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THE EULER CLASS AND THE VOLUME
FUNCTIONAL OF VECTOR FIELDS

R. M. de Mesquita F. G. B. Brito

Abstract

A vector field X on a riemannian manifold M determines a subman-
ifold in the tangent bundle. The volume of X is the volume of this
submanifold for the induced Sasaki metric. When M is compact, the vol-
ume is well defined and, usually, this functional is studied for unit fields.
Parallel vector fields are trivial minima of this functional.

For odd-dimensional manifolds, we obtain an explicit result showing
how the topology of a vector field with constant length influences its
volume. We apply this result to the case of vector fields that define
riemannian foliations with all leaves compact.

1 Introduction

Let (Mn, g) be an n-dimensional closed riemannian manifold and X a smooth

vector field on M . The metric g induces a natural metric on the tangent

bundle TM , usually called the sasakian metric. The volume of X is defined

as the volume of the section X : M → TM , see [GZ]. An expression of the

volume of X in terms of the Levi-Civita connection ∇ of (M, g) is:

vol(X) =
∫
M

(
1 +

n∑
a=1

‖∇eaX‖
2 +

∑
a1<a2

∥∥∇ea1
X ∧∇ea2

X
∥∥2 + · · ·+

+ · · ·+ ‖∇e1X ∧ . . . ∧∇en
X‖2

) 1
2

ν (1)

where ν is the volume form of M and {ea}na=1 is an orthonormal local frame.

Note that for any vector field vol(X) > vol(M). The zero section has minimum

volume (for the moment, X is merely a smooth flow). From a geometric view-

point, the first natural restriction would be to consider the functional simply on

unit vector fields. Possible, vector fields with constant length are the following
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step. Note that this requirement is also a restriction for M (for example, the

Euler characteristic of M must be zero).

For the case of unit vector fields, only parallel fields on M attain the triv-

ial minimum for volume. Unit parallel vector fields are rare in manifolds of

dimensional higher than 1. In fact, the existence of parallel fields implies that

locally the manifold is a riemannian product. For example, odd-dimensional

spheres of any radius (except S1) admit no unit parallel vector field.

In S3 we know from [GZ] that Hopf vector fields VH (The unit flow tangent

to the classical Hopf fibration) and no others, are the minima of the volume

(among globally defined unit vector fields).

We prove the following theorem relating the geometry and topology of ar-

bitrary vector fields with constant length.

Theorem 1.1 Let M be a compact riemannian manifold of dimension 2k+ 1.

Let r > 0 and X a vector field over M such that ‖X‖ = 1√
r

. Denote by θ2k+1

the unit dual form to X and by R2 the sum
∑

16i,j,k,l62k R
2
ijkl, where Rijkl are

the components of the curvature tensor of M . If r > 1

2
√
k(2k−1)

R, then

vol(X) >
(4π)kk!
rk(2k)!

∥∥∥∥∫
M

χ(X⊥) ∧ θ2k+1

∥∥∥∥ (2)

Where χ(X⊥) is the Euler form of the orthogonal subbundle to X.

A first reading of this theorem suggests that the volume of a vector field of

constant length is greater than or equal to some constant times the integral of

the Lipschitz-Killing curvature of the distribution complementary to the field.

From now on we adopt the same notation as in [BC]. We think useful to

make some remarks about the theorem before proving it.
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2 Examples

a) If M = S2k+1 is the standard unit sphere, computation shows that

−Ωij = θi ∧ θj .

This equation expresses the fact that the sectional curvature of the unit

sphere is identically equal to +1. Furthermore, by definition, choosing

an oriented, orthonormal basis θ1, . . . , θk for the sections of X⊥,

(−1)nPf(Ω̃) = Pf(θi ∧ θj) = (1.3.5. · · · .(2k − 1))θ1 ∧ . . . ∧ θ2k.

so,

(4k)kk!
(2k)!rk

∥∥∥∥∫
M

χ(X⊥) ∧ θ2k+1

∥∥∥∥ =
(2)kk!
(2k)!rk

∥∥∥∥∫
S2k+1

Pf(Ω̃) ∧ θ2k+1

∥∥∥∥ =

=
(2)kk!
(2k)!rk

(1.3.5. · · · .(2k − 1))
∫
S2k+1

dS2k+1 =

=
(2)kk!
(2k)!rk

.
(2k)!
2kk!

