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Abstract
AC-unification, i.e., unification modulo Associativity and Commutativity axioms
is a key component in rewrite-based programming languages and theorem
provers. We have used the PVS proof assistant to specify Stickel’s pioneering
AC-unification algorithm and proved it to be terminating (using an elaborate lex-
icographic measure based on Fages’ termination proof), sound, and complete. We
give a detailed account of the formalisation, including descriptions of the main
steps in the proofs of termination, soundness, and completeness; the files that were
created along with their hierarchy and size; and a discussion about our design
choices, including the consequences of our choice for the grammar of terms. We
also discuss applications of the certified AC-unification algorithm, showing how
the formalisation could be used as a starting point to formalise more efficient AC-
unification algorithms or to test implementations of AC-unification algorithms.
This formalisation has been used to obtain a certified nominal AC-matching algo-
rithm. Also, it could serve as a basis to specify a nominal AC-unification algorithm
once this open theoretical problem is solved.

Keywords: AC-Unification, PVS, Certified Algorithms, Formal Methods, Interactive
Theorem Proving
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1 Introduction
Given terms s and t, syntactic matching is the problem of finding a substitution σ
such that σs = t, and syntactic unification is the problem of finding a substitution σ
such that σs = σt. The problem of syntactic unification can be generalised to consider
an equational theory E; in this case, called E-unification, we must find a substitution
σ such that σs and σt are equal modulo E, which we denote σs ≈E σt [18]. Similarly,
E-matching is the problem of finding a substitution σ such that σs ≈E t.

Unification has practical applications in computer science and mathematics. It is
used, for instance, in resolution-based theorem provers, interpreters of logic program-
ming languages such as Prolog, confluence tests based on critical pairs, type-inference
procedures, and so on [8]. Since associative and commutative operators are frequently
used in programming languages and theorem provers, tools to support reasoning mod-
ulo Associativity and Commutativity axioms are often required. The problem of
AC-unification has been widely studied in this context (see [8, 29]).

Stickel [28] was the first to solve unification in the presence of AC-function symbols.
He showed how the problem is connected to finding non-negative integral solutions to
linear equations and proved that his algorithm was sound, complete, and terminating
for a subclass of the general case [28, 29]. However, Stickel’s proof of termination
did not apply to the general case, and almost a decade after the introduction of this
algorithm, Fages discovered the flaw and proposed a measure to fix the termination
proof for the general case [15, 16]. Since then, investigations on solving AC-unification
efficiently, on the complexity of AC-unification, and on formalising unification modulo
equational theories have been carried out.

Regarding the complexity of AC-unification, Benanav et al. [9] showed that the
decision problem for AC-matching is NP-complete and the decision problem for AC-
unification is NP-hard. Both AC- and C-unification problems are of finitary type, but
the complexity of computing a complete set of unifiers for the former problem is double-
exponential, while for the latter one, it is “only” exponential as shown by Kapur and
Narendran [19]. Indeed, to build complete sets of C-unifiers, only simple swapping-
argument-combinations need to be considered to instantiate variables. However, to
build complete sets of unifiers, all possible associations and permutations of arguments
should be considered, which is precisely expressed by Stickel’s method based on solving
Diophantine equations.

Regarding solving AC-unification efficiently, Boudet et al. [11] proposed an AC-
unification algorithm that explores constraints more efficiently than the standard
algorithm. Further, Boudet [10] described and compared an implementation of this
algorithm to previous ones. Also, Adi and Kirchner [1] implemented an AC-unification
algorithm, proposed benchmarks, and showed that their algorithm improves over pre-
vious ones in time and space. An efficient AC-unification algorithm [14] is in use in
the programming language Maude.

Regarding formalisations, Ayala-Rincón et al. [3] formalised nominal α-equivalence
for associative, commutative and associative-commutative function symbols. This
work was done in the nominal setting (see [27]), which encompasses first-order AC-
equivalence, but did not consider the AC-unification problem. A formalisation of
nominal C-unification, which can also handle nominal C-matching, is also available [4].
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In 2004, Contejean [13] gave the first certified AC-matching algorithm in Coq. Addi-
tionally, Meßner et al. [23] gave a formally verified solver in Isabelle/HOL for homo-
geneous linear Diophantine equations, a problem closely related to AC-unification.
However, no formalisation of AC-unification was available until recently, when ter-
mination, soundness, and completeness of Stickel’s AC-unification algorithm [6] was
proved using the proof assistant PVS [25].

This paper is an extended and improved version of [6]. We extend [6] by present-
ing the main lemmas required for the proof of completeness and giving detailed proof
for the most complicated one. Additionally, we give a more detailed account of the
formalisation: each file is described in depth; a diagram showing the hierarchy of the
files is presented; and there is a discussion on the grammar (of terms) we adopted
and its consequences. Moreover, the applications of a first-order AC-unification algo-
rithm are explored in more detail: we elaborate on how our simple algorithm can be
used as a basis to formalise more efficient algorithms, or to test implemented AC-
unification algorithms, or to formalise a nominal AC-unification algorithm (once this
open theoretical question is solved), and briefly summarise how the first-order AC-
unification algorithm was used to obtain a nominal AC-matching algorithm (see [5]).
The most important distinction between this work and [6] is that the proof of com-
pleteness presented in [6] contained an unnecessary hypothesis. In this paper, we show
why removing this hypothesis from the proof of completeness is non-trivial and how
we removed the mentioned hypothesis, honing the proof of completeness.

There is already an extensive nominal unification library in PVS, which we would
like to enrich in future work (see Section 9) with a nominal AC-unification algo-
rithm. Additionally, PVS has expressive logic, useful features such as subtyping and
effective proof automation. When deciding which AC-unification algorithm to for-
malise, we looked for concise and well-established algorithms, which led us to select
Stickel’s algorithm, using Fages’ proof of termination. We applied minor modifica-
tions to Stickel’s AC-unification algorithm in order to avoid mutual recursion (PVS
does not allow mutual recursion directly, although this can be emulated using PVS
higher-order features, see [26]) and to ease the formalisation.

The paper is organised as follows. Section 2 gives the necessary background, while
Section 3 discusses examples of first-order AC-unification. Then, Section 4 explains
the certified algorithm. Section 5 discusses how we proved the algorithm’s termination,
motivating the used lexicographic measure. After that, Section 6 explains the proofs
of soundness and completeness, showing how we improved the proof of completeness.
Section 7 gives additional information about the PVS formalisation and Section 8
describes applications of our formalisation. Finally, Section 9 concludes the paper.
Appendix A gives more details on the proof of termination. We include cyan-coloured
hyperlinks (using  icon) to specific points of interest of the PVS formalisation ,
which is available as the “nominal” library, part of the PVS NASAlib (NASA PVS
Library of Formal Developments).

2 Background
From now on, we omit the subscript and write that t and s are equal modulo AC as
t ≈ s.
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Definition 1 (Terms ). Let Σ be a signature with function symbols and AC-function
symbols. Let X be a set of variables. The set T (Σ,X) is generated by the grammar:

s, t ::= c | X | ⟨⟩ | ⟨s, t⟩ | f t | fAC t

where c denotes a constant. In general, we represent the constants using the initial
lowercase letters of the alphabet. X a variable, ⟨⟩ is the unit, ⟨s, t⟩ is a pair, f t is a
function application and fACt is an associative-commutative function application.

Terms were specified as shown in Definition 1 to make it easier to eventually adapt
the formalisation to the nominal setting in future work. That is the reason why the
unit (an element in the grammar of the nominal terms) appears in Definition 1. Pairs
are used to represent tuples with an arbitrary number of terms. For instance, the pair
⟨t1, ⟨t2, t3⟩⟩ represents the tuple (t1, t2, t3). In Definition 1 we imposed that a function
application is of the form ft, which is not a limitation since t can be a pair. For
instance, the term f(a, b, c) can be represented as f⟨⟨a, b⟩, c⟩ and its arguments are a,
b and c.
Remark 1 (Variable Representation ). The variables in our PVS formalisation are
represented as natural numbers. Given a variable X we denote by |X| the corresponding
natural number and given a set of variables V we define max(V ) = max({|X| : X ∈
V }). This notation will be used in Section 6.3.3.
Definition 2 (Well-formed Terms ). We say that a term t is well-formed if t is
not a pair and every AC-function application that is a subterm of t has at least two
arguments.

To ease our formalisation (more details in Section 7.1), we have restricted the terms
in the unification problem that our algorithm receives to well-formed terms. Excluding
pairs is natural since they are used to encode (lists of) arguments of functions.
Definition 3 (AC-Unification problem ). An AC-unification problem is a finite
set of equations P = {t1 ≈? s1, . . . , tn ≈? sn}. The left-hand side of the unification
problem P , denoted as lhs(P ) , is defined as {t1, . . . , tn} while the right-hand side
of P , denoted as rhs(P ) , is defined as {s1, . . . , sn}.
Notation 1 (AC-Unification pairs). When t and s are both headed by the same
AC-function symbol, we refer to the equation t ≈? s as an AC-unification pair .
Notation 2. When convenient, we may mention that a function symbol f is an AC-
function symbol, omit the superscript, and write simply f instead of fAC .
Notation 3 (Flattened form of AC-functions). When convenient, we may denote an
AC-function in flattened form. For instance, the term fAC⟨fAC⟨a, b⟩, fAC⟨c, d⟩⟩ may
be denoted simply as fAC(a, b, c, d). In our formalisation (for instance, in function
Argsf ), when we manipulate an AC-function term t we are more interested in its
arguments than in how they were encoded using pairs.
Notation 4 (Vars). Vars(t)  denotes the set of variables occurring in a term t.
Similarly, Vars(P )  denotes the set of variables occurring in a unification problem P .

A substitution σ is a function from variables to terms, such that σX ̸= X only for
a finite set of variables, called the domain of σ and denoted as dom(σ). The image of
σ is then defined as im(σ) = {σX | X ∈ dom(σ)}. We denote the identity substitution
by id.
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Definition 4 (Well-Formed Substitution ). A substitution σ is said to be well-
formed if, for every X, σX is a well-formed term.

In the proof of completeness of the algorithm, we restrict ourselves to well-formed
substitutions (this is explained in the proof of Section 6.3.1).
Notation 5 (σ ⊆ V ). Let V be a set of variables. If dom(σ) ⊆ V and Vars(im(σ)) ⊆ V
we write σ ⊆ V .
Notation 6 (σ =V σ1). Let σ and σ1 be substitutions and V a set of variables. If
σX = σ1X for every X ∈ V we write σ =V σ1.

In our PVS code, substitutions are represented by a list, where each entry of the
list is called a nuclear substitution and is of the form {X 7→ t}. The action of a nuclear
substitution and the action of a substitution over terms are introduced in Definitions
5 and 6 respectively.
Definition 5 (Nuclear substitution action on terms ). A nuclear substitution {X 7→
s} acts over a term by induction as shown below:

• {X 7→ s}a = a.
• {X 7→ s}⟨⟩ = ⟨⟩.

• {X 7→ s}Y =

{
s if X = Y

Y otherwise.
• {X 7→ s}⟨t1, t2⟩ = ⟨{X 7→ s}t1, {X 7→ s}t2⟩.
• {X 7→ s}(f t1) = f ({X 7→ s}t1).
• {X 7→ s}(fAC t1) = fAC ({X 7→ s}t1).

Definition 6 (Substitution acting on terms ). Since a substitution σ is a list of
nuclear substitutions, the action of a substitution is defined as:

• nil t = t, where nil is the null list used to represent the identity substitution.
• cons({X 7→ s}, σ) t = {X 7→ s}(σt).

The notion of substitution used here differs from the more traditional view of
substitution as a simultaneous application of nuclear substitutions, although both are
correct. The way we defined substitution here is closer to triangular substitutions [20].
Notice that in the definition of action of substitutions, the nuclear substitution in the
head of the list is applied last. This allows us to, given substitutions σ and δ, obtain
the substitution σ ◦ δ in our code simply as append(σ, δ).
Notation 7 (Composition of Substitutions). When composing two substitutions σ
and δ we may omit the composition symbol and write σδ instead of σ ◦ δ.
Definition 7 (Renaming ). A renaming ρ is an injective substitution that always
instantiates a variable to a variable.

We now define AC-unification unifiers, more general substitutions, and complete
set of unifiers (Definitions 8, 9 and 10).
Definition 8 (Unifiers ). Let P be a unification problem {t1 ≈? s1, . . . , tn ≈? sn}.
A unifier or solution of P is a substitution σ such that σti ≈ σsi for all i from 1 to
n. When σ is a unifier for P we say that σ unifies P .
Definition 9 (More General Substitutions ). A substitution σ is more general
(modulo AC) than a substitution σ′ in a set of variables V if there is a substitution δ
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such that σ′X ≈ δσX, for all variables X ∈ V . In this case, we write σ ≤V σ′. When
V is the set of all variables, we write σ ≤ σ′.
Definition 10 (Complete Set of Unifiers). With the notion of more general substi-
tution, we can define a complete set C of unifiers of P as a set that satisfies two
conditions:

• each σ ∈ C is a unifier of P .
• for every δ that unifies P , there is σ ∈ C such that σ ≤Vars(P ) δ.

We represent an AC-unification problem P as a list in our PVS code, where each
element of the list is a pair (ti, si) that represents an equation ti ≈? si. Finally,
given a unification problem P = {t1 ≈? s1, . . . , tn ≈? sn}, we define σP as {σt1 ≈?

σs1, . . . , σtn ≈? σsn}.
Notation 8. Since P is a list in our PVS code, we denote by car(P ) the equation
t ≈? s in the head of the list P and by cdr(P ) the tail of the list P .

3 Examples of AC-Unification

3.1 What Makes AC-unification Hard
Let f be an associative-commutative function symbol. Finding a complete set of uni-
fiers for {f(X1, X2) ≈? f(Y, a)} is not as easy as it appears at first sight since it
is not enough to simply compare the arguments of the first term with the second
term arguments. Indeed, this strategy would give us only σ1 = {X1 7→ Y,X2 7→ a}
and σ2 = {X2 7→ Y,X1 7→ Y } as solutions, missing for example the substitution
σ3 = {X1 7→ f(a,W ), Y 7→ f(X2,W )}. The solution σ3 would be missed because
the arguments of σ3Y = f(X2,W ) are partially contained in σ3X1 = f(a,W ) and
partially contained in σ3X2 = X2.
Remark 2. To guarantee the completeness of AC-matching, it is enough to explore all
possible pairings of the first term’s arguments with the second term’s arguments. As the
example above shows, this is not enough for AC-Unification. Evidence of the difficulty
of AC-unification is that it took eighteen years to obtain the first formalisation of AC-
unification (see [6]) despite the fact that Contejean formalised AC-matching in 2004,
leaving a formalisation of AC-unification as future work (see [13]).

3.2 Unifying f(X,X, Y, a, b, c) and f(b, b, b, c, Z)

We give a higher-level example (taken from the very accessible [29]) of how we would
solve

{f(X,X, Y, a, b, c) ≈? f(b, b, b, c, Z)}.
In short, this technique converts an AC-unification problem into a linear Diophantine
equation. Further, it uses a basis of solutions of the Diophantine equation to get a
complete set of unifiers to our original problem.

The first step is to eliminate common arguments in the terms that we are unifying.
The problem becomes

{f(X,X, Y, a) ≈? f(b, b, Z)}.
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The second step is to connect our unification problem with a linear Diophantine
equation, where each argument of our terms corresponds to one variable in the equation
(this process is called variable abstraction), and the coefficient of this variable in the
equation is the number of occurrences of the argument. In our case, the linear Dio-
phantine equation obtained is: 2X1+X2+X3 = 2Y1+Y2 (variable X1 was associated
with argument X, variable X2 with the argument Y and so on; the coefficient of
variable X1 is two, since argument X occurs twice in f(X,X, Y, a) and so on).

The third step is to generate a basis of solutions to the equation and asso-
ciate a new variable (the Zis) to each solution. As we will soon see, the problem
{f(X,X, Y, a) ≈? f(b, b, Z)} may branch into (possibly) many unification problems,
and the new variables Zis will be the building blocks for the right-hand side of these
unification problems. The result is shown in Table 1.

Table 1 Solutions for 2X1 +X2 +X3 = 2Y1 + Y2.

