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André Caldas de Souza

Departament of Mathemtatics
University of Brası́lia

3rd July 2016



Overview The Variational Principle END

References

Topological entropy — accepted by ETDS
http://andrec.mat.unb.br/publications/

DOI:10.1017/etds.2016.45 (not active, yet)

Topological Pressure
arXiv:1605.01698



Overview The Variational Principle END

References

Topological entropy — accepted by ETDS
http://andrec.mat.unb.br/publications/

DOI:10.1017/etds.2016.45 (not active, yet)

Topological Pressure
arXiv:1605.01698



Overview The Variational Principle END

Example

One Letter in Binary

How many bits do we need?
If we don’t know the probabilities,

log2 #Γ

With the probabilities, the average bit
size is ∑

γ∈Γ

µ(γ)s(γ).

The best s would be

s(γ) = log2
1

µ(γ)
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Example

One Letter in Binary

How many bits do we need?
If we don’t know the probabilities,

log2 #Γ

With the probabilities, the average bit
size is ∑

γ∈Γ

µ(γ)s(γ).

The best s would be

s(γ) = log2
1

µ(γ)

Measure theoretic “amount of
information” per letter

Hµ =
∑
γ∈Γ

µ(γ) log2
1

µ(γ)

Topological “amount of information”
per letter

H = log2 #Γ

Comparing both. . .

Hµ ≤ H
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Measure Theoretic and Topological Entropy

Grab a partition C and a cover A

C: Borel measurable partition.
A: a cover for X .

Definition (Partition and Cover Entropy)

Hµ (C) =
∑
C∈C

µ(C) log
1

µ(C)

H (A) = log N (A)
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Measure Theoretic and Topological Entropy

Grab a partition C and a cover A

C: Borel measurable partition.
A: a cover for X .

Definition (Partition and Cover Entropy)

Hµ (C) =
∑
C∈C

µ(C) log
1

µ(C)

H (A) = log N (A)

Where N (A) is. . .

Least cardinality amongst all
sobcovers of A.
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Measure Theoretic and Topological Entropy

The First n-Iteractions: An

T : X → X : continuous system.
µ: T -invariant Borel finite measure.

Definition (An and Cn)

An =
{

A1 ∩ T−1A2 ∩ · · · ∩ T−n+1An

∣∣∣ Aj ∈ A
}

Definition (Partition and Cover Entropy Regarding T )

hµ
(

T
∣∣∣ C) = lim

1
n

Hµ

(
Cn)

h
(

T
∣∣∣ A) = lim

1
n

H
(
An)
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Basic Properties

Entropy of T n

hµ
(
T n) = nhµ (T )

h
(
T n) ≤ nh (T )
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Bowen Entropy

Cover Made of Balls: B

For all balls with radius ε > 0

hd (T ) = sup
ε>0

h
(

T
∣∣∣ Bd (ε)

)

It depends on the metric d .
Can be stated in terms of
separated sets.

hd (T ) = sup
ε>0

lim
n→∞

1
n

log s(n, ε)
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Cover Made of Balls: B

For all balls with radius ε > 0

hd (T ) = sup
ε>0
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(
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∣∣∣ Bd (ε)

)

It depends on the metric d .
Can be stated in terms of
separated sets.
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lim
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1
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log s(n, ε)

Separated Sets and Ball Covers

N
(
[Bd (2ε)]n

)
≤ s(n, ε) ≤ N

([
Bd

( ε
2

)]n
)
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Separated Sets and Ball Covers

N
(
[Bd (2ε)]n

)
≤ s(n, ε) ≤ N

([
Bd

( ε
2

)]n
)

Therefore. . .
Dividing by n, taking the limit for n, and then
the supremum for ε,

hd (T ) = sup
ε>0

lim
n→∞

1
n

log s(n, ε)
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Bowen Entropy

Bowen Entropy Uses Compact Sets

Depending on the metric d , s(n, ε)
might be∞.
Bowen limited the counting to compact
sets.
We denote the Bowen entropy by

hd (T ).