∫
S2k+1

dS2k+1 =
1
rk
vol(S2k+1).

b) Supposing X⊥ to be an integrable normal bundle, we have∫
M

χ(X⊥) ∧ θ2k+1 =
∫
M

κx⊥(p)ν,

where κX⊥ : M → R is the Lipschitz-Killing curvature of the leave

through p ∈M , of the foliationX⊥; Recall that the definition of Lipschitz-

Killing curvature of a manifoldM at a point p ∈M is κ(p) = 1
(2π)nPf(Ωij),

where ν is the volume element of M and Ω = (Ωij) is a 2n globally defined

differential form on M .

c) S3 × S2

The integral of Lipschitz-Killing of the leaves may be, in some cases ex-

pressed only in terms of the metric invariants of the manifold (see [BLR]).

This computation, in the non constant curvature case is, as far as we

know, undone. The three dimensional case is easier to compute and reads:
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Proposition 2.1 If M3 is a closed 3-dimensional riemannian manifold,

F a transversely oriented codimension one foliation of M3. Then∫
M

κF = 3
∫
M

κ−
∫
MRic(F⊥)

where κ(p) is the scalar curvature of M at p and Ric(F⊥) is the Ricci

curvature in the normal direction to F, and κ(p) is the gaussian curvature

of F at p;

A detailed proof for a similar result can be found in [B].

d) In totally symmetric spaces, the tensor R is locally constant, and, so is its

lengths. Ins some particular spaces like product of round spheres, com-

plex projective spaces, or some classical Lie groups, one can make explicit

the norm ‖R‖ of the curvature tensor which appear in the statement of

the main theorem.

e) Finally, notice that the main result of this paper is a natural extension

of the one appearing in [BC] which states:

Theorem 2.2 Let M be a compact riemannian manifold of dimension

5. Let r > 0 and X a vector field over M such that ‖X‖ = 1√
r

. Denote by

θ5 the unit dual form to X and by R2 the sum
∑

16i,j,k,l64R
2
ijkl, where

Rijkl are the components of the curvature tensor of M . If r > 1
2
√

6
R,

then

vol(X) >
4π2

3r2

∥∥∥∥∫
M

χ(X⊥) ∧ θ5

∥∥∥∥ (3)

Where χ(X⊥) is the Euler form of the orthogonal subbundle to X.

3 Proof of the theorem.

Associated with Y we have the unit vector field given by X =
√
rY . Consider

a local frame {e1, . . . , e2k+1 = X} adapted to X. Disregarding the terms
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involving the acceleration of X (that is, the terms where ∇XX appear):

vol(Y ) >
1

rk

∫
M

(
r2k + r2k−1

∑
a

‖∇eaX‖2 + r2k−2
∑

a1<a2

∥∥∇ea1
X ∧∇ea2

X
∥∥2

+

+r2k−3
∑

a1<a2<a3

∥∥∇ea1
X ∧∇ea2

X∇ea3
X
∥∥2

+ . . .+

+ . . .+
∑

a1<...<a2k

‖∇e1X ∧ . . . ∧∇e2kX‖2

) 1
2

ν

(4)

where all the indices run form 1 to 2k.

The first sum of (4) is merely the sum of squares of all the entries of the

matrix associated with the second fundamental form H. That is,

2k∑
a=1

‖∇ea
X‖2 =

2k∑
a,b=1

h2
ab

The second and third sums of (4) are respectively the sum of the squares
of all the 2 × 2 and 3 × 3 minors of H. Finally, the last sum in (4) is simply
the square of the determinant of H. Like in [BC], we denote by (∆i)2 the sum
of the squares of all the i× i minors of H. With this, we can rewrite (4) as:

vol(Y ) >
1

rk

∫
M

(
r2k + r2k−1(∆1)2 + r2k−2(∆2)2 + . . .+ r(∆2k−1)2 + (∆2k)2

) 1
2
ν

(5)

Let us consider the 2k×2k symmetric matrix A = (g(∇ea
X,∇eb

X))ab, The

elementary symmetric functions of A, σi(A), are exactly the terms ∆2
i :

det(Id+ tA) =
2k∑
i=0

σi(A)ti =
2k∑
i=0

(∆i)2ti

where ∆2
0 = σ0(A) = 1. The normalized symmetric functions satisfy the

following properties, see [HLP] and [BCN]:

For j even and s = 0, 1, . . . , j2 ,
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σ2
j >

(
2k
j

)2(
2k
j−2s

)(
2k
j+2s

)σj−2sσj+2s.

and for j odd and s = 0, . . . , j−1
2 ,

σ2
j >

(
2k
j

)2(
2k

j−2s−1

)(
2k

j+2s+1

)σj−2s−1σj+2s+1.