X1 X2 X3 Y1 Y2 New Variables

0 0 1 0 1 Z1

0 1 0 0 1 Z2

0 0 2 1 0 Z3

0 1 1 1 0 Z4

0 2 0 1 0 Z5

1 0 0 0 2 Z6

1 0 0 1 0 Z7

Observing Table 1 we relate the “old variables” (Xis and Yis) with the “new vari-
ables” (Zis). For instance, the column of variableX2 has a 0 in the lines that correspond
to variables Z1, Z3, Z6, Z7; a 1 in the lines that correspond to variables Z2 and Z4;
and a 2 in the line that corresponds to variable Z5. Hence, the relation between the
X2 with the new variables is: X2 = Z2 + Z4 + 2Z5. All those relations between the
“old variables” and the “new variables” are shown below:

X1 = Z6 + Z7

X2 = Z2 + Z4 + 2Z5

X3 = Z1 + 2Z3 + Z4

Y1 = Z3 + Z4 + Z5 + Z7

Y2 = Z1 + Z2 + 2Z6.

(1)

In order to explore all possible solutions, we must consider whether we will include
or not each solution of our basis. Since seven solutions compose our basis (one for each
variable Zi), this means that a priori there are 27 cases to consider. Considering that
including a solution of our basis means setting the corresponding variable Zi to 1 and
not including it means setting it to 0, we must respect the constraint that no original
variables (X1, X2, X3, Y1, Y2) receive 0. Eliminating the cases that do not respect this
constraint, we are left with 69 cases [28]. Suppose for instance that we set variables
(Z1, Z2, Z3, Z4, Z5, Z6, Z7) to (1, 1, 1, 1, 1, 0, 0). Then X1 = Z6 +Z7 would be set to 0,
so this case does not respect the constraint and is eliminated.
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For example, if we decide to include only the solutions represented by the variables
Z1, Z4 and Z6, the corresponding unification problem, according to Equations (1),
becomes:

P = {X1 ≈? Z6, X2 ≈? Z4, X3 ≈? f(Z1, Z4), Y1 ≈? Z4, Y2 ≈? f(Z1, Z6, Z6)}. (2)

We can also drop the cases where a variable that does not represent a variable
term is paired with an AC-function application. For instance, the unification problem
P should be discarded since the variable X3 represents the constant a, and we cannot
unify a with f(Z1, Z4). This constraint eliminates 63 of the 69 potential unifiers.

Finally, we replace the variables X1, X2, X3, Y1, Y2 by the original arguments they
substituted and proceed with the unification. Some unification problems that we will
explore will be unsolvable and discarded later, as:

{X ≈? Z6, Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f(Z6, Z6)}

(we cannot unify both a with Z4 and b with Z4 simultaneously). In the end, the
solutions computed for the original problem {f(X,X, Y, a, b, c) ≈? f(b, b, b, c, Z)} are:

σ1 = {Y 7→ f(b, b), Z 7→ f(a,X,X)}.
σ2 = {Y 7→ f(Z2, b, b), Z 7→ f(a, Z2, X,X)}.
σ3 = {X 7→ b, Z 7→ f(a, Y )}.
σ4 = {X 7→ f(Z6, b), Z 7→ f(a, Y, Z6, Z6)}.

(3)

Remark 3. When using the technique described in this section to unify
f(X,X, Y, a, b, c) with f(b, b, b, c, Z), we obtained unification problems that only contain
the variables X1, X2, X3, Y1, Y2 or AC-functions whose arguments are all variables
(for instance P in Equation 2). However, this does not mean that our technique cannot
be applied to general AC-unification problems since we eventually replace the vari-
ables X1, X2, X3, Y1, Y2 by their corresponding arguments (X,Y, a, b, Z respectively)
and proceed with unification.
Remark 4 (Cases on AC1-Unification). If we were considering AC1-unification,
where our signature has an identity id function symbol, we could consider only the
case where we include all the AC solutions in our basis and instantiate the variables
Zis later on to be id.

3.3 Avoiding Infinite Loops
It is necessary to compose the substeps of solving AC-unification equations with some
strategy, as the following example (adapted from [16]) shows.
Example 1 (Looping forever). Let f be an AC-function symbol. Suppose we want to
solve

P = {f(X,Y ) ≈? f(U, V ), X ≈? Y,U ≈? V }
and instead of instantiating the variables as soon as we can, we decide to try solving
the first equation. When trying to unify f(X,Y ) with f(U, V ), we obtain as one of the
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branches the unification problem:

{X ≈? f(X1, X2), Y ≈? f(X3, X4), U ≈? f(X1, X3), V ≈? f(X2, X4)

X ≈? Y,U ≈? V }.

We can solve this branch by instantiating X, Y , U , and V in the first four equations.
After these instantiations, the substitution we have computed and the two remaining
equations we have to unify are:

σ = {X 7→ f(X1, X2), Y 7→ f(X3, X4), U 7→ f(X1, X3), V 7→ f(X2, X4)}
P ′ = {f(X1, X2) ≈? f(X3, X4), f(X1, X3) ≈? f(X2, X4)}

One way of solving the first equation is to decompose it into {X1 ≈? X3, X2 ≈?

X4}, which gets us back to

P ′ = {f(X1, X3) ≈? f(X2, X4), X1 ≈? X3, X2 ≈? X4}

which is essentially the same as the unification problem P we started with.
Notice that this infinite loop in our example would not happen if we had instanti-

ated {X 7→ Y } and {U 7→ V } in the beginning. In our algorithm, we always instantiate
the variables that we can before tackling AC-unification pairs.

4 Algorithm
For readability, we present the pseudocode of the algorithms instead of the actual
PVS code. We have formalised Algorithm 1  to be terminating, sound and com-
plete. Moreover, the algorithm is functional and keeps track of the current unification
problem P , the substitution σ computed so far, and the variables V that are/were in
the problem. The algorithm’s output is a list of substitutions, where each substitution
δ in this list is a unifier of P . The first call to the algorithm, in order to unify two
terms t and s, is done with P = {t ≈? s}, σ = id (because we have not computed any
substitution yet), and V = Vars(t, s).
Remark 5. In the PVS code notation, this means that the initial call is done with
parameters P = cons((t, s),nil), σ = nil, and V = Vars(t, s).

The algorithm explores the structure of terms. It starts by analysing the list P of
terms to unify. If it is empty (line 2), we have finished, and the algorithm returns a
list containing only one element: the substitution σ computed so far. Otherwise, the
algorithm calls the auxiliary function choose (line 3), which returns a pair (t, s) and a
unification problem P1, such that P = {t ≈? s}∪P1. Note that problems are specified
as lists in the formalisation, but here we simplify their presentation by using sets. The
algorithm will try to simplify our unification problem P by simplifying {t ≈? s}, and
it does that by seeing what the form of t and s is. For clarity, Algorithm 1 is presented
in OCaml style match-with pseudocode, although the actual PVS specification uses
an if-else if-else structure.
Remark 6. The algorithm does not check the arity consistency of the input.
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Algorithm 1 Algorithm to Solve an AC-Unification Problem P

1: procedure ACUnif(P, σ, V )
2: if nil?(P ) then cons(σ,nil)
3: else let ((t, s), P1) = choose(P ) in
4: match t and s with
5: “a” and “a” −→ ACUnif(P1, σ, V )
6: | “⟨⟩” and “⟨⟩” −→ ACUnif(P1, σ, V )
7: | “X” and “X” −→ ACUnif(P1, σ, V )
8: | “X” and “s” such that X not in s −→
9: let σ1 = {X 7→ s} in ACUnif(σ1P1, σ1σ, V )

10: | “t” such that X not in t and “X” −→
11: let σ1 = {X 7→ t} in ACUnif(σ1P1, σ1σ, V )
12: | “f t1” and “f s1” −→
13: let (P2,flag) = decompose(t1, s1) in
14: if flag then ACUnif(P2 ∪ P1, σ, V )
15: else nil
16: | “fAC t1” and “fAC s1” −→
17: let InputLst = applyACStep(P,nil, σ, V ),
18: LstResults = map(ACUnif, InputLst) in
19: flatten(LstResults)
20: | _ −→ nil

4.1 Function choose
The function choose  selects a unification pair from the input problem, avoiding
AC-unification pairs if possible. This means that we will only enter on the case of
line 16 of ACUnif (see Algorithm 1) when P = {t1 ≈? s1, . . . , tn ≈? sn} is such that
for every i, ti ≈? si is an AC-unification pair. This heuristic aids us in the proof of
termination. It makes the algorithm more efficient since it guarantees that we only
enter the AC-part of the algorithm when needed (the AC-part is the computationally
heaviest). Also, it is not a significant deviation from Stickel’s algorithm [29].

4.2 Function decompose
Suppose the function decompose  receives two terms t and s and these terms are
both pairs. In that case, it recursively tries to decompose them, returning a tuple
(P,flag), where P is a unification problem and flag is a Boolean that is True if the
decomposition was successful. If neither t nor s is a pair, the unification problem
returned is just P = {t ≈? s} and flag = True. If one of the terms is a pair and the
other is not, the function returns (nil,False). In Algorithm 1, we call decompose (t1,
s1) when we encounter an equation of the form ft1 ≈? fs1 and therefore guarantee
that all the terms in the unification problem remain well-formed. Although it would
have been correct to simplify an equation of the form ft1 ≈? fs1 to t1 ≈? s1, if t1 or
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s1 were pairs, we would not respect our restriction that only well-formed terms are in
our unification problem.
Example 2. Below, we give examples of the function decompose.

• decompose(⟨a, ⟨b, c⟩⟩, ⟨c, ⟨X,Y ⟩⟩) = ({a ≈? c, b ≈? X, c ≈? Y }, True).
• decompose(a, Y ) = ({a ≈? Y }, True).
• decompose(X, ⟨c, d⟩) = (nil, False).

4.3 The AC-part of the Algorithm
The AC-part of Algorithm 1 relies on function applyACStep (Section 4.3.4), which
depends on two functions: solveAC (Section 4.3.1) and instantiateStep (Section
4.3.3). Since there are multiple possibilities for simplifying each AC-unification pair,
applyACStep will return a list (InputLst in Algorithm 1), where each entry of the
list corresponds to a branch Algorithm 1 will explore (line 17). Each entry in the list
is a triple that will be given as input to ACUnif, where the first component is the
new AC-unification problem, the second component is the substitution computed so
far, and the third component is the new set of variables that are/were in use. After
ACUnif calls applyACStep, it explores every branch generated by calling itself
recursively on every input in InputLst (line 18 of Algorithm 1). The result of calling
map(ACUnif, InputLst) is a list of lists of substitutions. This result is then flattened
into a list of substitutions and returned.

4.3.1 Function solveAC

The function solveAC  does what was illustrated in the example of Section 3.2.
While applyACStep or ACUnif take as part of the input the whole unification
problem, solveAC takes only two terms t and s. It assumes that both terms are
headed by the same AC-function symbol f . It also receives as input the set of variables
V that are/were in the problem. Since solveAC will introduce new variables, we must
know the ones that are/were already in use.

The first step is eliminating common arguments of t and s. This is done by
the function elimComArg , which returns the remaining arguments and their
multiplicity.

To ease the formalisation, we do not calculate a basis of solutions for the linear
Diophantine equation but a spanning set (which is not necessarily linearly indepen-
dent). To generate this spanning set, it suffices to calculate all the solutions until an
upper bound, computed by the function calculateUpperBound . Given a linear
Diophantine equation a1X1+ . . .+amXm = b1Y1+ . . .+bnYn, our upper bound (taken
from [28]) is the maximum of m and n times the maximum of all the least common
multiples (lcm) obtained by pairing each one of the ais with each one of the bjs. In
other words, our upper bound is:

max(m,n) ∗maxi,j(lcm(ai, bj)).

The Table 1 of the Example in Section 3.2 is represented in our code as the matrix
D (see Equation 4). This matrix is obtained by calling function dioSolver , which
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receives as input the multiplicity of the arguments of t and s and the upper bound
calculated by calculateUpperBound. Each row ofD is associated with one solution
and thus with one of the new variables. Each column of D is associated with one
of the arguments of t or s. Modifying dioSolver to calculate a basis of solutions
(for instance, by using the method described in [12]) instead of a spanning set would
certainly improve the algorithm’s efficiency.

D =



0 0 1 0 1
0 1 0 0 1
0 0 2 1 0
0 1 1 1 0
0 2 0 1 0
1 0 0 0 2
1 0 0 1 0


(4)

To explore all possible cases, we must decide whether or not we will include each
solution. In our code, this translates to considering submatrices of D by eliminating
some rows. In the example of Section 3.2, we mentioned that we should observe two
constraints:

• no “original variable” (the variables X1, . . . , Xm, Y1, . . . , Yn associated with the
arguments of t and s) should receive the value 0.

• an “original variable” that does not represent a variable term cannot be paired with
an AC-function application.

As noted by Fages in [16], in terms of our Diophantine matrix D, these two
constraints are:

1. every column has at least one coefficient different from 0;
2. a column corresponding to one non-variable argument has one coefficient equal to

1 and all the remaining coefficients equal to 0.

The function in our PVS code that extracts (a list of) the submatrices of D that
satisfies these constraints is extractSubmatrices . Let SubmatrixLst be this list.

Finally, we translate each submatrix D1 in SubmatrixLst into a new unification
problem P1, by calling function dioMatrix2acSol . For instance, the unification
problem

P1 = {X ≈? Z6, Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f(Z6, Z6)}
would be obtained from submatrix D1:

D1 =

(
0 1 1 1 0
1 0 0 0 2

)
Notice that this is the submatrix associated with a solution including only rows 4 and
6 (of the variables Z4, Z6).

The function dioMatrix2acSol also updates the variables that are/were in the
unification problem to include the new variables Zis introduced. In our example, the
new set of variables that are/were in the problem is V1 = {X,Y, Z, Z4, Z6}. Therefore,
the output of dioMatrix2acsol is a pair, where the first component is the new
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unification problem (in our example P1) and the second component is the new set of
variables that are/were in use (in our example V1). The output of solveAC is the list of
pairs obtained by applying dioMatrix2acSol to every submatrix in SubmatrixLst.
Remark 7 (New Variables Introduced by solveAC). As mentioned in Remark 1,
variables in our formalisation are represented as natural numbers. When introducing
new variables Z1, Z2, Z3, . . . solveAC checks the parameter V to compute max(V ) and
internally represents these new variables with natural numbers max(V )+1,max(V )+
2,max(V ) + 3, . . .

4.3.2 Common Structure of Unification Problems Returned by
solveAC

Suppose function solveAC receives the terms u and v as input, headed by the same
AC-function symbol f . Let u1, . . . , um be the different arguments of u and let v1, . . . , vn
be the different arguments of v, after eliminating the common arguments of u and v. If
P1 = {t1 ≈? s1, . . . , tk ≈? sk} is one of the unification problems generated by function
solveAC, when it receives as input u and v then:

1. k = m + n and the left-hand side of this unification problem (i.e., the terms
t1, . . . , tk) are the different arguments of u and v:

ti =

{
ui, if i ≤ m

vi−m otherwise.

2. The terms in the right-hand side of this problem (i.e., the terms s1, . . . , sk) are
introduced by solveAC and are either new variables Zis or AC-functions headed
by f whose arguments are all new variables Zis (This is how we obtained the
problem in Equation (2)).

3. A term si is an AC-function headed by f only if the corresponding term ti is a
variable.

4.3.3 Function instantiateStep

After the application of function solveAC, we instantiate the variables that we can
by calling function instantiateStep . For the particular case of equations t ≈? s
where both t and s are variables, instantiateStep instantiates s to t. This decision
prioritizes instantiating the variables on the right-hand side and keeping the variables
on the left-hand side. Recall that in the unification problems obtained immediately
after calling solveAC (see Section 4.3.2), the variables on the right-hand side are the
new variables; in contrast, the variables on the left-hand side are variables that were in
the problem before calling solveAC. Indeed, as shown in Example 1, it is necessary to
compose the substeps of the algorithm with some strategy to avoid infinite loops. To
prevent loops such as the one of Example 1 from happening, Algorithm 1 only handles
AC-unification pairs when there are no equations t ≈? s of other type left, and as soon
as we apply the function solveAC we immediately call function instantiateStep.
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4.3.4 Function applyACStep

Function applyACStep  relies on functions solveAC and instantiateStep, and
is called by Algorithm 1 when all the equations t ≈? s ∈ P are AC-unification pairs. In
a very high-level view, it applies functions solveAC and instantiateStep to every
AC-unification pair in the unification problem P .

