is achieved by es-

tablishing optimal pointwise estimates which generalize the ones obtained by

the author in [18]. These estimates assume the blow-up point is isolated sim-

ple. After the strategy is carried out with success for that particular case, the

results can be used to handle the more general case of multiple blow-up by

scaling arguments.

The important point of the estimates of [11] is that in high dimensions it is

necessary to perform a refined blow-up analysis and go beyond the rotationally

symmetric first approximation (standard bubble). The approximate solutions
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used are the same ones introduced by S. Brendle in [5] to generalize the results

of Aubin ([2]) and of Hebey and Vaugon ([10]).

If (x1, . . . , xn) are normal coordinates centered at xν , we can write the

components of the metric g in the form

gij(x) = exp(hij(x)),

and look at the Taylor expansion of hij around the origin:

hij(x) = Hij(x) +O(|x|d+1),

where d = [n−2
2 ]. It is convenient to work in conformal normal coordinates (see

[13]) to simplify the computations. In that case Hij is a matrix whose entries

are polynomials of degree less than or equal to d, and such that

1. Hij(x) = Hji(x),

2.
∑
kHkk(x) = 0,

3.
∑
k xkHik(x) = 0,

for all 1 ≤ i, j ≤ n and x ∈ Rn. Let us denote the vector space of such matrices

by Vn.

If εν = uν(xν)−
2

n−2 , the optimal pointwise estimates established in [11] al-

low the expansion of the interior integral of (2.1) in powers of εν , much like in

the work of Aubin [2]. It turns out that the relevant correction terms are en-

coded in a canonical quadratic form Pn defined on Vn (see the appendix of [11]

for a definition of Pn) . It follows from the arguments sketched above that the

positivity of Pn is sufficient to establish the Weyl vanishing and compactness.

In the Appendix of [11] the authors analyze the eigenvalues of Pn and prove:

Proposition 2.3. The quadratic form Pn, defined on Vn, is positive definite

if n ≤ 24. Moreover, it has negative eigenvalues if n ≥ 25.

The Compactness Theorem 2.1 allows us to compute the total Leray-Schauder

degree of all solutions to equation (1.1), and to obtain more refined existence

theorems which we now briefly discuss.
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If we choose the unit volume normalization
∫
M
u

2n
n−2 dvg = 1, the equation

(1.1) becomes

Lgu+ Eg(u)u
n+2
n−2 = 0, (2.2)

where

Eg(u) = −
∫
M

uLgu dvg =
∫
M

(|∇gu|2 + c(n)Rgu2) dvg.

Given p ∈ [1, n+2
n−2 ] and Λ > 0, we define a map Fp : ΩΛ → C2,α(M) by

Fp(u) = u+ L−1
g (Eg(u)up),

where

ΩΛ = {u ∈ C2,α(M) | ‖ u ‖C2,α< Λ, u > Λ−1}.

Since it follows from elliptic theory that the map u 7→ L−1
g (Eg(u)up) is a com-

pact map from ΩΛ into C2,α(M), we may define the Leray-Schauder degree

(see [20]) deg(Fp,ΩΛ, 0) of Fp in the region ΩΛ with respect to 0 ∈ C2,α(M),

provided that 0 /∈ Fp(∂ΩΛ). The degree is an integer which counts with mul-

tiplicity the number of times that the value 0 is taken on by the map Fp.

Notice that F n+2
n−2

(u) = 0 if and only if u is a solution of (2.2). The homotopy

invariance of the degree tells us that

deg(Fp,ΩΛ, 0) = deg(F1,ΩΛ, 0),

if 0 /∈ Fp(∂ΩΛ) for all p ∈ [1, n+2
n−2 ]. When p = 1 the equation is linear and it

is not difficult to show (see [26]) that deg(F1,ΩΛ, 0) = −1 for all Λ sufficiently

large.

Therefore

Theorem 2.4. Suppose that (Mn, g) satisfies the assumptions of Theorem 2.1.

Then

deg(Fp,ΩΛ, 0) = −1,

for all Λ sufficiently large and p ∈ [1, n+2
n−2 ].



