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Where N(A)is...

Least cardinality amongst all
sobcovers of A.

Definition (Partition and Cover Entropy)

1
H. (C) = C%jﬂ(c) log A0
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B Definition (Entropy)

@ o T-in
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h(T)= sup (T‘

cn A:admissible

The First n-lteractions: A"
P '@ Definition (Entropy)
@ u: T-im
h (T) = suphu(T‘ c)
C

(P Definition (Admissible Cover)

An open cover A such that there
exists A € A with K = A° compact.

TE Y AN

h(T| A) :lim%H(A”)

Definition
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Bowen Entropy

Cover Made of Balls: B

For all bra—: S

Separated Sets and Ball Covers

N (160 @2)1) < s(rn.2) < N [Ba (;)}”)

.
. =~ L uupui e Ui uie e e d.

@ Can be stated in terms of
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Bowen Entropy

Cover Made of Balls: B

For all g, - ated Sets and Ball Covers

cd
(") R S R I EEIYIT 1Y) .

T

Dividing by n, taking the limit for n, and then
the supremum for ¢,

h?(T) = sup lim 1 log s(n, €)

e>0 n—oo N
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Bowen Entropy

Cover Made of Balls: B

For all balls with radius € > 0

e (T) :suph(T] Ba(2))

e>0

o @ |t depends on the metric d.

@ Can be stated in terms of
separated sets.

°\,./. >g Mo (T)—sup I|m 1Iogs(n £)

e>0

—>0—>0—>0—>0

il



Overview
oce

Bowen Entropy

Bowen Entropy Uses Compact Sets

@ Depending on the metric d, s(n,¢)
SRR R R SRR R R R RS might be occ.

oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
--------------------
oooooooooooooooooooo
--------------------
oooooooooooooooooooo

A
N



Overview
oce

Bowen Entropy

Bowen Entropy Uses Compact Sets

@ Depending on the metric d, s(n, ¢)
might be oc.

@ Bowen limited the counting to compact
sets.

A
N



Overview
oce

Bowen Entropy

Bowen Entropy Uses Compact Sets

@ Depending on the metric d, s(n, ¢)
might be oc.

@ Bowen limited the counting to compact
sets.

A
N



Overview
oce

Bowen Entropy

Bowen Entropy Uses Compact Sets

@ Depending on the metric d, s(n, ¢)
might be oc.

@ Bowen limited the counting to compact
sets.

A
N



Overview
oce

Bowen Entropy

Bowen Entropy Uses Compact Sets

@ Depending on the metric d, s(n,¢)
might be oc.

@ Bowen limited the counting to compact
sets.

@ We denote the Bowen entropy by

hg (T).

A
N



Overview
oce

Bowen Entropy

Bowen Entropy Uses Compact Sets

@ Depending on the metric d, s(n,¢)
might be oc.

@ Bowen limited the counting to compact
sets.

@ We denote the Bowen entropy by

hg (T).

@ If dis totally bounded, s(n, <) will never
be co.
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Imitate Misiurewicz

Because. ..
Easy Inequality : 'Z |s(7|_nnr;e_rr:gul(a7l:.)
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h, (T) < h(T). @ h(T") < nh(T).
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The Hard Inequality

Comparing with Bowen

Lemma (Lebesgue Number)

If (X, d) is a metric space, then for every admissible cover A,
there exists € > 0 such that

A < By (E)

Proposition

h(T) < h?(T).

With a little extra work,

h(T) < hy(T) < h7(T).
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The Hard Inequality

Up to Now

Proposition

We have proved that for any metric d of X, and for any Borel
measure i,

h, (T) < h(T) < hg(T) < h(T).

4

We need to prove. ..

For a metric d restricted from the one point compactification,

h?(T) < suph, (T).
17
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The Hard Inequality

Up to Now

UEREVENI - sequence of (n, <)-separated sets XA

Measure 1. \ne need an invariant measure wand
a partition C such that

, 1
TP = (7] )

For a metric u resuicieu nuim uie vrie puin curnpactification,

h?(T) < suph, (T).
17

A
N



The Variational Principle
000000

The Hard Inequality

System Compactification

A

N



The Variational Principle
000000

The Hard Inequality

System Compactification

A
N



The Variational Principle
000000

The Hard Inequality

System Compactification

A
N



The Variational Principle
000000

The Hard Inequality

System Compactification

A
N



The Variational Principle
000000

The Hard Inequality

System Compactification

A
N



The Variational Principle
000000

The Hard Inequality

System Compactification

A
N



The Variational Principle
000000

The Hard Inequality

System Compactification

A
N



The Variational Principle
000000

The Hard Inequality

System Compactification

A
N



The Variational Principle
000000

The Hard Inequality

Partition Entropy

Given E,... wewant pandC...

Iimsup%log 4E, < hu(T‘ c).

n—oo




The Variational Principle
000000

The Hard Inequality

Partition Entropy

Given E,... wewant pandC...

Iimsup%log 4E, < hu(T‘ c).

n—oo

y

Lemma

@ Constructed . is T -invariant (and therefore, T-invariant).




The Variational Principle
000000

The Hard Inequality

Partition Entropy

Given E,... wewant pandC...

Iimsup%log 4E, < hu(T‘ c).

n—oo

y

Lemma

@ Constructed i is T-invariant (and therefore, T-invariant).
e C is properly choosen. ..




The Variational Principle
000000

The Hard Inequality

Partition Entropy

Given E,... wewant pandC...

Iimsup%log 4E, < hu(T‘ c).

n—oo

y

Lemma

@ Constructed i is T-invariant (and therefore, T-invariant).
e C is properly choosen. ..

hu<T’C>:hM(7"5).

Where C = X N C.




The Variational Principle
000000

The Hard Inequality

Partition Entropy Properly means. ..

Given E,... wewant pandC...

lim sup 117 log #E < h,, (T

n—oo

Lemma

@ Constructed . is T -invariant (and therefore, T -invariant).
e C is properly choosen. ..

hu<T)C):hM(7"5).

Where C = X N C.
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Misiurewicz Again
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1 1 -
= = — T_j
On ZE, Z Ox, In nj:ZoUno
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Then, we will:
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The Hard Inequality

Misiurewicz Again

For e > 0 and a sequence E, of (n, ¢)-separated sets,

n—1
> ono T
j=0

1 1
Unfﬁzdx, MnfE

xeEp

Then, we will:
@ Construct a probability p, T-invariant and T-invariant.

@ Find a measurable partition C of X such that Misiurewicz
argument works.
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From o, to 1

That is. ..

lim inf % log #En < liminf :’HMH (5q>
< ;Hu @
— il (7” 5)
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From o, to 1

That is. ..
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M (€%)
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From o, to 1

That is. ..

IinrgLrgf%log #Eq < liminf :’H (5‘7)
M (€%)
7|¢)
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Even Farther

Preassure and Topological Pressure

A similar variational principle holds to topological pressure for a
similar generalization.

We can easily get rid of metrizability!!!
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The End
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