It receives as input a unification problem, which is partitioned into sets P1 and P2,
a substitution σ, and the set of variables to avoid V . P1 and P2 are, respectively, the
subset of the unification problem for which functions solveAC and instantiateStep
have not been called, and the subset to which we have already called these functions.
The substitution σ is the substitution computed so far. Therefore, the first call to this
function is with P2 = nil, and as the function recursively calls itself, P1 diminishes
while P2 increases.

5 Proving Termination

5.1 The Lexicographic Measure
To prove termination in PVS, we must define a measure and show that this measure
decreases at each recursive call the algorithm makes. We have chosen a lexicographic
measure with four components:

lex = (|VNAC (P )|, |V>1(P )|, |AS (P )|, size(P )),

where VNAC (P ), V>1(P ), AS (P ), size(P ) are given in Definitions 11, 13, 15 and 16,
respectively. Table 2 shows which components do not increase (represented by ≤) and
which components strictly decrease (represented by <) for each recursive call that
Algorithm 1 makes.
Definition 11 (VNAC (P ) ). We denote by VNAC (P ) the set of variables that occur
in the problem P , excluding those that only occur as arguments of AC-function symbols.
Example 3. Let f be an AC-function symbol and g be a standard function symbol. Let

P = {X ≈? a, f(X,Y,W, g(Y )) ≈? Z}.

Then VNAC (P ) = {X,Y, Z}.
Before defining V>1(P ), we need to define the subterms of a unification problem.

Definition 12 (Subterms(P ) ). The subterms of a unification problem P are given
as:

Subterms(P ) =
⋃
t∈P

Subterms(t),

where the notion of Subterms(t)  of a term t excludes all pairs and is defined
recursively as follows:

• Subterms(a) = {a}.
• Subterms(Y ) = {Y }.
• Subterms(⟨⟩) = {⟨⟩}.
• Subterms(⟨t1, t2⟩) = Subterms(t1) ∪ Subterms(t2).

14

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_apply_ac_step.pvs#L88-L113
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L64-L74
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L98-L104
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L546-L556


• Subterms(f t1) = {f t1} ∪ Subterms(t1).
• Subterms(fACt1) =

⋃
ti∈Args(fACt1)

Subterms(ti) ∪ {fACt1}.

Here, Args(fACt1) denote the arguments of fAC t1.
Remark 8 (Subterms of AC and non-AC functions). The definition of subterms for
non-AC functions cannot be used for AC functions, as the following counterexample
shows. Let f be an AC-function symbol and consider the term t = f⟨f⟨a, b⟩, f⟨c, d⟩⟩.
Then

Subterms(t) = {t, a, b, c, d}.
However, if we had used the definition of subterms for non-AC functions, we would
obtain

Subterms(t) = {t, f⟨a, b⟩, f⟨c, d⟩, a, b, c, d}.
Definition 13 (V>1(P ) ). We denote by V>1(P ) the set of variables that are argu-
ments of (at least) two terms t and s such that t and s are headed by different function
symbols and t and s are in Subterms(P ). The informal meaning is that if X ∈ V>1(P ),
then X is an argument to at least two different function symbols.
Example 4. Let f be an AC-function symbol and g be a standard function symbol. Let

P = {X ≈? a, g(X) ≈? h(Y ), f(Y,W, h(Z)) ≈? f(c,W )}.

In this case V>1(P ) = {Y }.
We define proper subterms in order to define admissible subterms in Definition 15.

Definition 14 (Proper Subterms ). If t is not a pair, we define the proper subterms
of t, denoted as PSubterms(t) as:

PSubterms(t) = {s | s ∈ Subterms(t) and s ̸= t}.

We define the proper subterm of a pair ⟨t1, t2⟩ as:

PSubterms(⟨t1, t2⟩) = PSubterms(t1) ∪ PSubterms(t2).

Definition 15 (Admissible Subterm AS ). We say that s is an admissible subterm
of a term t if s is a proper subterm of t and s is not a variable. The set of admissible
subterms of t is denoted as AS (t). The set of admissible subterms of a unification
problem P , denoted as AS (P ), is defined as

AS (P ) =
⋃
t∈P

AS (t).

Example 5. If P = {a ≈? f(Z1, Z2), b ≈? Z3, g(h(c), Z) ≈? Z4} then AS (P ) =
{h(c), c}.
Definition 16 (Size of a Unification Problem ). We define the size of a term t
recursively as follows:

• size(a) = 1.
• size(Y ) = 1.

15

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L53-L58
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L572-L577
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L152-L153
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L146-L152
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L63-L73


• size(⟨⟩) = 1.
• size(⟨t1, t2⟩) = 1 + size(t1) + size(t2).
• size(f t1) = 1 + size(t1).
• size(fAC t1) = 1 + size(t1).

Given a unification problem P = {t1 ≈? s1, . . . , tn ≈? sn}, the size of P is defined
as:

size(P ) =
∑

1≤i≤n

size(ti) + size(si).

Remark 9 (s ∈ AS (t) =⇒ size(s) < size(t)). If s ∈ AS (t), we have that s is a
proper subterm of t, and therefore the size of s is less than the size of t.

Table 2 Decrease of the components of the lexicographic measure.

Recursive Call |VNAC (P)| |V>1(P)| |AS(P)| size(P)

lines 9, 11 <
lines 5, 6, 7, 14 ≤ ≤ ≤ <
case 1 - line 18 ≤ <
case 2 - line 18 ≤ ≤ <
case 3 - line 18 ≤ ≤ ≤ <

5.2 Proof Sketch for Termination

5.2.1 Non AC Cases

To prove the termination of syntactic unification, we can use a lexicographic measure
lexs consisting of two components: lexs = (|Vars(P )|, size(P )), where Vars(P ) is the
set of variables in the unification problem. We adapted this idea to our proof of
termination by using |VNAC (P )| as our first component and size(P ) as the fourth. The
proof of termination for all the cases of Algorithm 1 except AC (line 18) is similar to
the proof of termination of syntactic unification, with two caveats.

First, we need to use |VNAC (P )| instead of |Vars(P )| to avoid taking into account
the variables that are arguments of the AC-function terms introduced by solveAC
(see Section 4.3.2). The variable terms introduced by solveAC do not increase
|VNAC (P )|, since they will be instantiated by function instantiateStep and therefore
eliminated from the problem.

Second, in some of the recursive calls (lines 5, 6, 7, 14), we must ensure that the
components introduced to prove termination in the AC-case (|V>1(P )| and |AS (P )|)
do not increase. This is straightforward.

5.2.2 The AC-case

Our proof of termination for the AC-case uses the components |V>1(P )| and |AS (P )|,
proposed in [16]. To explain the choice for the components of the lexicographic mea-
sure, let us start by considering the restricted case where P = {t ≈? s}. The idea of
the proof of termination is to define the set of admissible subterms of a unification
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problem AS (P ) in a way that when we call function solveAC to terms t and s, every
problem P1 generated will satisfy |AS (P1)| < |AS (P )|.

Let t1, . . . , tm be the arguments of t and let s1, . . . , sn be the arguments of s. Then,
as described in Section 4.3.2, the left-hand side of P1 is {t1, . . . , tm, s1, . . . , sn}. Denote
by {t′1, . . . , t′m, s′1, . . . , s′n} the right-hand side of P1, which means that P1 = {t1 ≈?

t′1, . . . , tm ≈? t′m, s1 ≈? s′1, . . . , sn ≈? s′n}. This is what motivated our definition of
admissible subterms: every term t′i of the right-hand side of P1 will have AS (t′i) = ∅.
Therefore, AS (P1) ⊆ AS (P ) always holds.

If we are also in a situation where at least one of the terms on the left-hand side
of P1 is not a variable, we can prove that |AS (P1)| < |AS (P )|. To see that, let u be
the non-variable term in the left-hand side of P1 of the greatest size (if there is a tie,
pick any term with the greatest size). Then, u is an argument of either t or s and
therefore u ∈ AS (P ). We also have u ̸∈ AS (P1): otherwise there would be a term u′

in P1 such that u ∈ AS (u′), which would mean that the size of u′ is greater than u
(see Remark 9), contradicting our hypothesis that no term in P1 has size greater than
u. Combining the fact that AS (P1) ⊆ AS (P ) and the fact that there is a term u with
u ∈ AS (P ) and u ̸∈ AS (P1) we obtain that |AS (P1)| < |AS (P )|.
Example 6. In the example of Section 3.2, after we eliminated the common
arguments, we had

P = {f(X,X, Y, a) ≈? f(b, b, Z)}.
Notice that we had AS (P ) = {a, b}. After applying solveAC, one of the unification
problems that is generated is:

P1 = {X ≈? Z6, Y ≈? f(Z5, Z5), a ≈? Z1, b ≈? Z5, Z ≈? f(Z1, Z6, Z6)},

where AS (P1) = ∅.
What happens if all the arguments of t and s are variables? In this case, we would

have AS (P1) = AS (P ) = ∅, but this is not a problem since after function solveAC
is called, the function instantiateStep would execute (receiving as input P1), and
it would instantiate all the arguments. The result, call it P2 would be an empty list
and we would have AS (P2) = AS (P ) = ∅ and size(P2) < size(P ).

Therefore, all that is left in this simplified example with only one equation t ≈? s
in the unification problem P is to make sure that when we call instantiateStep in
a unification problem P1 and obtain as output a unification problem P2 we maintain
|AS (P2)| ≤ |AS (P1)|. However, this does not necessarily happen, as Example 7 shows.
Example 7 (A case where instantiateStep increases |AS|). Let f and g be AC-
function symbols and

P1 = {X ≈? f(Z1, Z2), g(X,W ) ≈? g(a, c)}.

Calling instantiateStep with input P1 we obtain

P2 = {g(f(Z1, Z2),W ) ≈? g(a, c)}.

In this case we have AS (P1) = {a, c} while AS (P2) = {f(Z1, Z2), a, c} and therefore
|AS (P2)| > |AS (P1)|.
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This problem motivated the inclusion of the measure |V>1(P )| in our lexicographic
measure, as we now explain. First, notice that if we changed Example 7 to make it so
that X only appears as an argument of AC-functions headed by f , then instantiating
X to an AC-function headed by f would not increase the cardinality of the set of
admissible subterms. This is illustrated in Example 8.
Example 8 (A case where instantiateStep does not increase |AS|). If we change
slightly the problem from Example 7 to

P ′
1 = {X ≈? f(Z1, Z2), f(X,W ) ≈? g(a, c)}

and apply instantiateStep we would obtain:

P ′
2 = {f(Z1, Z2,W ) ≈? g(a, c)},

and we would have AS (P ′
1) = AS (P ′

2) = {a, c}.
Let’s return to our original example of P = {t ≈? s} and P1 = {t1 ≈? t′1, . . . , tm ≈?

t′m, s1 ≈? s′1, . . . , sn ≈? s′n}, and denote by P2 the unification problem obtained by
calling instantiateStep passing as input P1. We will show that in the cases where
|AS (P2)| may be greater than |AS (P )| we necessarily have |V>1(P )| > |V>1(P2)|.

Consider an arbitrary variable term X on the left-hand side of P1. If X were
instantiated by instantiateStep, it would be instantiated to an AC-function headed
by f (see Section 4.3.2) and therefore would only contribute to increasing |AS (P2)| in
relation with |AS (P1)| if it also occurred as an argument to a function term (let’s call
it t∗) headed by a different symbol than f (let’s say g). Since X is in the left-hand
side of P1 this means that it was an argument of t or s in P (suppose t, without loss of
generality) and remember that both t and s are headed by the same symbol f . Then
X is an argument of t∗ and t and therefore, by definition, X ∈ V>1(P ). However X
was instantiated by instantiateStep and therefore it is not in V>1(P2). The new
variables introduced by solveAC will not make any difference in favour of |V>1(P2)|:
when they occur as arguments of function terms, the terms are always headed by
the same symbol f . Therefore |V>1(P )| > |V>1(P2)|. Accordingly, to fix our problem
we include the measure |V>1(P )| before |AS (P )|, obtaining the lexicographic measure
described in Section 5.1.

The situation described is similar when our unification problem P has multiple
equations. Let’s say P = {t1 ≈? s1, . . . , tn ≈? sn}. The only difference is that it is
insufficient to call function solveAC and then function instantiateStep in only the
first equation t1 ≈? s1: we need to call function applyACStep and simplify every
equation ti ≈? si.

To see how things may go wrong, notice that in our previous explanation, when
the unification problem P had just one equation, a call to solveAC might reduce the
admissible subterms by removing a given term (we called it u). However, now that
P has more than one equation, if u is also present in other equations of the original
problem P , calling solveAC only in the first equation no longer removes u from the
set of admissible subterms. Finally, the full structured proof of termination for function
applyACStep is shown in Appendix A.
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6 Proving Soundness and Completeness

6.1 Nice Inputs
As mentioned, to unify terms t and s we use Algorithm 1 with P = {t ≈? s}, σ = id
and V = Vars((t, s)). However, since the parameters of ACUnif may change between
the recursive calls, we cannot directly prove soundness (Corollary 5) by induction. We
must prove the more general Theorem 4, with generic parameters for the unification
problem P , the substitution σ, and the set V of variables that are/were in use. To aid
us in this proof, we notice that while the recursive calls of ACUnif may change P , σ,
and V , some nice relations between them are preserved. These relations between the
three components of the input are captured by Definition 17.
Definition 17 (Nice input ). Given an input (P, σ, V ), we say that this input is
nice if:

1. σ is idempotent.
2. Vars(P ) ∩ dom(σ) = ∅.
3. σ ⊆ V .
4. Vars(P ) ⊆ V .

6.2 Soundness
As mentioned, once we prove Theorem 4, then soundness (Corollary 5) is obtained
immediately. To prove Theorem 4, we used Theorem 2 and Theorem 3. Finally, to
establish Theorem 2 (soundness of applyACStep), we used Theorem 1 (soundness
of solveAC).
Theorem 1 (Soundness of solveAC ). Suppose that (P1, V1) ∈
solveAC(t, s, V, f), that δ unifies P and that t and s are AC-function applications
headed by the same symbol f . Then δ unifies {t ≈? s}.
Theorem 2 (Soundness of applyACStep ). Suppose that (P ′, σ′, V ′) ∈
applyACStep(P1, P2, σ, V ), that δ unifies P ′, that ∃σ1 : δ = σ1σ

′, that dom(σ) ⊆ V
and that dom(σ) ∩ (Vars(P1) ∪ Vars(P2)) = ∅. Then δ unifies P1.
Remark 10. Hypotheses dom(σ) ⊆ V and dom(σ) ∩ (Vars(P1) ∪ Vars(P2)) = ∅ of
Theorem 2 are immediately satisfied when ACUnif calls applyACStep, since in this
case we have P1 = P , P2 = ∅ and (P, σ, V ) is a nice input.
Theorem 3 (Soundness of Variable Instantiation ). Suppose that (P, σ, V ) is
a nice input, σ1 = {X 7→ t}, P = {X ≈? t} ∪ P1, X ̸∈ Vars(t) and δ ∈
ACUnif(σ1P1, σ1σ, V ). If δ unifies σ1P1, then δ unifies {X ≈? t} and δ unifies P1.
Theorem 4 (Soundness for Nice Inputs ). Let (P, σ, V ) be a nice input, and δ ∈
ACUnif(P, σ, V ). Then, δ unifies P .

Theorem 4 was proved by induction on the lexicographic measure we used for
termination. It branches in many cases, according to the type of the equation t ≈? s
selected by choose (see Algorithm 1). There are two interesting cases. The first case
is in lines 17-19 when we only have AC-unification pairs (in that case, we used the
soundness of applyACStep, i.e. Theorem 2). The second case happens when we
instantiate a variable (lines 8 and 10) and is solved by using Theorem 3.
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Corollary 5 (Soundness of ACUnif ). If δ ∈ ACUnif({t ≈? s}, id,Vars((t, s)))
then δ unifies t ≈? s.