Then, for j even and s = 0, . . . , j2 ,

∆4
j >

(
2k
j

)2(
2k
j−2s

)(
2k
j+2s

)∆2
j−2s∆

2
j+2s,

but since all the ∆i are positive, we have:

∆2
j >

(
2k
j

)√(
2k
j−2s

)(
2k
j+2s

)∆j−2s∆j+2s. (6)

For the other case,

∆2
j >

(
2k
j

)√(
2k

j−2s−1

)(
2k

j+2s+1

)∆j−2s−1∆j+2s+1. (7)

Now we need of the following preliminary lemma.

Lemma 3.1 with the same notations adopted until now, we have that

1. (i)For each j = 1, . . . , 2k,

∆2
j >

j∑
i=0

(
k
i

)(
k
j−i
)√(

2k
2i

)(
2k

2j−2i

)∆2i∆2j−2i (8)

2. (ii)For each k > 1 e 0 6 i 6 k, (i and k integers),

(2k)!
(2i)!

>
(4
(

2k
2

)
)k−i

(2k − 2i)!
(9)
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Proof: Part (i), is proven in [BCN].

In order to show (ii), we consider the function f : [0,∞)× [0,∞) −→ R given

by

f(k, x) =
(2k)!

Γ(2x+ 1)
−

(4
(

2k
2

)
)k−x

Γ(2k − 2x+ 1)

where Γ(x) is the restriction of the Euler gamma function to R. Computing

its derivative we can see that

∂f

∂x
=

(2k)!
2Γ(2x+ 1)

+
(4
(

2k
2

)
)k−x

(Γ(2k − 2x+ 1))2

[
Γ(2k − 2x+ 1) ln

(
4
(

2k
2

))
+

+ 4
∂

∂x
Γ(2k + 2x+ 1)

]
> 0,

Notice that f is an increasing function on the second variable. It is then

sufficient to prove (ii) for x = 0 ∀k > 1.

((2k)!)2 >
(

4
(

2k
2

))k
(10)

The proof follows by a induction argument: For k = 1, (10) verifies. Suppose

that (10) is true, we need to show that

((2k + 2)!)2 >
(

4
(

2k + 2
2

))k+1

. (11)

Because
(

2k+2
2

)
= (2k+2)(2k+1)

2k(2k−1)

(
2k
2

)
, follows that (11) is equivalent to

(2k + 2)2(2k + 1)2((2k)!)2 > 4
(

2k + 2
2

)[ (2k + 2)(2k + 1)
2k(2k − 1)

]k
4k
(

2k
2

)k
(12)

with
(

2k+2
2

)
= (k + 1)(2k + 1), and the induction hypothesis, it is clear that it

is sufficient for the proof of (12), to show that

4(k + 1)2(2k + 1)2 > 4(k + 1)(2k + 1)
[
(1 +

1
k

)(1 +
2

2k − 1
)
]k
,

or, equivalently,

(k + 1)(2k + 1) >
(

1 +
1
k

)k(
1 +

2
2k − 1

)k
. (13)
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notice that, ak = (1+ 1
k )k is a bounded increasing positive real sequence, ak < 3.

Then (1 + 2
2k−1 )k < 3

√
2 < 6, and this implies that bk = (1 + 1

k )k(1 + 2
2k−1 )k is

a bounded increasing real sequence, with bk < 18. Also, ck = (k+ 1)(2k+ 1) is

strictly increasing, ck > 28 for k > 4, and, because this (13) is true for k > 4.

By direct computation, (13) is true for 1 6 k 6 3, and the lemma is proven.

2

By (5), (8) and the lemma(3.1)

vol(Y ) >
1
rk

∫
M

( 2k∑
j=0

∆2
jr

2k−j
) 1

2
ν >

>
1
rk

∫
M

(
2k∑
j=0

j∑
i=0

(
k
i

)(
k
j−i
)√(

2k
2i

)(
2k

2j−2i

)∆2i∆2j−2ir
2k−j

) 1
2

ν >

>
1
rk

∫
M

([ k∑
i=0

(
k
i

)√(
2k
2i

)∆2ir
k−i
]2
) 1

2

ν >

>
1
rk

∫
M

∥∥∥∥∥ 1
(2k)!

k∑
i=0

(2i)!
(
k

i

)
Rk−i∆2i

∥∥∥∥∥ ν.

(14)

The last integral is related to the Pfaffian of X⊥ in the following way (see [BC])

2k(k)!Pf(Ω̃) =

=
∑
τ∈S2k

ε(τ)
(

Ωτ(1)τ(2)+ωτ(1)2k+1∧ωτ(2)2k+1

)
∧
(

Ωτ(3)τ(4)+ωτ(3)2k+1∧ωτ(4)2k+1

)
∧ . . . ∧

(
Ωτ(2k−1)τ(2k) + ωτ(2k−1)2k+1 ∧ ωτ(2k)2k+1

)
.