If d is totally bounded, s(n, ε) will never
be∞.
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The Principle

If we are lucky. . .

sup
µ

hµ (T ) = h (T ) = inf
d

hd (T ) = inf
d

hd (T ).
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The Easy Inequality

Imitate Misiurewicz

Easy Inequality

hµ (T ) ≤ h (T ).

Just imitate Misiurewicz proof!

hµ
(

T
∣∣∣ C) ∼ hµ

(
T
∣∣∣ K) ≤

h
(

T
∣∣∣ A)+ M ≤ h (T ) + M.

The covering that Misiurewicz
constructs is admissible!!!
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The Easy Inequality

Imitate Misiurewicz

Easy Inequality

hµ (T ) ≤ h (T ).

Just imitate Misiurewicz proof!

hµ
(

T n
∣∣∣ C) ∼ hµ

(
T n
∣∣∣ K) ≤

h
(

T n
∣∣∣ A)+ M ≤ h (T n) + M.

The covering that Misiurewicz
constructs is admissible!!!

Because. . .
µ is inner regular.
hµ (T n) = nhµ (T ).
h (T n) ≤ nh (T ).
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The Hard Inequality

Comparing with Bowen

Lemma (Lebesgue Number)

If (X ,d) is a metric space, then for every admissible cover A,
there exists ε > 0 such that

A ≺ Bd (ε).

Proposition

h (T ) ≤ hd (T ).

With a little extra work,

h (T ) ≤ hd (T ) ≤ hd (T ).
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Up to Now

Proposition
We have proved that for any metric d of X , and for any Borel
measure µ,

hµ (T ) ≤ h (T ) ≤ hd (T ) ≤ hd (T ).

We need to prove. . .
For a metric d restricted from the one point compactification,

hd (T ) ≤ sup
µ

hµ (T ).
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Proposition
We have proved that for any metric d of X , and for any Borel
measure µ,

hµ (T ) ≤ h (T ) ≤ hd (T ) ≤ hd (T ).

We need to prove. . .
For a metric d restricted from the one point compactification,

hd (T ) ≤ sup
µ

hµ (T ).

En: sequence of (n, ε)-separated sets

We need an invariant measure µ and
a partition C such that

lim sup
n→∞

1
n

log #En ≤ hµ
(

T
∣∣∣ C).
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The Hard Inequality

Partition Entropy

Given En. . . we want µ and C. . .

lim sup
n→∞

1
n

log #En ≤ hµ
(

T
∣∣∣ C).

Lemma

Constructed µ is T̃ -invariant (and therefore, T -invariant).
C̃ is properly choosen. . .

hµ
(

T
∣∣∣ C) = hµ

(
T̃
∣∣∣ C̃).

Where C = X ∩ C̃.
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Constructed µ is T̃ -invariant (and therefore, T -invariant).
C̃ is properly choosen. . .

hµ
(

T
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(
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Where C = X ∩ C̃.

Properly means. . .
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The Hard Inequality

Misiurewicz Again

For ε > 0 and a sequence En of (n, ε)-separated sets,

Define. . .

σn =
1

#En

∑
x∈En

δx , µn =
1
n

n−1∑
j=0

σn ◦ T−j

Then, we will:
Construct a probability µ, T -invariant and T̃ -invariant.
Find a measurable partition C̃ of X̃ such that Misiurewicz
argument works.
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That is. . .

lim inf
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1
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1
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≤ 1
q
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(
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(

T̃
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= hµ
(

T
∣∣∣ C) ≤ hµ (T )
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Even Farther

Preassure and Topological Pressure

Finaly. . .
A similar variational principle holds to topological pressure for a
similar generalization.

Also. . .
We can easily get rid of metrizability!!!
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The End

Thank You

Contact
André Caldas <andre.em.caldas@gmail.com>
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