6.3 Completeness

6.3.1 A Structured Proof of Completeness of solveAC

Theorem 6 is completeness for solveAC. Recalling the structure of a unification
problem obtained after applyACStep (Section 4.3.2), we see that the hypothesis
δ ⊆ V of Theorem 6 means that the substitution δ will only impact the left-hand side
of P1 (since δ ⊆ V and the variables in the left-hand side of P1 are all in V ). Theorem
6 guarantees that the substitution γ will only impact the new variables introduced by
solveAC, since dom(γ) ⊆ V1 − V . Regarding P1, γ will only impact the right-hand
side of P1.

We give a structured proof (à la Leslie Lamport [21, 22]) of the completeness of
solveAC (Theorem 6). In a structured proof, the main steps are numbered in the
form ⟨1⟩x., and they may decompose into substeps (of the form ⟨2⟩.y) and so on.
Theorem 6 (Completeness of solveAC ). Suppose that t and s are AC-function
applications headed by the same symbol f , t and s are not equal modulo AC, δ
unifies {t ≈? s}, δ ⊆ V , and that Vars((t, s)) ⊆ V . Then, there is (P1, V1) ∈
solveAC(t, s, V, f) and a substitution γ such that γδ unifies P1, dom(γ) ⊆ V1 − V ,
and Vars(im(γ)) ⊆ V1.
Proof:
⟨1⟩1. It suffices to consider the case where t and s do not share common arguments.

Proof: Let t∗ and s∗ be the terms obtained after eliminating the common argu-
ments of t and s. Notice that if δ unifies {t∗ ≈? s∗} then δ unifies {t ≈? s}. Also,
since the first step of solveAC is to eliminate the common arguments, the output
of solveAC(t, s, V, f) is the same as solveAC(t∗, s∗, V, f).

⟨1⟩2. Let t ≡ f(t1, . . . , tm) and s ≡ f(s1, . . . , sn), where each ti occurs ai times as an
argument of t and each sj occurs bj times as an argument of s. The associated
linear Diophantine equation is:

a1X1 + . . .+ amXm = b1Y1 + . . .+ bnYn.

Let |t|A be the number of times the term A (or some term equal to A modulo
AC) appears in the list of arguments of t, i.e. in Argsf (t). Let Args(δt) =
{A1, . . . , Ak} be the set of all the different arguments (modulo AC) of δt.

⟨1⟩3. Since δt ≈ δs, for each Ai, we have |δt|Ai
= |δs|Ai

. Therefore:

a1|δt1|Ai
+ . . .+ am|δtm|Ai

= b1|δs1|Ai
+ . . .+ bn|δsn|Ai

⟨1⟩4. Let D be the matrix obtained when solveAC calls dioSolver and let
−→
Z ′
1, . . . ,

−→
Z ′
l′ be the rows of D. Then {

−→
Z ′
1, . . . ,

−→
Z ′
l′} is a spanning set of solutions.

Comment: since dioSolver calculates all the solutions until an upper bound, this
relies on the proof that our bound is correct.
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⟨1⟩5. Let −−→nAi be the vector (|δt1|Ai , . . . , |δtm|Ai , |δs1|Ai , . . . , |δsn|Ai). Since −−→nAi solves
the Diophantine equation, it can be written as a linear combination of the
spanning set of solutions:

−−→nAi = c′i1
−→
Z ′
1 + . . .+ c′il′

−→
Z ′
l′ .

We can do that for every equation:

−−→nA1
= c′11

−→
Z ′
1 + . . .+ c′1l′

−→
Z ′
l′

...
−−→nAk

= c′k1
−→
Z ′
1 + . . .+ c′kl′

−→
Z ′
l′ .

Let C = [c′ij ] be the matrix of coefficients.

⟨1⟩6. Let D1 be the Diophantine submatrix of D that includes row
−→
Z ′
j if and only if

the j-th column of C is not the zero column. Let C1 be the submatrix of C that
includes column j if and only if it is not the zero column. Denoting the entries
of C1 by cij and the rows of D1 by

−→
Z1, . . . ,

−→
Zl, we have:

−−→nA1 = c11
−→
Z1 + . . .+ c1l

−→
Zl

...
−−→nAk

= ck1
−→
Z1 + . . .+ ckl

−→
Zl.

(5)

Let’s denote by zi1, . . . , zi(m+n) the entries of the vector
−→
Zi, for i = 1, . . . , l.

Notice that D1 = (
−→
Z1, . . . ,

−→
Zl) = [zij ] is a l × (m+ n) matrix.

⟨1⟩7. Let (P1, V1) be the output of dioMatrix2acSol when called with matrix D1.
The problem P1 is of the form:

P1 = {t1 ≈? t′1, . . . , tm ≈? t′m, s1 ≈? s′1, . . . , sn ≈? s′n}.

⟨1⟩8. Every column of D1 has at least one coefficient different than zero.
Proof:
⟨2⟩1. Let’s prove for the arbitrary column j. Recall that the j-th term of the vector

(t1, . . . , tm, s1, . . . sn) is associated with column j of D1. Let’s denote by tj
this term.

⟨2⟩2. There exists an Ai such that |δtj |Ai
> 0.

⟨2⟩3. Analysing the j-th component of i-th equality in Equation 5, we have |δtj |Ai
=

ci1z1j + . . .+ cilzlj . Therefore, there exists some zxj greater than zero, i.e. the
j-th column of D1 has at least one coefficient different than zero.
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⟨1⟩9. Define γ such that

γZj =


Ai, if cij = 1 and cix = 0 for k ̸= j.

f(A1, . . . A1︸ ︷︷ ︸
c1j

, . . . , Ak, . . . , Ak︸ ︷︷ ︸
ckj

), otherwise

for the new variables Zj ’s and for all the other variables X, γX = X. Notice
that dom(γ) ⊆ V1 − V and that Vars(im(γ)) ⊆ V1.

Proof:
⟨2⟩1. Due to Step ⟨1⟩8, this γ is well-defined, as we will never have a case where

c1j , . . . , ckj are all zero.
⟨2⟩2. dom(γ) ⊆ V1 − V since the new variables Zis introduced by solveAC are in

V1 − V .
⟨2⟩3. The variables in im(γ) are the variables in A1, . . . , Ak. These are the variables

occurring in δt (see Step ⟨1⟩2). By hypothesis, Vars(t) ⊆ V and δ ⊆ V , which
let us conclude that im(γ) ⊆ V . Since V ⊆ V1 we get that im(γ) ⊆ V1.

⟨1⟩10. γδ unifies P1.
Proof:
⟨2⟩1. It suffices to prove that for an arbitrary i we have γδti ≈ γδt′i.
⟨2⟩2. This can be simplified to δti ≈ γt′i.

Proof:
⟨3⟩1. On one hand, since Vars(δti) ⊆ (Vars(im(δ))∪Vars(ti)) ⊆ V and dom(γ)∩

V = ∅ we have γδti = δti.
⟨3⟩2. On the other hand, since Vars(t′i)∩V = ∅ and dom(δ) ⊆ V , we have δt′i = t′i

and therefore γδt′i = γt′i.

⟨2⟩3. It suffices to prove that the list of arguments Argsf (δti) is a permutation of
Argsf (γt

′
i). It suffices to prove that for an arbitrary term u, we have |δti|u =

|γt′i|u.
Comment: from the hypothesis that Argsf (δti) is a permutation of Argsf (γt′i),
it is only possible to conclude that δti ≈? γt′i because neither δti nor γt′i is a
pair. This is guaranteed here because we restrict ourselves to well-formed terms
(Definitions 2 and 4) and substitutions.

⟨2⟩4. It suffices to consider the case where u is equal (modulo AC) to one of the
Ajs. Otherwise we would have |δti|u = |γt′i|u = 0.

⟨2⟩5. Let u ≈ Aj . Since
−−→nAj

= cj1
−→
Z1 + . . .+ cjl

−→
Zl,

we analyse the i-th entry of this vectorial equality and conclude that |δti|u =
|δti|Aj

= cj1z1i + . . .+ cjlzli.
⟨2⟩6. Recall that Z1 will appears z1i times in Argsf (t

′
i), Z2 will appear z2i

times in Argsf (t
′
i) and so on - see Section 4.3.1, specially the part about

dioMatrix2acSol . Therefore,

|γt′i|u = |γt′i|Aj = z1i|γZ1|Aj + . . .+ zli|γZl|Aj = cj1z1i + . . .+ cjlzli.
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⟨2⟩7. Comparing the expressions in ⟨2⟩6 and ⟨2⟩5, we conclude that |δti|u = |δt′i|u.
⟨1⟩11. (P1, V1) ∈ solveAC(t, s, V, f).

Proof:
⟨2⟩1. All that is left to prove is that extractSubmatrices does not discard the

matrixD1. It is enough to show thatD1 satisfies the two constraints mentioned
in Section 4.3.1.

⟨2⟩2. As proved in Step ⟨1⟩8, D1 satisfies the first constraint: every column has one
coefficient greater than 0.

⟨2⟩3. D1 satisfies constraint 2: a column corresponding to a non-variable argument
will only have one coefficient equal to 1, and the others are 0.

Proof:
⟨3⟩1. We will prove for the arbitrary column j, associated with the j-th element of

the vector (t1, . . . , tm, s1, . . . , sn). Denote this term by tj . By our hypothesis,
tj is a non-variable argument.

⟨3⟩2. Since tj is an argument of either t or s, it is not an AC-function application
headed by f . Additionally, since tj is also a non-variable term, for any
substitution σ, σtj is not an AC-function headed by f .

⟨3⟩3. One of the equations in P1 is tj ≈? t′j . Suppose by contradiction that in j-
th column of matrix D1 there is not exactly one coefficient equal to 1, and
the others are zero. Then t′j cannot be a new variable Zi, and it is instead
an AC-function application headed by f whose arguments (at least two)
are the new variables Zis. This means that for any substitution σ we would
have that σt′j is an AC-function application headed by f .

⟨3⟩4. According to Steps ⟨3⟩2 and ⟨3⟩3, it would be impossible to unify tj ≈? t′j
and therefore P1. This, however, contradicts Step ⟨1⟩10.

6.3.2 Completeness of applyACStep

Theorem 7 is completeness for applyACStep.
Theorem 7 (Completeness of applyACStep ). Suppose that δ unifies P1∪P2, that
P1 consists of only AC-unification pairs, that δ ⊆ V , that σ ≤ δ and that (P1∪P2, σ, V )
is a nice input. Then, there exists (P ′, σ′, V ′) ∈ applyACStep(P1, P2, σ, V ) and a
substitution γ such that γδ unifies P ′, dom(γ) ⊆ V ′ − V , im(γ) ⊆ V ′ and σ′ ≤ γδ.

6.3.3 Completeness of ACUnif

Lemma 10 states the completeness of Algorithm 1 with an arbitrary parameter V and
an extra hypothesis δ ⊆ V . Similarly to the soundness case, it is proved immediately
once we prove Lemma 9.
Lemma 8 (Completeness for Variable Instantiation ). Suppose that (P, σ, V ) is a
nice input, σ1 = {X 7→ t}, P = {X ≈? t} ∪ P1, X ̸∈ Vars(t) and σ ≤ δ. If δ unifies
P , then σ1σ ≤ δ and δ unifies σ1P1.
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Lemma 9 (Completeness for Nice Inputs ). Let (P, σ, V ) be a nice input, δ unifies
P , σ ≤ δ, and δ ⊆ V . Then, there is a substitution γ ∈ ACUnif(P, σ, V ) such that
γ ≤V δ.

Lemma 9 was proved by induction on the lexicographic measure we used for ter-
mination. It branches in many cases, according to the type of the equation t ≈? s
selected by choose (see Algorithm 1). There are two interesting cases. The first case
is in lines 17-19 when we only have AC-unification pairs (in that case, we used the
completeness of applyACStep, i.e. Lemma 7). The second case happens when we
instantiate a variable (lines 8 and 10) and is solved by using Lemma 8.

To see the need for hypothesis σ ≤ δ in Lemma 9, consider the case where P = ∅
and recall that in this case, ACUnif returns a list with only one substitution: σ. Then,
any δ unifies P , and if we did not have the hypothesis that σ ≤ δ we would not be
able to prove our thesis.
Lemma 10 (Completeness of ACUnif with δ ⊆ V ). Let V be a set of variables
such that δ ⊆ V and Vars((t, s)) ⊆ V . If δ unifies t ≈? s, then ACUnif computes
a substitution more general than δ, i.e., there is a substitution γ ∈ ACUnif({t ≈?

s}, id, V ) such that γ ≤V δ.
In the proof of Lemma 10, the hypothesis δ ⊆ V is a technicality that was put

to guarantee that the new variables introduced by the algorithm do not clash with
the variables in dom(δ) or in the terms in im(δ) and could be replaced by a different
mechanism that guarantees that the variables introduced by the AC-part of ACUnif
are indeed new.

As an example, let’s go back to the substitutions (see Equation 3) computed in
the example of Section 3.2 and notice that the set of variables in the original problem
is V = {X,Y, Z}. If

δ = {X 7→ f(Z2, a, b), Z 7→ f(a, Y, Z2, a, Z2, a), Z4 7→ c}

there is some overlap between the variables in dom(δ) and in the terms in im(δ) and
the ones introduced by the algorithm, but the substitution

σ4 = {X 7→ f(Z6, b), Z 7→ f(a, Y, Z6, Z6)}

that we computed is still more general than δ (restricted to the variables in V ). Indeed,
if we take δ1 = {Z6 7→ f(Z2, a)} then δW = δ1σ4W for all variables W ∈ V .

Finally, had we considered the set V ′ = {X,Y, Z, Z1, Z2, Z3, Z4} instead of V =
{X,Y, Z} we would have δ ⊆ V ′ and the set of solutions would be:

σ′
1 = {Y 7→ f(b, b), Z 7→ f(a,X,X)}.
σ′
2 = {Y 7→ f(Z4, b, b), Z 7→ f(a, Z4, X,X)}.
σ′
3 = {X 7→ b, Z 7→ f(a, Y )}.
σ′
4 = {X 7→ f(Z4, b), Z 7→ f(a, Y, Z10, Z10)}.
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instead of
σ1 = {Y 7→ f(b, b), Z 7→ f(a,X,X)}.
σ2 = {Y 7→ f(Z2, b, b), Z 7→ f(a, Z2, X,X)}.
σ3 = {X 7→ b, Z 7→ f(a, Y )}.
σ4 = {X 7→ f(Z6, b), Z 7→ f(a, Y, Z6, Z6)}.

Notice that the difference between the two sets of solutions is just in the name given
to the new variables.

First, we give a high-level description of how to remove hypothesis δ ⊆ V from
Lemma 10. The key step to prove completeness of ACUnif (an improvement of
Lemma 10 where V = Vars(t, s) and without the hypothesis δ ⊆ V ) is to prove that
the substitutions computed when we call ACUnif with input (P, σ, V ) “differ only
by a renaming” from the substitutions computed when we call ACUnif with input
(P, σ, V ′), where δ ⊆ V ′. Formalising this intuitive reasoning is harder than it appears
at first sight. This cannot be proven by induction directly because if V and V ′ differ
and ACUnif enters the AC-part, the new variables introduced for each input may
“differ only by a renaming”, i.e. the first component of the two inputs, will also “dif-
fer only by a renaming”. Once ACUnif instantiates variables, it may happen that
the substitutions computed so far, i.e. the second component of the two inputs, will
also “differ only by a renaming.” The solution is to prove by induction the more gen-
eral statement that if the inputs (P, σ, V ) and (P ′, σ′, V ′) “differ only by a renaming”
then the substitutions computed when we call ACUnif with (P, σ, V ) “differ only by
a renaming” from the substitutions computed when we call ACUnif with (P ′, σ′, V ′).