RECENT DEVELOPMENTS ON THE YAMABE PROBLEM 123

In the case that all solutions of the Yamabe problem are nondegenerate,

as will be the case for a generic conformal class of Riemannian metrics, our

previous results assert that there will be a finite number of solutions to the

variational problem. The strong Morse inequalities

(−1)λ ≤
λ∑
µ=0

(−1)λ−µCµ, λ = 0, 1, 2, . . . ,

where Cµ denotes the number of solutions of Morse index µ, hold in this case

since they are well-known for the subcritical equations. We also obtain

Corollary 2.5. Suppose that (Mn, g) satisfies the assumptions of Theorem

2.1, and assume that all critical points in [g] are nondegenerate. Then there

are a finite number of critical points g1, . . . , gk and we have

1 =
k∑
j=1

(−1)I(gj),

where I(gj) denotes the Morse index of the variational problem with volume

constraint.

3 Noncompactness theorems

The key to understand the noncompactness results is to look closely at the

model case of the standard sphere (Sn, g0). As was pointed out in the intro-

duction, the set of solutions of volume one coincides in this particular case with

the set of metrics coming from the action of the conformal group on g0, and

therefore it is noncompact. We might then be tempted to ask the following

question:

Is there a way of perturbing the conformal structure of the standard sphere so

that the noncompactness persists?

It follows from Theorem 2.1 that this is impossible if n ≤ 24. It comes as a

surprise that the answer to this question is yes for all n ≥ 25.

The main theorems of [6] and [7] put together give:
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Theorem 3.1. Suppose n ≥ 25. Given any ε > 0, there exists a smooth

Riemannian metric g on Sn and a sequence of positive functions vν ∈ C∞(Sn)

(ν ∈ N) with the following properties:

(i) ‖g − g0‖C[1/ε](Sn) < ε,

(ii) g is not conformally flat,

(iii) vν is a solution of the Yamabe equation (1.1) for all ν ∈ N,

(iv) Q(v
4

n−2
ν g)↗ Q(Sn, g0) as ν →∞,

(v) supSn vν →∞ as ν →∞.

In [6] S. Brendle did the case n ≥ 52, while the case 25 ≤ n ≤ 51 was

subsequently handled by Brendle and the author in [7].

The important point is that finding such sequences of solutions for a metric

g in a small neighborhood of g0 can be reduced to solving a finite dimensional

variational problem. This follows from a procedure known as the Lyapunov-

Schmidt reduction which we now briefly describe.

Since the standard sphere minus a point is conformally equivalent to the

Euclidean space through the stereographic projection, we can translate the

problem to the Euclidean setting. In this setting the solutions of the Yamabe

equation

∆u+ n(n− 2)u
n+2
n−2 = 0 (3.1)

on Rn are the functions

u(ξ,ε)(x) =
( ε

ε2 + |x− ξ|2
)n−2

2
,

where (ξ, ε) ∈ Rn× (0,∞). The solutions of the equation (3.1) can be also seen

as the critical points (at the same energy level) of the functional

Fδ(u) =
∫

Rn

(
|∇u|2 − (n− 2)2 |u|

2n
n−2

)
dx
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restricted to the space

E =
{
w ∈ L

2n
n−2 (Rn) ∩W 1,2

loc (Rn) :
∫

Rn
|∇w|2 dx <∞

}
.

We will consider Riemannian metrics g which are perturbations of the Eu-

clidean metric with compact support. We write g(x) = exp(h(x)), where h(x)

is a trace-free symmetric two-tensor on Rn satisfying h(x) = 0 for |x| ≥ 1, and

|h(x)|+ |∂h(x)|+ |∂2h(x)| ≤ α

for some small α > 0 and all x ∈ Rn.

Although the linearization of the equation (3.1) has a kernel, it is possible to

apply the Implicit Function Theorem if we restrict ourselves to the orthogonal

subspace

E(ξ,ε) =
{
w ∈ E :

∫
Rn
ϕ(ξ,ε,k) w dx = 0 for k = 0, 1, . . . , n

}
,

where

ϕ(ξ,ε,0)(x) =
( ε

ε2 + |x− ξ|2
)n+2

2 ε2 − |x− ξ|2

ε2 + |x− ξ|2
and

ϕ(ξ,ε,k)(x) =
( ε

ε2 + |x− ξ|2
)n+2

2 2ε (xk − ξk)
ε2 + |x− ξ|2

for k = 1, . . . , n.