Then,∑
τ∈S2k

ε(τ)Ωτ(1)τ(2)∧. . .∧Ωτ(2k−(2k−i))τ(2k−2i)∧ωτ(2k−2i+1)2k+1∧. . .∧ωτ(2k)2k+1

= 2(k−i)(2i)!
∑

aj<aj+1

ε(a)Ωa1a2∧. . .∧Ωa2k−(2i+1)a2k−2i
∧ωa2k−2i+12k+1∧. . .∧ωa2k2k+1
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where each ai to run from 1 to 2k and, if i 6= j, the pair (ai, ai+1) is not ordered

with respect to (aj , aj+1).

Denoting by
(
k
i

)
Pi the i-th term of the expression for the Pfaffian and applying

to {e1, . . . , e2k}, we have, applying the Cauchy-Schwartz inequality we obtain:

Pi(e1, . . . , e2k) 6 2(k−i)(2i)!
( ∑

a1<a2
b1<b2

R2
a1a2b1b2

) 1
2 ·
( ∑

a3<a4
b3<b4

R2
a3a4b3b4

) 1
2 ·

· . . . ·
( ∑

a2k−(2i+1)<a2k−2i

b2k−(2i+1)<b2k−2i

R2
a2k−(2i+1)a2k−2ib2k−(2i+1)b2k−2i

) 1
2 · (∆2

2i)
1
2

6 2(k−i)(2i)!
(1

4
R2
) 1

2 · . . . ·
(1

4
R2
) 1

2︸ ︷︷ ︸
(k−i)−terms

·(∆2
2i)

1
2

6 (2i)!R(k−i)∆2i;
(15)

therefore, we have:

Pf(Ω̃)(e1, . . . , e2k) 6
(2k!)
2kk!

(
1

(2k)!

k∑
i=0

(2i)!
(
k

i

)
R(k−i)∆2i

)
. (16)

Finally, by this inequality, by (14) and by the definition of the Pfaffian of the

curvature (in terms of the Euler class )

vol(Y ) >
2kk!

(2k)!rk

∥∥∥∥∫
M

Pf(Ω̃) ∧ θ2k+1

∥∥∥∥ =
(4π)kk!
(2k)!rk

∥∥∥∥∫
M

χ(X⊥) ∧ θ2k+1

∥∥∥∥
and this ends the proof of the theorem.

2

Like in [BC], is valid the following

Remark 3.2 : In view of the proof, the inequality of Theorem 2.2 will be sharp

int the following situation:

1. (1)The flow of the field is geodesic;
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2. (2)All the eigenvalues of the symmetric matrix A are equal;

3. (3) The curvature of M satisfy several relations, such proportionality:

Ra1a2b1b2 = λRa3a4b3b4 , where an < an+1 and bm < bm+1 (por 15);

4. (4)

Ra1a2b1b2 = µdet

 ha3b3 · · · ha3b2i+2

...
. . .

...
ha2i+2b3 · · · ha2i+2b2i+2


In spaces of constant sectional curvature the conditions hold when X is

geodesic and X⊥ is integrable with umbilical leaves. It would be very interesting

to know if the inequality can be attained in other manifolds for some specific

field.

3.1 A topological corollary

Like in [BC], we observe which the minorization of the Theorem 2.2 involves

the Euler class of the bundle X⊥ and the dual form to the unit field X. When

this form is closed then X⊥ will be a riemannian foliation. This means that

the flow of Y is geodesic and the distribution X⊥ is integrable.

In this situation, if the foliation defined by X⊥ has a compact leaf then all

the leaves are compact and M is a fiver bundle over S1 (a circle of length L)

the fiber being the compact leaves of the foliation (see [Mo]). We are now in a

position to state the following consequence.

Corollary 3.3 Let M be a closed riemannian manifold of dimension 2k + 1

and X a vector field of constant length 1√
r

such that its unit dual form is

closed and the orthogonal foliation X⊥ has a compact leaf. Thus, M fibers over

a circle of length L. Let us assume that r > 1

2
√
k(2k−1)

R; We thus have

vol(X) >
(4π)kk!L
rk(2k)!

∥∥χ(X⊥)
∥∥
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where χ(X⊥) is the Euler characteristic of the leaves of X⊥.

Our corollary gives a partial description of how the topology of X influences

its volume, at least when the unit dual form of X is closed and X⊥ only has

compact leaves. We also wish to remark that the constant length of Y , the

factor 1√
r

appears in the lower bound of Theorem 2.2. When the length of Y

is small (i.e., flow is slow), then the lower bound of vol(Y ) is small.
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distribuições. Volume de campos unitários. Ph.D. Thesis, Universidade de
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