The idea of two inputs differing only by a renaming is captured in the definition
of renamed inputs (Definition 18). The number of items in this definition may seem
excessive, but they were all used in our proof, as will be explained in Remark 12.
Definition 18 (Renamed Inputs Fixing ψ ). We say that (P, σ, V ) and (P ′, σ′, V ′)
are renamed inputs fixing ψ, if there is a renaming ρ such that:

1. P ′ = ρP .
2. σ′ =ψ ρσ.
3. max(V ) ≤ max(V ′).
4. ψ ⊆ V .
5. dom(ρ) ⊆ V
6. Vars(im(ρ)) ⊆ V ′.
7. If X ∈ Vars(im(ρ)) and X ̸∈ dom(ρ) then X ̸∈ V

Example 9. Consider the inputs

({X ≈? g(Z2)}, {Y 7→ f(Z1, Z3)}, {X,Y, Z1, Z2, Z3}) and

({X ≈? g(Z3)}, {Y 7→ f(Z2, Z4)}, {X,Y, Z2, Z3, Z4})

Notice that they are renamed inputs fixing ψ = {X,Y }, where we pick the renaming
ρ = {Z1 7→ Z2, Z2 7→ Z3, Z3 7→ Z4}.
Remark 11 (On the Name Renamed Inputs). Let (P, σ, V ) and (P ′, σ′, V ′) be
renamed inputs fixing ψ. The name “Renamed Inputs” comes from the fact that P ′

is a renaming of P (Item 1) and that, restricted to the set ψ, σ′ is a renaming of σ
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(Item 2). However, the only necessary relation between V and V ′ (the third compo-
nent of the inputs) in the Definition of Renamed Inputs is that max(V ) ≤ max(V ′).
An alternative name for Definition 18 could have been “Variant Inputs”.

We can state Theorem 13 with this definition. The proof of Theorem 13 is done by
induction, and the hardest cases are when we instantiate a variable (Lemma 11) and,
inside the function applyACStep, when we call solveAC (Lemma 12). We give a
structured proof (à la Leslie Lamport) of the mentioned lemmas below.
Lemma 11 (Correctness of Renamed Inputs - Variable Instantiation ). Let σ1 =
{X 7→ t} and σ′

1 = {ρX 7→ ρt}. Suppose that P1 ⊆ P , P ′
1 = ρP1, X ̸∈ Vars(t), X ∈ P ,

t ∈ P and (P, σ, V ) and (P ′, σ′, V ′) are renamed inputs fixing ψ with renaming ρ. Then,
(σ1P1, σ1σ, V ) and (σ′

1P
′
1, σ

′
1σ

′, V ′) are renamed inputs fixing ψ with renaming ρ.
Proof:
⟨1⟩1. First we prove that σ′

1ρ =V ρσ1.
Proof:
⟨2⟩1. Suffices: to prove that for every variable Z ∈ V we have σ′

1ρZ = ρσ1Z, i.e.,
that [ρX 7→ ρt]ρZ = ρ[X 7→ t]Z.

⟨2⟩2. Case: Z = X. Then both sides are equal to ρt.
⟨2⟩3. Case: Z ̸= X.

Proof:
⟨3⟩1. The right-hand side is ρ[X 7→ t]ρZ = ρZ, which means that it suffices to

prove that [ρX 7→ ρt]ρZ (the left-hand side) is also equal to ρZ. To do that,
it suffices to prove that ρZ ̸= ρX.

⟨3⟩2. Suppose by contradiction that ρZ = ρX.
⟨3⟩3. Case: X ∈ dom(ρ) and Z ∈ dom(ρ). Since ρ is a renaming, ρZ = ρX

and both Z and X are in dom(ρ) we must have X = Z. This, however,
contradicts the fact that we are in the case where Z ̸= X.

⟨3⟩4. Case: X ̸∈ dom(ρ) and Z ∈ dom(ρ). We have ρZ = ρX = X, which means
that X ∈ Vars(im(ρ)). Since we also have that X ̸∈ dom(ρ), by Item 7 of
the Definition of Renamed Inputs, we get that X ̸∈ V . However, X ∈ P
and Vars(P ) ⊆ V (see item 4 of the Definition of Nice Input). This means
that X ∈ V . Contradiction.

⟨3⟩5. Case: X ∈ dom(ρ) and Z ̸∈ dom(ρ). Similar to the previous case, exchang-
ing the roles of X and Z and noticing that Z ∈ V is one of our hypotheses
(Step ⟨2⟩1).

⟨3⟩6. Case: X ̸∈ dom(ρ) and Z ̸∈ dom(ρ). Then ρZ = ρX 7→ Z = X, which
contradicts the fact that we are in the case where Z ̸= X.

⟨1⟩2. Item 1 in the Definition of Renamed Inputs is satisfied: σ′
1P

′
1 = ρσ1P1.

Proof:
⟨2⟩1. Let ti be an arbitrary term in P1 and let t′i be the correspondent in P ′

1. It
suffices to prove that σ′

1t
′
i = ρσ1ti. Since P ′

1 = ρP1 we have t′i = ρti, which
means that we must prove σ′

1ρti = ρσti.
⟨2⟩2. It suffices to prove that for every variable Z ∈ Vars(ti) we have σ′

1ρZ = ρσ1Z.
This follows from σ′

1ρ =V ρσ1 (Step ⟨1⟩1), since Z ∈ Vars(P1) ⊆ Vars(P ) and
Vars(P ) ⊆ V (this last one is because of the definition of nice input).
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⟨1⟩3. Item 2 in the Definition of Renamed Inputs is satisfied: σ′
1σ

′ =ψ ρσ1σ.
Proof:
⟨2⟩1. Since (P, σ, V ) and (P ′, σ′, V ′) are renamed inputs, by Item 2 of the definition,

we have σ′ =ψ ρσ. Therefore σ′
1σ

′ =ψ σ
′
1ρσ.

⟨2⟩2. Since σ′
1ρ =V ρσ1 (by Step ⟨1⟩1) and Vars(im(σ)) ⊆ V (By Item 3 of the

Definition of Nice Input) we have σ′
1ρσ =V ρσ1σ. Since ψ ⊆ V (Item 4 of the

Definition of Renamed Inputs), we have σ′
1ρσ =ψ ρσ1σ.

⟨1⟩4. The remaining items to prove that (σ1P1, σ1σ, V ) and (σ′
1P

′
1, σ

′
1σ

′, V ′) are
renamed inputs depend only on ψ, ρ, V and V ′ and therefore are immediately
proved from the fact that (P, σ, V ) and (P ′, σ′, V ′) are renamed inputs.

Lemma 12 (Correctness of Renamed Inputs - solveAC ). Let (P1 ∪ P2, σ, V ) be
a renamed input of (P ′

1 ∪ P ′
2, σ

′, V ′) fixing ψ with renaming ρ, let car(P1) = t ≈? s
be the unification problem that we will apply solveAC, where t and s are rooted
by the same function symbol f . Let V1 be the new set of variables to avoid after
we call solveAC(t, s, V, f) and V ′

1 the new set of variables to avoid after we call
solveAC(ρt, ρs, V ′, f). Let P ′

c be a unification problem in solveAC(ρt, ρs, V ′, f).
Then, there exists Pc in solveAC(t, s, V, f) such that (cdr(P1) ∪ Pc ∪ P2, σ, V1) and
(cdr(P ′

1) ∪ P ′
c ∪ P ′

2, σ
′, V ′

1) fixing ψ.
Proof:
⟨1⟩1. Let: Z ′

1, . . . , Z
′
l be the l new variables introduced by solveAC(ρt, ρs, V ′, f).

When we call solveAC(t, s, V, f), it will also introduce l new variables, which
we denote by Z1, . . . , Zl. Notice that

V1 = V ∪ {Z1, . . . , Zl}
V ′
1 = V ′ ∪ {Z ′

1, . . . , Z
′
l}.

Finally, notice that:

|Zi| = max(V ) + i

|Z ′
i| = max(V ′) + i

for every 1 ≤ i ≤ l.
⟨1⟩2. Define: ρ1 as

ρ1X =

{
Z ′
i if X = Zi for i = 1, . . . , l

ρX otherwise.

Notice that ρ1 =V ρ.
Comment: Recall that in our PVS code, substitutions are defined as a list, where
each entry is of the form {X 7→ t}. To define ρ1 in our formalisation, first we defined
ρ∗ = {Z1 7→ Z ′

1, . . . , Zl 7→ Z ′
l}. Then, the renaming ρ1 is defined in our formalisation

as ρ1 = append(ρ, ρ∗). This way of constructing ρ1 only works since dom(ρ) ⊆ V
(Item 5 of the Definition of Renamed Inputs) and that {Z ′

1, . . . , Z
′
l} ∩ V = ∅.
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⟨1⟩3. If P ′
c is a unification problem in solveAC (ρt, ρs, V, f), there exists a unification

problem Pc in solveAC (t, s, V, f) such that P ′
c = ρ1Pc.

Proof:
⟨2⟩1. The Diophantine equation associated with both calls of solveAC will be the

same, and so will be the matrix returned by dioSolver. As a consequence
there exists a unification problem PC in solveAC(t, s, V, f) such that the only
difference between the terms in the right-hand side of Pc and P ′

c will be in
the name of the variables: they will be Z1, . . . , Zl in Pc and correspondingly
Z ′
1, . . . , Z

′
l in P ′

c. Therefore, given a term u′ in the right-hand side of P ′
c, its

correspondent term u in Pc is such that u′ = ρ1u.
⟨2⟩2. Let: t1, . . . , tm be the arguments of t and s1, . . . , sn be the arguments of

s. The terms in the left-hand side of every unification problem returned
by solveAC(t, s, V, f) will be respectively t1, . . . , tm, s1, . . . , sn. Similarly,
the terms in the left-hand side of every unification problem returned by
solveAC(ρt, ρs, V, f) will be respectively ρt1, . . . , ρtm, ρs1, . . . , ρsn. There-
fore, given a term u′ in the left-hand side of P ′

c, its correspondent term u in
Pc is such that u′ = ρu. Additionally, since ρ1 =V ρ we have u′ = ρ1u.

⟨1⟩4. Item 1 of the Definition of Renamed Inputs holds:

cdr(P ′
1) ∪ P ′

c ∪ P ′
2 = ρ1(cdr(P1) ∪ Pc ∪ P2).

Proof: We have that (P ′
1 ∪ P ′

2, σ
′, V ′) is a renamed input of (P1 ∪ P2, σ, V ) fixing

ψ with renaming ρ, which gives us cdr(P ′
1) = ρ cdr(P1) and P ′

2 = ρP2 (Item 1 of
the Definition of Renamed Inputs). Since ρ1 =V ρ we get cdr(P ′

1) = ρ1 cdr(P1) and
P ′
2 = ρ1P2. Finally, by Step ⟨1⟩3, P ′

c = ρ1Pc.

⟨1⟩5. Item 2 of the Definition of Renamed Inputs holds: σ′ =ψ ρ1σ.
Proof: Since ψ ⊆ V and ρ1 =V ρ, it suffices to prove that σ′ =ψ ρσ. This holds
since (P ′

1 ∪ P ′
2, σ

′, V ′) is a renamed input of (P1 ∪ P2, σ, V ) fixing ψ with renaming
ρ (Item 2 of the Definition of Renamed Inputs).

⟨1⟩6. Item 3 of the Definition of Renamed Inputs holds: max(V1) ≤ max(V ′
1).

Proof: We have

max(V1) = |Zl| = l +max(V )

max(V ′
1) = |Z ′

l | = l +max(V ′).

Since max(V ) ≤ max(V ′) we obtain max(V1) ≤ max(V ′
1).

⟨1⟩7. Item 4 of the Definition of Renamed Inputs holds: ψ ⊆ V1.
Proof: This follows from ψ ⊆ V (the Definition of Renamed Inputs in our
hypothesis) and V ⊆ V1.

⟨1⟩8. Item 5 of the Definition of Renamed Inputs holds: dom(ρ1) ⊆ V1.
Proof: We have

dom(ρ1) ⊆ dom(ρ) ∪ {Z1, . . . , Zl}.
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Since dom(ρ) ⊆ V (Item 5 of the Definition of Renamed Inputs in our hypothesis)
and V1 = V ∪ {Z1, . . . , Zl} the result follows.

⟨1⟩9. Item 6 of the Definition of Renamed Inputs holds: Vars(im(ρ1)) ⊆ V ′
1 .

Proof: We have

Vars(im(ρ1)) ⊆ Vars(im(ρ)) ∪ {Z ′
1, . . . , Z

′
l}.

Since Vars(im(ρ)) ⊆ V ′ (Item 6 of the Definition of Renamed Inputs in our
hypothesis) and V ′

1 = V ′ ∪ {Z ′
1, . . . , Z

′
l} the result follows.

⟨1⟩10. Item 7 of the Definition of Renamed Inputs holds: If X ∈ im(ρ1) and X ̸∈
dom(ρ1) then X ̸∈ V1.

Proof:
⟨2⟩1. Case: max(V ) = max(V ′).

Proof:
⟨3⟩1. Zi = Z ′

i for every 1 ≤ i ≤ l and therefore ρ1 = ρ.
⟨3⟩2. We have X ∈ im(ρ) and X ̸∈ dom(ρ). Hence, by Item 7 of the Definition of

Renamed Inputs, X ̸∈ V .
⟨3⟩3. Since V1 = V ∪ {Z1, . . . , Zl}, all there is to prove is that X ̸∈ {Z1, . . . , Zl}.

Due to Step ⟨3⟩1, it suffices to prove that X ̸∈ {Z ′
1, . . . , Z

′
l}.

⟨3⟩4. Suppose by contradiction that X ∈ {Z ′
1, . . . , Z

′
l}. Then, X ̸∈ V ′. However,

this contradicts the fact that X ∈ im(ρ), by Item 6 of the Definition of
Renamed Inputs.

⟨2⟩2. Case: max(V ) < max(V ′).
Proof:
⟨3⟩1. We have

dom(ρ1) = dom(ρ) ∪ {Z1, . . . , Zl}
im(ρ1) = im(ρ) ∪ {Z ′

1, . . . , Z
′
l}

V1 = V ∪ {Z1, . . . , Zl}.

⟨3⟩2. Case: X ∈ im(ρ). We also have X ̸∈ dom(ρ) and hence, by Item 7 of
the Definition of Renamed Inputs, X ̸∈ V . Since X ∈ V1, this implies
X ∈ {Z1, . . . , Zl}. This, however, contradicts the fact that X ̸∈ dom(ρ1).

⟨3⟩3. Case: X ̸∈ im(ρ). Then, X ∈ {Z ′
1, . . . , Z

′
l}. We have |X| > max(V ′) >

max(V ) and hence X ̸∈ V . Additionally, X ̸∈ {Z1, . . . , Zl} because
otherwise we would have X ∈ dom(ρ1). Hence, we get that X ̸∈ V1.

With Lemmas 11 and 12 it is possible to prove Theorem 13, shown below.
Theorem 13 (Correctness of Renamed Inputs ). Let (P, σ, V ) and (P ′, σ′, V ′) be
renamed inputs fixing ψ and suppose γ′ ∈ ACUnif(P ′, σ′, V ′). Then, there exist a
renaming ρ and a substitution γ ∈ ACUnif(P, σ, V ) such that γ′ =ψ ργ.
Proof sketch:
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⟨1⟩1. The proof is by induction using the lexicographic measure we used in the proof
of termination for P ′.

⟨1⟩2. Case: nil?(P ′).
Then, ACUnif(P ′, σ′, V ′) returns and we have γ′ = σ′. Due to Item 1 of the
Definition of Renamed Inputs, P = ρP ′ = ∅ and hence ACUnif(P, σ, V ) returns σ,
i.e, γ = σ. Then, γ′ = σ′ =ψ ρσ = ργ, due to Item 2 of the Definition of Renamed
Inputs.

⟨1⟩3. If P ′ is not null, let ((t′, s′), P ′
1) = choose(P ′). The proof is divided into cases

according to the structure of t and s, as Algorithm 1.
⟨1⟩4. Case: (s′ matches X) and (X not in t′).
⟨2⟩1. Then,

ACUnif(P ′, σ′, V ′) = ACUnif(σ′
1P

′
1, σ

′
1σ

′, V ′)

ACUnif(P, σ, V ) = ACUnif(σ1P1, σ1σ, V ).

⟨2⟩2. By Lemma 11, (σ1P1, σ1σ, V ) and (σ′
1P

′
1, σ

′
1σ

′, V ′) are renamed inputs fixing
χ and therefore we can apply the induction hypothesis and conclude.

⟨1⟩5. Case: t′ ≈? s′ is an AC-unification pair.
⟨2⟩1. Since γ′ ∈ ACUnif(P ′, σ′, V ′) there will be

(P ′
∗, σ

′
∗, V

′
∗) ∈ applyACStep(P ′, σ′, V ′)

such that γ′ ∈ ACUnif(P ′
∗, σ

′
∗, V

′
∗).