As a consequence we can find an (n+1)-dimensional family of approximate

solutions:

Proposition 3.2. Let α > 0 be sufficiently small, depending only on the di-

mension. Given (ξ, ε) ∈ Rn × (0,∞), there exists a function v(ξ,ε) ∈ E such

that v(ξ,ε) − u(ξ,ε) ∈ E(ξ,ε) and∫
Rn

(
〈∇v(ξ,ε),∇ψ〉g +

n− 2
4(n− 1)

Rg v(ξ,ε) ψ − n(n− 2) |v(ξ,ε)|
4

n−2 v(ξ,ε) ψ
)

= 0

for all test functions ψ ∈ E(ξ,ε). Moreover, we have the estimate

‖v(ξ,ε) − u(ξ,ε)‖E

≤ C
∥∥∥∆gu(ξ,ε) −

n− 2
4(n− 1)

Rg u(ξ,ε) + n(n− 2)u
n+2
n−2

(ξ,ε)

∥∥∥
L

2n
n+2 (Rn)

,

where C is a constant that depends only on n.
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The problem reduces to finding critical points of the finite-dimensional func-

tional Fg : Rn × (0,∞)→ R, given by

Fg(ξ, ε) =
∫

Rn

(
|∇v(ξ,ε)|2g +

n− 2
4(n− 1)

Rg v
2
(ξ,ε) − (n− 2)2 |v(ξ,ε)|

2n
n−2

)
dx.

The construction of the counterexample relies on a glueing procedure based

on some local model metrics. The model metrics g(x) = exp(h(x)) are such

that

hik(x) = µλ2m f(λ−2 |x|2)
∑
p,q

Wipkqxpxq

for |x| ≤ ρ, where µ, λ, ρ are positive constants satisfying µ ≤ 1 and λ ≤ ρ ≤ 1,

f is a polynomial, and W : Rn×Rn×Rn×Rn → R is a nontrivial multi-linear

form which satisfies all the algebraic properties of the Weyl tensor. It is also

necessary that

2 deg(f) + 2 <
n− 2

2
.

These choices make it possible to approximate the energy function Fg(ξ, ε)
at appropriate scales by an auxiliary function F (ξ, ε), ξ ∈ Rn, ε ∈ (0,∞), and

we are left with the algebraic problem of finding a polynomial f such that

F (ξ, ε) has a strict local minimum at (0, 1).

Notice that

µλ2m f(λ−2 |x|2)
∑
p,q

Wipkqxpxq ∈ Vn

as defined in the previous section, and it turns out that the algebraic problem

of finding f can be solved when the quadratic form Pn has negative directions.

It is proven in [6] that f can be chosen of degree 1 for all n ≥ 52, and in [7]

that it can be chosen of degree 3 for all 25 ≤ n ≤ 51.

The counterexamples g(x) = exp(h(x)) are obtained by glueing infinite

copies of the local models supported in small disjoint balls placed along the x1-

axis. The N -th ball has radius 1/(2N2) and is centered at yN = ( 1
N , 0, . . . , 0) ∈

Rn, N ∈ N. If η : R → R is a smooth cutoff function such that η(s) = 1 for
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s ≤ 1 and η(s) = 0 for s ≥ 2, the two-tensor h(x) is given by

hik(x) =
∞∑

N=N0

η(4N2 |x− yN |) 2−(m+ 1
8 )N f(2N |x− yN |2)Hik(x− yN ),

where yN = ( 1
N , 0, . . . , 0) ∈ Rn, m = deg(f), and N0 is sufficiently large.

Since the metric g is in local model form in each of the infinitely many

balls B1/(2N2)(yN ), we can apply the Lyapunov-Schmidt reduction infinitely

many times to obtain a sequence vν of solutions to the Yamabe equation as in

Theorem 3.1.

We should notice that even though the Weyl tensor of these counterexamples

vanishes to all orders at the blow-up point (0 ∈ Rn), recent work of the author

([19]) shows that they can be perturbed to provide counterexamples to the

Weyl Vanishing Conjecture as well.
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