⟨2⟩2. We can prove that there will be

(P∗, σ∗, V∗) ∈ applyACStep(P, σ, V )

such that (P∗, σ∗, V∗) and (P ′
∗, σ

′
∗, V

′
∗) are renamed inputs. Since function

applyACStep calls functions solveAC and instantiateStep to every AC-
unification pair in the unification problem, this result is established as soon
as we prove the lemmas of the correctness of functions solveAC and instan-
tiateStep for renamed inputs. For function solveAC, this is Lemma 12.
Finally, since function instantiateStep only performs variable instantiation,
the corresponding Lemma is proved in the same manner as Lemma 11.

⟨2⟩3. Hence, we apply the induction hypothesis and conclude.

⟨1⟩6. The case when (t′ matches X) and (X not in s′) is similar to Step ⟨1⟩4. The
remaining cases are straightforward.

Remark 12 (Necessity of Every Item in Definition of Renamed Inputs). Items 1 and
2 of the Definition of Renamed Inputs (Definition 18) are used in the main proof of
Theorem 13. Theorem 13 relies on Lemmas 11 and 12 and we needed to add Items
3 through 7 in Definition 18 to prove those Lemmas, as explained next. Notice that
Items 4 and 7 were used in Lemma 11 to prove that (σ1P1, σ1σ, V ) and (σ′

1P
′
1, σ

′
1σ

′, V ′)
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satisfy Items 1 and 2 of the Definition 18 and hence should be included in the definition.
Finally, in Lemma 12, we used Items 3, 5, 6 to prove that (cdr(P1) ∪ Pc ∪ P2, σ, V1)
and (cdr(P ′

1) ∪ P ′
c ∪ P ′

2, σ
′, V ′

1) satisfy Item 7 of Definition 18.
Finally, Theorem 13 is used along with Lemma 10 to prove the completeness of

ACUnif (Theorem 14).
Theorem 14 (Completeness of ACUnif ). If δ unifies t ≈? s, then ACU-
nif computes a substitution more general than δ, i.e., there is a substitution γ ∈
ACUnif({t ≈? s}, id,Vars(t, s)) such that γ ≤Vars(t,s) δ.
Proof:
⟨1⟩1. Let: V = Vars(t, s) and V ′ = V ∪ dom(δ) ∪ Vars(im(δ)). By Theorem 10 we

have that there exists a substitution γ′ ∈ ACUnif({t ≈? s}, id, V ′) such that
γ′ ≤V ′ δ. Hence, there exists δ1 such that δ =V ′ δ1γ

′

⟨1⟩2. Notice that the inputs ({t ≈? s}, id, V ) and ({t ≈? s}, id, V ′) are renamed inputs
fixing V with renaming id. We can apply the Theorem of Renamed Inputs and
obtain that there exists a renaming ρ and a substitution γ ∈ ACUnif({t ≈?

s}, id, V ) such that γ′ =V ργ.
⟨1⟩3. δ =V ′ δ1γ

′ =V= δ1ργ. Therefore, γ ≤V δ.

Remark 13 (The parameter ψ in the Definition of Renamed Inputs). The parameter
ψ in the definition of Renamed Inputs is used in the proof of Theorem 14 as

ψ = Vars(t, s) = V = Vars(P ).

One may wonder if we could have eliminated this parameter from the Definition of
Renamed Inputs and used instead V or Vars(P ) in its place. The answer is “no”
because ψ is unaffected by the recursive calls ACUnif makes and, hence, can perfectly
represent the variables in the original unification problem. P and V are the first and
third parameters of ACUnif and, therefore, can change as the algorithm calls itself
recursively. Hence, neither one can be used to replace ψ in the Definition of Renamed
Inputs.

7 More Information on the PVS Formalisation
The first order AC-formalisation here described is in NASALib, the main repository
for the PVS proof assistant. It is part of the nominal library, as it was used to formalise
nominal AC-matching (see Section 8.3 for a brief comment and [27] for more details
of the nominal paradigm). The functions specified in PVS and the statement of the
theorems can be found in files .pvs, while the proofs of the theorems can be found in
the .prf files. The PVS theories and their descriptions are shown below:

• top_first_order_AC_unification - High Level description of the first-order AC-
unification formalisation.

• unification_alg - Function ACUnif (Algorithm 1) and the theorems of soundness
and completeness.
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• renamed_inputs - The Definition of Renamed Inputs and auxiliary lemmas to
establish correctness.

• termination_alg - Definitions and theorems necessary for proving termination.
• apply_ac_step - Function applyACStep, the Definition of Nice Inputs and its

properties.
• aux_unification - Auxiliary functions such as solveAC, choose and instanti-

ateStep and its properties.
• Diophantine - Code to solve Diophantine equations.
• unification - Definition of a unification problem and basic properties.
• substitution - Properties about substitutions.
• equality - Properties about equality modulo AC.
• term_properties - Basic properties about terms.
• terms - The grammar of terms.
• list_aux_equational_reasoning, list_aux_equational_reasoning2parameters,
list_aux_equational_reasoning_more and list_aux_equational_reasoning_nat
- Set of parametric theories that define specific functions for the task of equational
reasoning (most of them operating on lists).

• structures - This is a different library that is being used by the formalisation, with
results about data structures.

Figure 1 shows the dependency diagram for the PVS theories that compose our
formalisation. An arrow going from theoryA to theoryB means that theoryA uses
definitions and lemmas from theoryB. Besides the first-order AC-unification formali-
sation, there are other 3 formalisations in the nominal library, which we represent in
the picture as orange ellipses. As shown in Figure 1, some of them use theories that
are also used by the first-order formalisation.

When specifying functions and theorems, PVS may generate proof obligations
to be discharged by the user. These proof obligations are called Type Correctness
Conditions (TCCs), and the PVS system includes several pre-defined proof strategies
that automatically try to discharge TCCs. In our code, several simple TCCs related
to the well-typedness and termination of functions were proved by PVS automatically.
However, manual proofs were still required for more elaborated functions.
Example 10 (Automatically and Manually discharged TCCs in PVS). Below, we give
an example of how PVS can handle simple TCCs. Recall that a substitution σ in our
code is specified as a list of nuclear substitutions. For instance, the substitution σ =
{X 7→ a, Y 7→ b} would be represented as cons((X, a),cons((Y, b),nil)). Consider
the function supset_dom  defined below, which computes a superset of the domain
of σ, returning a finite set of variables.

supset_dom(sigma): RECURSIVE finite_set[variable] =
IF null?(sigma) THEN emptyset
ELSE LET (X, t) = car(sigma) IN add(X, supset_dom(cdr(sigma)))
ENDIF

MEASURE sigma BY <<

PVS extends high-order logic with predicate subtyping, allowing the definition of a
new type as a subset {x : T | p(x)} of a type T that satisfies a predicate p over T .
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Fig. 1 PVS Formalisation of First-Order AC-Unification in the Nominal Library of Nasalib.

Subtyping is used when defining a finite_set (as a subtype of a set) and PVS profits
from this concept in the case of our function supset_dom: it is able to automatically
check that the set returned by supset_dom is indeed finite (it does not even generate
a TCC), and automatically proves the TCC regarding termination of this function.

In contrast to that, consider the definition of the domain of a substitution σ  in
PVS:

dom(sigma): finite_set[variable] = {X | subs(sigma)(X) /= variable(X)}

PVS generates a proof obligation (slightly simplified below) saying that we must
prove that this set is indeed finite:

% Subtype TCC generated (at line 120, column 35) for
% X | subs(sigma)(X) /= variable(X)
% expected type finite_set[variable]

% unfinished
dom_TCC1: OBLIGATION

FORALL (sigma: sub):
is_finite[variable]({X | subs(sigma)(X) /= variable(X)});

PVS cannot discharge this TCC automatically. We must prove it manually. To
prove this TCC, we first show that the set computed by supset_dom(sigma) is indeed
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a superset of dom(sigma). Then, we argue that a subset of a finite set is necessarily
finite.

The number of theorems and TCCs proved for each theory, along with
each theory’s approximate size and percentage of the total size, is shown
in Table 3. For this table, we omit file top_first_order_AC_unification
since it contains only a high-level description of the formalisation and
library structures as it is a separated library. We group theories
list_aux_equational_reasoning, list_aux_equational_reasoning2parameters,
list_aux_equational_reasoning_more and list_aux_equational_reasoning_nat
under the name list, since the specifics of each one is not relevant to our discussion.
Finally, PVS theories term_properties and terms are the only ones that are actually
in the same file, so we group them under the name terms in Table 3.

Table 3 Main Information on the Theories of Our Formalisation.

Theory Theorems TCCs Size

.pvs .prf %

unification_alg 10 19 6 kB 2.3 MB 5%
renamed_inputs 21 23 10 kB 2.7 MB 6%
termination_alg 80 35 23 kB 11 MB 26%
apply_ac_step 29 12 15 kB 9.7 MB 22%

aux_unification 204 58 59 kB 8.2 MB 19%
Diophantine 73 44 24 kB 1.1 MB 3%
unification 86 14 20 kB 1.0 MB 2%
substitution 144 22 27 kB 2.4 MB 6%
AC_equality 67 18 12 kB 1.1 MB 3%

terms 131 48 28 kB 1.1 MB 3%
list 268 108 60 kB 2.2 MB 5%

Total 1113 401 284 kB 42.8 MB 100%

7.1 Grammar of Terms and the Need for Well-Formed Terms
First we explain function Argsf . This function acts recursively on the structure of
a term (see Example 11) and is used to obtain a list of arguments of an AC-function
headed by f .
Example 11. Some examples to illustrate the behaviour of Argsf .

• Argsf (a) = (a).
• Argsf (Y ) = (Y ).
• Argsf (⟨a, ⟨b, c⟩⟩) = (a, b, c).
• Argsf (f⟨c, b⟩) = (c, b).
• Argsf (f f⟨c, b⟩) = (c, b).
• Argsf (g⟨c, b⟩) = (g⟨c, b⟩).

As mentioned before, terms were defined as shown in Definition 1 to make it
easier to eventually adapt the formalisation to the nominal setting (previous papers
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in the subject, such as Nominal Unification [30] by Urban et al. and Nominal C-
unification [2] by Ayala-Rincón et al. use a similar grammar). However, two issues
arose in the formalisation that motivated us to define well-formed terms (Definition
2) and restrict the terms in the unification problem that our algorithm receive to
well-formed terms.

The first issue concerns AC-functions that receive only one argument, something
allowed in the grammar of terms. Let f be an AC-function symbol and consider Exam-
ple 12, which shows that ff⟨a, b⟩ ≈? f⟨a, b⟩. This is problematic because it means
that a unification problem such as P = {X ≈? fX} has a solution, for instance
σ = {X 7→ f⟨a, b⟩}. Notice that if Algorithm 1 received this unification problem P , it
would return nil (line 20). In defining well-formed terms, we avoid this problem by
requiring that every AC-function application fACs that is a subterm of a well-formed
term t does not receive only one argument.
Example 12. Let f be an AC-function symbol. Consider the terms t ≡ ff⟨a, b⟩
and s ≡ f⟨a, b⟩. Two AC function applications are equal (modulo AC) if and only if
their list of arguments are permutations of each other. In our particular case we have
Argsf (t) = (a, b) = Argsf (s) and therefore t ≈ s.

The second issue is with terms that are pairs. As mentioned before, pairs are to be
used inside a term t to encode a tuple of arguments to a function. If t and s are not
pairs and Argsf (t) and Argsf (s) are permutations of each other, then it is possible to
prove that t ≈ s. This result we just described was used in the proof of completeness
of solveAC (see the proof for Theorem 6) and is the reason why we imposed that a
well-formed term t is not a pair.
Example 13. Let f be an AC-function symbol and g be a syntactic function symbol.
The following terms are well-formed terms:

• f⟨a, ⟨b, c⟩⟩.
• f f⟨a, ⟨b, c⟩⟩ (here Argsf (f f⟨a, ⟨b, c⟩⟩) = (a, b, c)).
• a.
• g(Y ).

The following terms are not well-formed terms:

• fX.
• ⟨a, b⟩.

7.2 Equal Terms May Not Have the Same Size
A drawback of our grammar of terms is that we can have well-formed terms that are
equal modulo AC but do not have the same size. Let f be an AC-function symbol
and consider, for instance, the terms t ≡ f⟨f⟨a, b⟩, c⟩ and s ≡ f⟨⟨a, b⟩, c⟩. These terms
are equal modulo AC. Indeed Argsf (t) = (a, b, c) = Argsf (s) but according to the
definition of size we have size(t) = 7 and size(s) = 6. An alternative definition of
size, called size2, which has this property (Theorem 15) is given below.
Definition 19 (size2 ). We define the size2 of a term t recursively as follows:

• size2(a) = 1
• size2(Y ) = 1
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• size2(⟨⟩) = 1
• size2(⟨t1, t2⟩) = size2(t1) + size2(t2)
• size2(ft1) = 1 + size2(t1)
• size2(f

ACt1) =
∑

ti∈Argsf (fACt1)

size2(ti)

Theorem 15. If t ≈ s then size2(t) = size2(s).
Theorem 15  is used to prove that if X ∈ Vars(s) and s is a well-formed term

that is not equal to X, then X ≈? s is not unifiable. This is used in the proof of
completeness of our algorithm to argue that if δ unifies {X ≈? s} then s does not
contain the variable X and we are in case of lines 8-9.

8 Applications
In this section, we discuss three applications of our certified AC-unification algorithm.
First, it can be used as a first step to formalise more efficient first-order AC-unification
algorithms. Second, it may be used to test the completeness of implemented first-order
AC-unification algorithms. Finally, it was used to formalise a nominal AC-matching
algorithm, which could serve as a basis to study nominal AC-unification. We describe
each one of these applications in Sections 8.1, 8.2 and 8.3.

8.1 Formalising More Efficient AC-Unification Algorithms
Our formalisation could be used as a starting point to prove the correctness of more
efficient algorithms. For instance, when we solve a linear Diophantine equation, we
generate a spanning set of solutions instead of a basis. If we modify the corresponding
code to generate a basis of solutions, there would be fewer branches to explore. A
second possible path to sharpen our formalisation has to do with the bound used
to compute solutions to the linear Diophantine equations: we use a bound proved
sufficient by Stickel [29], but we can adapt the formalisation to use a smaller bound,
such as the one mentioned by Clausen and Fortenbacher [12]. Finally, a third way to be
more efficient when solving the mentioned Diophantine is to use the graph approach
also described in [12].

There are efficient algorithms for AC-unification that rely on using directed acyclic
graphs (DAGs) to represent terms (e.g., Boudet’s [10]) and hence a different path
would be to adapt our formalisation to formalise those algorithms. The dependency
diagram of Figure 1 hints at why adapting our formalisation to prove the correctness of
algorithms representing terms as DAGs should give us more work than solving the lin-
ear Diophantine equations more efficiently. Changing the representation of terms would
impact mostly terms.pvs but would also require modification in lemmas from other
files that are proved by induction on terms. In practice, this means file changes that
depend on terms.pvs, especially the ones that more closely depend on terms.pvs,
such as equality.pvs, substitution.pvs and unification.pvs. In contrast, solv-
ing the linear Diophantine equations more efficiently should effectively only require
changes in Diophantine.pvs.

To further illustrate the additional work of changing the term representation in
comparison to solving the linear Diophantine equations more efficiently, let’s consider
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the proof of termination of ACUnif, described in Section 5.1, which is effectively done
in file termination_alg.pvs (one of the hardest parts of our formalisation, see Table
3). Recalling that the lexicographic measure used is:

lex = (|VNAC (P )|, |V>1(P )|, |AS(P )|, size(P ))

we see that the procedure used to solve the linear Diophantine equations plays no
role in this proof. In contrast to that, VNAC (P ), V>1(P ), AS(P ), size(P ) depend
respectively on VNAC (t), Subterms(t) and size(t) which were all defined inductively
on the structure of terms and would need to be adjusted in case we changed the way
we represent terms.

8.2 Testing Implemented AC-Unification Algorithms
Although PVS does not support code extraction to a programming language such as
OCaml or Haskell, we can use our formalisation to test implementations of first-order
AC-unification algorithms in two different manners. The first approach is to manually
translate our implementation to a programming language of our choice (Python, for
instance) and then run both the manual translation of the formalised algorithm and
the nominal AC-unification algorithm we wish to test against the same examples,
comparing the results.

The second approach is to use the PVSIO feature of PVS. According to Muñoz
and Butler [24], PVSIO is a PVS package that extends the capabilities of the ground
evaluator with a predefined library of imperative programming language features,
among them input and output operators. This implies that sometimes we can run
the formalised algorithm inside the PVS environment passing the input we want and
seeing the output returned. However, some code fragments of our formalisation would
need to be adapted in order to use this resource.

For instance, the function divides is used when solving the Diophantine equations
and is defined as follows:

divides(n, m): bool = EXISTS x : m = n * x

PVSIO cannot be used when the algorithm relies on code fragments such as divides
that use the PVS reserved word EXISTS. Hence, fragments of the algorithm that rely
on this should be replaced by equivalent fragments specified in a “procedural manner”.
Specifying the equivalent fragments should be straightforward, but proving that the
two fragments are indeed the same for every case requires some effort. For the case of
divides, one could use instead divides_alt:

divides_alt(n, m): RECURSIVE bool =
IF m = 0 OR m - n = 0 THEN TRUE
ELSIF m - n < 0 THEN FALSE
ELSE divides_alt(n, m-n)
ENDIF

MEASURE m
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Compared to the first approach (manually translating to a programming language),
the second approach (using the PVSIO feature) is less error-prone but requires more
effort.

8.3 Nominal AC-Matching Towards Nominal AC-Unification
Nominal syntax is an extension of first-order syntax that allows us to smoothly rep-
resent systems with binding operators. The first-order AC-unification formalisation
presented in this paper has been used to obtain the first nominal AC-matching algo-
rithm [5], which could be directly used to define a nominal rewriting algorithm modulo
AC [17].

Going from first-order AC-unification to nominal AC-matching required stating
and proving new lemmas and “reusing” old ones. This “reuse” of lemmas from the first-
order AC-unification formalisation is not automatic, but interactive. The main issue
is that a reasonable amount of proofs are done by induction on the structure of terms,
and since the grammar of terms changes (it is extended with nominal abstractions,
suspensions, etc.), modifications are required. As an example, consider a typical proof
by induction on the structure of a nominal term t. The parts of the proof where t is
also in the first-order grammar (t is a constant, t is a function application, t is an AC
function application) can be reused. The parts of the proof where t is not in first-order
grammar (t is an abstraction, t is a suspension) must be completed manually.

Finally, nominal AC-unification is currently an open theoretical problem, as a direct
application of Stickel’s method in the nominal setting gives rise to “cyclicities” in the
generation of AC-unification problems [5]. If this open question can be solved (perhaps
by cutting unnecessary derivations) the nominal AC-matching formalisation could
be used as a starting point to formalise nominal AC-unification once the theoretical
problems are solved.

9 Conclusion
We described a formalisation of Stickel’s pioneering AC-unification algorithm [28, 29]
in the PVS proof assistant, improving and extending the formalisation described in [6].
We proved the termination, soundness, and completeness of the algorithm. Our proof
of termination is based on the work of Fages (see [15, 16]). However, since mutual
recursion is not straightforward in PVS, we adapted the algorithm to receive as input
an AC-unification problem P , instead of only two terms t and s. This introduces an
additional complication in the proof of termination (it is not enough to call function
solveAC and instantiateStep only once) as described in Section 5.2.2. In compar-
ison to [6], we give more details about the grammar of terms, the hierarchy of the
formalisation, the proof of completeness, and possible applications of our formalisa-
tion. The main lemmas for soundness and completeness are described and the proof
of the most complicated one (Completeness of solveAC) is given in detail. Notably,
we show here how removing the hypothesis δ ⊆ V from the theorem of completeness
given in [6] is possible although not trivial, using the idea of renamed inputs.

The grammar of terms used in the formalisation was chosen based on previous
works [7, 30] in the nominal setting, to make it easier to formalise results in nominal
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equational reasoning, such as matching and unification. This grammar of terms has
some drawbacks as pointed out in Sections 7.1 and 6.3.1 and those were handled by
restricting ourselves to well-formed terms.

As described in Section 8, we see three immediate possible paths of future work:
formalising more efficient algorithms for first-order AC-unification, testing implemen-
tations of first-order AC-unification algorithms, or discovering a terminating, correct,
and complete nominal AC-unification algorithm and formalising it. Other possible
paths of future work are formalising unification/matching algorithms modulo different
equational theories and formalising a more efficient nominal AC-matching algorithm.
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Appendix A A Structured Proof of Termination for
applyACStep

The proof of termination (Theorem 25) is based on Lemmas 17, 18, 23 and 24. Before
presenting the mentioned results and its proofs, we first introduce some prior notation.
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A.1 Notation for the Proof of Termination
Algorithm 1 calls applyACStep with input (P,nil, σ, V ). Recall that P is represented
as a list and is not nil. Let t ≈? s be the equation in the head of the list P and
n ≥ 1 the number of equations in P . Denote by Pi an arbitrary unification problem
(recall that there may be many, since at each call to solveAC the algorithm branches)
obtained after we apply solveAC and instantiateStep to the first i equations, with
0 ≤ i ≤ n. Hence, P = P0. Denote by P ∗

i a unification problem obtained after calling
solveAC with input Pi, but before we call instantiateStep. Schematically, this
means that:

Pi
solveAC−−−−−−→ P ∗

i
instantiateStep−−−−−−−−−−→ Pi+1

Finally, we denote by PCi only the part of the unification problem P ∗
i that replaces

equation ti ≈? si when we call solveAC(ti, si, Vi, fi).
The substitution computed when we go from problem Pi to problem Pj is denoted

by σij . Given a substitution σ, we consider the function ψσ : X → X such that:

ψσ(X) =

{
σX if σX is a variable
X otherwise

ψij is syntactic sugar for ψσij
.

Example 14. Let f be an AC-function symbol and g a syntactic function symbol. Sup-
pose that P = P0 = {f(X,Y ) ≈? f(a, b), f(W, g(U)) ≈? f(g(c), d)}. After solveAC
but before instantiateStep, one branch may be:

P ∗
0 = {X ≈? Z1, Y ≈? Z2, a ≈? Z1, b ≈? Z2, f(W, g(U)) ≈? f(g(c), d)},

where PC0 = {X ≈? Z1, Y ≈? Z2, a ≈? Z1, b ≈? Z2}. After instantiateStep, we
have:

P1 = {f(W, g(U)) ≈? f(g(c), d)}
σ01 = {Z1 7→ a, Z2 7→ b,X 7→ a, Y 7→ b} = ψ01

applyACStep will call itself again, this time with P1. After calling solveAC in one
branch we will have

P ∗
1 = {W ≈? Z3, g(U) ≈? Z4, g(c) ≈? Z4, d ≈? Z3} = PC1

and finally after instantiateStep we have:

P2 = {g(U) ≈? g(c)}
σ12 = {Z3 7→ d,W 7→ d} = ψ12

σ02 = σ12σ01 = {Z1 7→ a, Z2 7→ b,X 7→ a, Y 7→ b, Z3 7→ d,W 7→ d} = ψ02

At this point, applyACStep would return control to ACUnif.
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Notation 9. If t and s are functions headed by the same function symbol, we represent
this as t ∼fsym s. If t and s are functions headed by different function symbols, we
represent this as t ̸∼fsym s.
Notation 10. We denote by NV S(t) the set of non-variable subterms of P .
Remark 14 (Signature of instantiateStep). Function instantiateStep is recur-
sive and receives as input a unification problem P1 (the part of our unification problem
which we have not yet inspected), a unification problem P2 (the part of our unification
problem we have already inspected) and σ, the substitution computed so far. Therefore,
the first call to this function in order to instantiate the unification problem P is with
P1 = P , P2 = nil and σ = nil.

The algorithm returns a triple (P ′, δ, bool), where the first component is the remain-
ing unification problem; the second component is the substitution computed by this step;
and the third component is a Boolean to indicate if we found an equation t ≈? s which
is not unifiable (in this case the Boolean is True) or not (in this case the Boolean is
False).
Notation 11. Denote by JinstantiateStep(P1, P2, σ)Kn the n-th component (n =
1, 2, 3) of the triple (P ′, δ, bool) returned by instantiateStep(P1, P2, σ).

A.2 Auxiliary Lemmas
Lemma 16.  (P ′, σ′, V ′) ∈ applyACStep(PA, PB , σ, V ) if and only if
(P ′, σ′′, V ′) ∈ applyACStep(PA, PB ,nil, V ), where σ′ = σ′′ ◦ σ.
Lemma 17 (VNAC in applyACStep ). Let P0 = PA0 ∪PB0 and let (Pn, σ0n, Vn) ∈
applyACStep(PA0 , P

B
0 ,nil, V ). Then

VNAC(Pn) ⊆ ψ0n(VNAC(P0)).

⟨1⟩1. We proceed by induction on the number of equations in PA0 . Suffices: to prove
that VNAC(P1) ⊆ ψ01(VNAC(P0)).

Proof: The induction hypothesis give us VNAC(Pn) ⊆ ψ1n(VNAC(P1)) and ψ0n =
ψ1n ◦ ψ01.

Comment: The next recursive call will be applyACStep(PA1 , P
B
1 , σ01, V1),

where P1 = PA1 ∪ PB1 . The third component of the input is not nil
anymore, but we can fix that by using Lemma 16 to prove that if
(Pn, σ0n, V

′) ∈ applyACStep(PA1 , P
B
1 , σ01, Vn) then there is (Pn, σ1n, Vn) ∈

applyACStep(PA1 , P
B
1 ,nil, V 1) such that σ0n = σ1n ◦ σ01. A similar reasoning

happens when we prove Lemmas 18, 23.

⟨1⟩2. From now until the rest of this proof, we denote σ01 as σ and ψ01 as ψ. Let Y
be an arbitrary variable in VNAC(P1). Then, exists some term t1 in P1 such that
Y ∈ VNAC(t1). A term t1 in P1 is not a variable and can be written as t1 = σt2,
where t2 is a subterm in P ∗

0 .
Proof: t1 is not a variable because P1 is obtained from P ∗

0 by applying instanti-
ateStep.

⟨1⟩3. Y ∈ VNAC(σt2) implies either:
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1. exists X in VNAC(t2) such that σX = Y .
2. Y in VNAC(im(σ)).

⟨1⟩4. Case: exists X in VNAC(t2) such that σX = Y . Then we have Y ∈
ψ(VNAC(P0)).

Proof: We have X in VNAC(P ∗
0 ). Therefore, X in VNAC(P0) and ψX = σX = Y ∈

ψ(VNAC(P0)).

⟨1⟩5. Case: Y in VNAC(im(σ)). Then Y ∈ ψ(VNAC(P0)).
Proof: Y ∈ VNAC(im(σ)) implies there exists X such that σX = Y and X ∈
VNAC(P

∗
0 ). If X ∈ VNAC(P

∗
0 ) then X ∈ VNAC(P0). Finally, ψX = σX = Y ∈

ψ(VNAC(P0)).

Lemma 18 (V>1 in applyACStep ). Let P0 = PA0 ∪ PB0 and let (Pn, σ0n, Vn) ∈
applyACStep(PA0 , P

B
0 ,nil, V ). Then

V>1(Pn) ⊆ ψ0n(V>1(P0)).

⟨1⟩1. We prove by induction on the number of equations in PA0 . Suffices: to prove
that V>1(P1) ⊆ ψ01(V>1(P0)).

Proof: The induction hypothesis give us V>1(Pn) ⊆ ψ1n(V>1(P1)) and ψ0n =
ψ1n ◦ ψ01.

⟨1⟩2. From now until the rest of this proof, we denote ψ01 by ψ and σ01 by σ. Let: Y
be an arbitrary variable in V>1(P1). Suffices: to prove that Y ∈ ψ(V>1(P0)).

⟨1⟩3. Since Y ∈ V>1(P1), there exist t1 and s1 such that Y is an argument of t1 (for
short Y ∈ Args(t1)) and Y is an argument of s1, where t1 ̸∼fsym s1 and t1 and
s1 are subterms of P1.

⟨1⟩4. There exist some subterm t2 of P ∗
0 such that t2 ∼fsym t1 and there exists

X ∈ Args(t2) with σX = Y . Similarly, there exist some subterm s2 of P ∗
0

such that s2 ∼fsym s1 and there exists W ∈ Args(s2) with σW = Y . Since
t1 ̸∼fsym s1, we get t2 ̸∼fsym s2.

Proof:
⟨2⟩1. We prove the existence of t2 and X. The case for s2 and W is analogous.
⟨2⟩2. Since t1 ∈ Subterms(P1), there exists some t′1 in P1 such that t1 ∈

Subterms(t′1). This t′1 can be written as σt3, with t3 in P ∗
0 . Hence, t1 ∈

Subterms(σt3).
⟨2⟩3. t1 ∈ Subterms(σt3) and t1 is a function, which means that either:

1. t1 = σt4 with t4 ∈ Subterms(t3) and t4 ∼fsym t1.
2. t1 ∈ Subterms(im(σ)).

⟨2⟩4. Case: t1 ∈ Subterms(im(σ)). If Y is an argument of a term t1 in
Subterms(im(σ)), then there exists a term t4 (same symbol as t1) in
Subterms(PC) and a variable X1 immediately under t4 such that σX1 = Y .
Pick t2 as t4 and X as X1.
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⟨2⟩5. Case: t1 = σt4 with t4 ∈ Subterms(t3) and t4 ∼fsym t1. Then Y ∈ Args(σt4)
and either:

1. There is a variable X1 ∈ Args(t4) with σX1 = Y . Pick X as X1 and t2 as
t4.

2. There is a variable X1 ∈ Args(t4) and σX1 is an AC-function with Y as
one of its argument. In this case, Y is an argument of a term t5, where
t5 ∈ Subterms(im(σ)). Hence, the reasoning in Step ⟨2⟩4 apply.

⟨1⟩5. Let: t ≈? s be the first unification pair in P0. Let: f be the function symbol
they are both headed.

⟨1⟩6. We divide our proof in four cases, according to whether X is equal to Y or not
and according to whether W is equal to Y or not. The two following facts will
be used:

1. σY = Y .
2. If t′ ∈ Subterms(P ∗

0 ) and is headed by a symbol different than f , then t′ ∈
Subterms(P0).

Proof:
⟨2⟩1. Recall that Y ∈ Args(t1). The term t1 ∈ Subterms(P1) can be written as σt3,

where t3 ∈ Subterms(P ∗
0 ). If we had Y ∈ dom(σ), then Y would not happen

in t1 = σt3 (recall that σ is idempotent). Therefore, Y ̸∈ dom(σ), i.e. σY = Y .
⟨2⟩2. If a term t′ is in Subterms(P ∗

0 )− Subterms(P0) it is necessarily in the right
hand side of PC0 . All function terms in the right hand side of PC0 are headed
by f .

⟨1⟩7. Case: X = Y and W = Y , i.e. Y ∈ Args(t2) and Y ∈ Args(s2). Then ψ(Y ) ∈
ψ(V>1(P0)).

Proof:
⟨2⟩1. Case: t2 ∼fsym t. Then, s2 ̸∼fsym t and, by Step ⟨1⟩6, s2 ∈ Subterms(P0).

Since Y ∈ Args(s2), this implies Y ∈ V ars(P0). From that and the fact
that Y ∈ V ars(t2) we get that t2 ∈ Subterms(P0). Hence, we have that
Y ∈ V>1(P0) and therefore ψ(Y ) ∈ ψ(V>1(P0)).

⟨2⟩2. Case: t2 ̸∼fsym t. We repeat the reasoning of Step ⟨2⟩1, exchanging the roles
of t2 and s2.

⟨1⟩8. Case: X = Y and W ̸= Y .
Proof:
⟨2⟩1. Since σW = Y , both W and Y are in PC0 .
⟨2⟩2. Y must be in the left-hand side of PC0 .

Proof: Indeed if Y were in the right-hand side of PC0 it would have been instan-
tiated by σ (see the description of instantiateStep in Section 4.3.3), which
contradicts the fact that σY = Y (see Step ⟨1⟩6).

⟨2⟩3. Since Y is in the left-hand side of PC0 , it is an argument of either t or s (the
terms in the first unification pair). Let: t3 be the term Y is an argument.

⟨2⟩4. Suffices: to assume that t2 ∼fsym t3.
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Proof: If t2 ̸∼fsym t3 then t2 ∈ Subterms(P0) (see Step ⟨1⟩6). t3 is either t or s,
hence t3 ∈ Subterms(P0). By definition (Pick t2 and t3) we have Y ∈ V>1(P0)
and therefore ψY ∈ ψ(V>1(P0)). Finally, from Step ⟨1⟩6 and from the definition
of ψ we have ψY = σY = Y , which allow us to conclude that Y ∈ ψ(V>1(P0)).

⟨2⟩5. If t2 ∼fsym t3 then s2 ̸∼fsym t3. Then, s2 ∈ Subterms(P0) (Fact from ⟨1⟩6).
Since W ∈ Args(s2) this means that W ∈ V ars(P0). Together with Step ⟨2⟩1,
this let us conclude that W is in the left-hand side of PC0 . Therefore, it is an
argument of one of the terms of the first unification pair. Let: s3 be this term.

⟨2⟩6. Case: s2 ̸∼fsym s3. Then by definition (Pick s2 and s3) we have W ∈
V>1(P0). Therefore ψW = σW = Y ∈ ψ(V>1(P0)).

⟨2⟩7. Case: s2 ∼fsym s3. Together with t2 ∼fsym t3 and t2 ̸∼fsym s2 we conclude
that s3 ̸∼fsym t3. This however contradicts the fact that both s3 and t3 are
terms of the first equation, functions headed by f .

⟨1⟩9. Case: X ̸= Y and W = Y . Proof is analogous with Step ⟨1⟩8.
⟨1⟩10. Case: X ̸= Y and W ̸= Y .
⟨2⟩1. σX = Y let us conclude that X and Y are in PC0 . σW = Y let us conclude

that W is in PC0 .
⟨2⟩2. Y must be in the left-hand side of PC0 .

Proof: By contradiction. If Y were in the right-hand side of PC0 it would have
been instantiated by σ, which contradicts the fact that Y = σY = ψ(Y ) (Fact
from Step ⟨1⟩6).

⟨2⟩3. Since Y is in the left-hand side of PC0 , it is an argument of either t or s. Let:
t′ be the term Y is an argument of P0.

⟨2⟩4. Case: t2 ̸∼fsym t′. Then, t2 ∈ Subterms(P0) (Fact from ⟨1⟩6). Since X is in
Args(t2) we have X ∈ V ars(P0). This, together with the fact that X is in
PC0 let us conclude that X is in the left-hand side of PC0 . It is therefore an
argument of one of the terms of the first unification pair (t or s). Let: t3 be
this term. Then, by definition (Pick t2 and t3) we have X ∈ V>1(P0) and
hence ψX = σX = Y ∈ ψ(V>1(P0)).

⟨2⟩5. Case: s2 ̸∼fsym t′. Then, s2 ∈ Subterms(P0) (Fact from ⟨1⟩6). Since W is in
Args(s2) we have W ∈ V ars(P0). This, together with the fact that W is in
PC0 let us conclude that W is in the left-hand side of PC0 . It is therefore an
argument of one of the terms of the first unification pair (t or s). Let: s3 be
this term. Then, by definition (Pick s2 and s3) we have W ∈ V>1(P0) and
hence ψW = σW = Y ∈ ψ(V>1(P0)).

⟨2⟩6. By ⟨2⟩4 and ⟨2⟩5 all that is left is to consider the case where t2 ∼fsym t′ and
s2 ∼fsym t′. This, however, would mean that s2 ∼fsym t2, contradicting ⟨1⟩4.

Lemma 19 (Admissible Subterms of σt ). Let σ be a substitution and let ts ∈
AS(σt). We have one of 3 things

1. ts ∈ σAS(t)
2. ts ∈ AS(im(σ))
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3. There is t1 ∈ Subterms(t) and X ∈ Args(t1) such that σX = ts and if ts is an AC
function symbol, then t1 ̸∼fsym ts.

Lemma 20.  Let σ = JinstantiateStep(P,nil,nil)K2. If σX is not a variable,
then there exists a non-variable term t ∈ P such that σX = σt.

Next, we introduce the definition of a nice unification problem with respect to f
(Definition 20). It let us prove Lemma 22, which is used in Lemma 23.
Definition 20 (Nice Unification Problem with respect to f ). Let P be a unification
problem, f be a function symbol and σ = JinstantiateStep(P,nil,nil)K2. Suppose
that for every function term t ∈ Subterms(P ), if there is a variable X ∈ Args(t) such
that σX is not a variable then t is an AC function headed by f . In this case we say
that P is nice with respect to f .
Lemma 21 (Terms after AC-step ). Suppose that

(Pn, σ0n, V
′) ∈ applyACStep(Pu, Ps,nil, V ) and V>1(Pn) = ψ0n(V>1(P ))

A term tn ∈ Pn can be written as σ0nt0 where t0 ∈ Ps or t0 is a non-variable argument
of some term t ∈ Pu.
Remark 15. Recall that the first time we call applyACStep we have P0 = Pu and
Ps = nil.
Lemma 22 (AS of the Substitution in the output of instantiateStep ). Let
σ = JinstantiateStep(P,nil,nil)K2. Let PA be the set of terms of P that are AC
functions headed by f and let PB be the remaining terms of P . Suppose P is nice with
respect to f . Then, AS(im(σ)) ⊆ σAS(PA) ∪ σNV S(PB).
Lemma 23 (AS in applyACStep ). Let P0 = PA0 ∪ PB0 and let (Pn, σ0n, Vn) ∈
applyACStep(PA0 , P

B
0 ,nil, V ). If

V>1(Pn) = ψ0n(V>1(P0))

then
AS(Pn) ⊆ σ0n(AS(P0)).

Proof:
⟨1⟩1. We do a proof by induction. By induction hypothesis, we get that when

V>1(Pn) = ψ1n(V>1(P1)) we have AS(Pn) ⊆ σ1n(AS(P1)).
⟨1⟩2. V>1(Pn) = ψ1n(V>1(P1)).

Proof:
⟨2⟩1. By Lemma 18, we have V>1(Pn) ⊆ ψ1n(V>1(P1)). Hence, it suffices to prove

that ψ1n(V>1(P1)) ⊆ V>1(Pn).
⟨2⟩2. Since V>1(Pn) ⊆ ψ1n(V>1(P1)) we get

ψ1n(V>1(P1)) ⊆ ψ1n ◦ ψ01(V>1(P0)) = ψ0n(V>1(P0)).

Since by hypothesis ψ0n(V>1(P0)) = V>1(Pn) we get ψ1n(V>1(P1)) ⊆
V>1(Pn).

⟨1⟩3. By induction hypothesis, we obtain AS(Pn) ⊆ σ1n(AS(P1)). Since we want to
prove AS(Pn) ⊆ σ0n(AS(P0)), it suffices to prove AS(P1) ⊆ σ01(AS(P0)).
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⟨1⟩4. From now until the remaining of the proof, we denote σ01 by σ and ψ01 by ψ.
⟨1⟩5. Let: t1s ∈ AS(P1). Suffices: to prove that t1s in σ(AS(P0)). There exists

t1 ∈ P1 such that t1s ∈ AS(t1). Then, there exists t2 ∈ P ∗
0 such that t1 = σt2.

Hence, t1s ∈ AS(σt2) and by Lemma 19 we have 3 possibilities:

1. t1s ∈ σ(AS(t2)).
2. t1s ∈ AS(im(σ))
3. There is t3 ∈ Subterms(t2) and X ∈ Args(t3) such that σX = t1s and if t1s

is an AC function symbol, then t3 ̸∼fsym t1s.

⟨1⟩6. Let: t ≈? s be the first equation of P0 and f be the function symbol that both
t and s are headed. PC0 is a nice problem with respect to f .

Proof:
⟨2⟩1. By contradiction. Suppose that PC0 is not nice, then there exists a term t′ ∈

Subterms(PC0 ) that is not an AC-function term headed by f and a variable
X such that X ∈ Args(t′), σX = t3 and t3 is not a variable.

⟨2⟩2. X ∈ V>1(P0) and therefore X = ψ0n(X) ∈ ψ0n(V>1(P0)).
Proof: Since t′ is not an AC-function term headed by f , we get that t′ ∈
Subterms(lhs(PC0 )) and therefore X ∈ Subterms(lhs(PC0 )). This, along with the
fact that X ∈ dom(σ), let us conclude that X ∈ Args(t)∪Args(s). Suppose with-
out loss of generality that X ∈ Args(t). Then, X ∈ V>1(P0) (Pick t and t′) and
therefore, by the definition of ψ0n we have X = ψ0n(X) ∈ ψ0n(V>1(P0)).

⟨2⟩3. X ̸∈ V>1(Pn).
Proof: If we had X ∈ V>1(Pn) there would be some term t3 ∈ Subterms(Pn)
such that X ∈ V ars(t3). However, every term in Pn can be written as σ0nt4,
where t4 ∈ Subterms(P0). Hence we would get X ∈ V ars(σ0nt4). This cannot
happen because X ∈ dom(σ0n) and σ0n is idempotent.

⟨2⟩4. From Steps ⟨2⟩2 and ⟨2⟩3 we would get V>1(Pn) ̸= ψ0n(V>1(P0)), which
contradicts our hypothesis.

⟨1⟩7. Case: t1s ∈ σAS(t2). Then t1s ∈ σAS(P0).
Proof: It suffices to prove that t2 ∈ P0. We have t2 ∈ P ∗

0 . If t2 was in P ∗
0 − P0 we

would have t2 ∈ rhs(PC0 ) and therefore AS(t2) = ∅, which contradicts the fact that
t1s ∈ σAS(t2).

⟨1⟩8. Case: t1s ∈ AS(im(σ)). Then t1s ∈ σAS(P0).
Proof:
⟨2⟩1. Let: PA = rhs(PC0 ) and PB = lhs(PC0 ). We can apply Lemma 22 and obtain

that t1s ∈ σAS(PA) ∪ σNV S(PB).
⟨2⟩2. Since AS(rhs(PC0 )) = ∅ we conclude that t1s ∈ σNV S(lhs(PC0 )).
⟨2⟩3. NV S(lhs(PC0 )) ⊆ AS(P0) and therefore t1s ∈ σAS(P0).

⟨1⟩9. Case: There is t3 ∈ Subterms(t2) and X ∈ Args(t3) such that σX = t1s and if
t1s is an AC function symbol, then t3 ̸∼fsym t1s. Then t1s ∈ σAS(P0).

Proof:
⟨2⟩1. t1s ∈ im(σ), which implies that there exists a non-variable term t4 ∈ PC0 such

that t1s = σt4.
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⟨2⟩2. Suffices: to consider the case where t4 ∈ rhs(PC0 ).
Proof: If t4 ∈ lhs(PC0 ) then it is in Args(t)∪Args(s) and therefore t4 ∈ AS(P0).
Hence t1s = σt4 ∈ σAS(P0).

⟨2⟩3. t4 is an AC-function headed by f and therefore t1s = σt4 is an AC-function
headed by f .

Proof: Since t4 ∈ rhs(PC0 ), it is either a variable or an AC-function headed by
f . By Step ⟨2⟩1, t4 is not a variable.

⟨2⟩4. X ∈ V>1(P0) and therefore X = ψ0n(X) ∈ ψ0n(V>1(P0)).
Proof:
⟨3⟩1. X ∈ PC0 , since X ∈ dom(σ).
⟨3⟩2. Notice that since t1s is headed by an AC-function symbol and t1s ̸∼fsym

t3 we get that t3 is a function that is not headed by f . Hence, t3 ∈
Subterms(P0) and therefore X ∈ Subterms(P0). Since X ∈ PC0 , we
conclude that X ∈ lhs(PC0 ).

⟨3⟩3. X ∈ Args(t) ∪ Args(s). Suppose without loss of generality that X ∈
Args(t). Then by picking t and t3 we get that X ∈ V>1(P0).

⟨3⟩4. Since σX = t1s which is not a variable, we have that σ0n = σ1nσX is
not a variable. Therefore, by the definition of ψ, we have X = ψ0n(X) ∈
ψ0n(V>1(P0)).

⟨2⟩5. X = ψ0n(X) /∈ V>1(Pn).
Proof: We have σX = t1s, which is not a variable. Then, σ0nX = σ1nσX is not
a variable and therefore X ∈ dom(σ0n). If we had X ∈ V>1(Pn) there would be
some term t5 ∈ Subterms(Pn) such that X ∈ V ars(t5). There exists some term
t6 ∈ Subterms(P0) such that t5 = σ0nt6. Hence, X ∈ V ars(σ0nt6). This however,
contradicts the fact that X ∈ dom(σ0n) and σ0n is idempotent.

⟨2⟩6. Steps ⟨2⟩4 and ⟨2⟩5 let us conclude that V>1(Pn) ̸= ψ0n(V>1(P0)), contradict-
ing our hypothesis.

Lemma 24 (Decrease of AS in applyACStep ). Let P0 = PA0 ∪ PB0 and let
(Pn, σ0n, Vn) ∈ applyACStep(PA0 , P

B
0 ,nil, V ). If

V>1(Pn) = ψ0n(V>1(P0)) and Pn ̸= nil.

Then
|AS(Pn)| < |AS(P0)|.

Proof:
⟨1⟩1. By Lemma 23, we have AS(Pn) ⊆ σ0n(AS(P0)).
⟨1⟩2. Pick a term t′ ∈ Pn with the biggest size. Notice that t′ ̸∈ AS(Pn).

Proof: Since Pn ̸= nil, it is possible to pick a term t′ ∈ Pn with the biggest size.
If t′ ∈ AS(Pn), there would be some term t′′ ∈ Pn such that t′ ∈ AS(t′′). But then
size(t′′) > size(t′), which contradicts our hypothesis that t′ ∈ Pn has the biggest
size.
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⟨1⟩3. By Lemma 21, the term t′ in Pn can be written as σt1, where t1 is a non-variable
argument of some term t ∈ P0. So, t′ = σti ∈ σ0nAS(P0).

⟨1⟩4. By Steps ⟨1⟩2 and ⟨1⟩3, we conclude that σ0n(AS(P0)) ⊈ AS(Pn). Along with
AS(Pn) ⊆ σ0nAS(P0) this let us conclude that |AS(Pn)| < |σ0nAS(P0)|. Since
|σ0nAS(P0))| ≤ |AS(P0)|, the result follows.

A.3 Termination of applyACStep
Theorem 25 (Termination of applyACStep). Suppose that Algorithm 1 is called
with the nice input (P, σ, V ) and enters the branch of applyACStep (lines 16-19).
Let (Pn, σ′, Vn) ∈ applyACStep(P,nil, σ, V ). Then

(|VNAC(Pn)|, |V>1(Pn)|, |AS(Pn)|, size(Pn)) <lex (|VNAC(P )|, |V>1(P )|, |AS(P )|, size(P ))

Proof:
⟨1⟩1. By Lemma 16 we have that (Pn, σ0n, Vn) ∈ applyACStep(P,nil,nil, V ), where

σ′ = σ0nσ.
⟨1⟩2. By Lemma 17 we have VNAC(Pn) ⊆ ψ0n(VNAC(P )). Hence

|VNAC(Pn)| ≤ |ψ0n(VNAC(P ))| ≤ |VNAC(P )|.

⟨1⟩3. By Lemma 18 we have V>1(Pn) ⊆ ψ0n(V>1(P )). Hence

|V>1(Pn)| ≤ |ψ0n(V>1(P ))| ≤ |V>1(P )|.

⟨1⟩4. Case: V>1(Pn) = ψ0n(V>1(P )).
Proof:
⟨2⟩1. Case: Pn = nil. Then |AS(Pn)| = 0 ≤ AS(P ) and

size(Pn) = 0 < size(P ),

since P is not null.
⟨2⟩2. Case: Pn ̸= nil. Then by Lemma 24 we have |AS(Pn)| < |AS(P )|

⟨1⟩5. Case: V>1(Pn) ̸= ψ0n(V>1(P )). Then, V>1(Pn) ⊊ ψ0n(V>1(P )) and hence

|V>1(Pn)| < |ψ0n(V>1(P ))| ≤ |V>1(P )|.
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