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Different Kinds of Variables

I Sequence (aka hedge) variables stand for finite sequences of
terms.

I Context variables denote contexts that can be seen as unary
functions with a single occurrence of the bound variable.

I Sequence and context variables give the user flexibility on
selecting subsequences in sequences or subterms/contexts in
terms.

I Sequence and context variables enhance expressive capabilities
of a language, help to write short, neat, understandable code,
and hide away many tedious data processing details from the
programmer.

I We have also variables that stand for individual terms, and
variables that stand for function symbols.
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Intuition Behind Individual (X) and Sequence Variables (X)
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f(g, f(X), g(a,X))

f

g f

X

g

a X

{X 7→ (g(a), X), X 7→ f(a)}

X 7→ g

a

X

X 7→ f

a

f(g, f(g(a), y), g(a, f(a)))

f

g f

g

a

X

g

a f

a

{X 7→ (g(a), X), X 7→ f(a)}

X 7→ g

a

X

X 7→ f

a



Intuition Behind Individual (X) and Sequence Variables (X)

Example

f(g, f(X), g(a,X))

f

g f

X

g

a X

{X 7→ (g(a), X), X 7→ f(a)}

X 7→ g

a

X

X 7→ f

a

f(g, f(g(a), y), g(a, f(a)))

f

g f

g

a

X

g

a f

a

{X 7→ (g(a), X), X 7→ f(a)}

X 7→ g

a

X

X 7→ f

a



Intuition Behind Function (F ) and Context Variables (C)
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Programming with Sequence and Context Variables

We studied extensions with sequence and context variables of the
formalisms for

I constraint logic programming,

I rule-based programming, and

I functional programming
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CLP(SC)

I Constraint logic programming is one of the most successful
areas of logic programming, combining logical deduction with
constraint solving.

I The main technique used in constraint logic programming
research is introducing a new constraint domain, designing an
efficient satisfiability and solving procedure for it, and putting
it in the general constraint logic programming framework.

I The domain we studied is the domain of sequences and
contexts. Constraint logic programming over this domain is
denoted by CLP(SC).
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CLP(SC): Rewriting Example

I A program that implements the rewriting mechanism,
together with a rule to perform rewritings of the form
f → f(b, b), f(a)→ f(b, a, b), f(a, a)→ f(b, a, a, b), etc.

rewrite(C(X), C(Y ))← rule(X,Y ).

rule(F (X), F (b,X, b))← X in a∗.

I Goal: Find a term that rewrites to f(a, f(b, f(b, a, a, b))):

← rewrite(X, f(f(b, a, b), f(b, f(b, a, a, b)))).

I Two answers:

X = f(f(a), f(b, f(b, a, a, b)))),

X = f(f(b, a, b), f(b, f(a, a)))).
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Constraint Solving

I CLP(SC) relies on solving equational and membership
constraints over the domain of sequences and contexts.

I We designed a constraint solving algorithm for this domain.

I We proved that the algorithm is sound, terminating, and
incomplete.

I We identified fragments of constraints that can be completely
solved by the algorithm.



CLP(SC)

I CLP(SC) is obtained from the CLP schema by instantiating
the domain with sequences and contexts, and using the
constraint solving algorithm that we developed.

I We studied declarative and operational semantics of CLP(SC).

I We investigated restrictions on programs leading to
constraints in a special form for which the constraint solving
algorithm is complete.
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Rule-Based Programming in PρLog

I PρLog is a rule based system that supports programming with
individual, sequence, function and context variables.

I It extends logic programming with strategic conditional
transformation rules where sequence and context variables can
be restricted by regular expressions.

I Rules perform nondeterministic transformations of sequences.

I Strategies provide a mechanism to control computation.

I PρLog is implemented in Prolog and uses its inference
mechanism.

I Unification is replaced with matching for unranked terms and
four kinds of variables.



Example: Remove Duplicates

I Remove a repeated element from a sequence:

remove duplicates :: (X,X, Y ,X,Z) =⇒ (X,X, Y , Z).

I Query:

remove duplicates :: (a, f(a), f(a), a) =⇒ Result.

I Two answers, computed via backtracking:

Result = (a, f(a), f(a)),

Result = (a, f(a), a).
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Example: Remove Duplicates

I Goal: Remove all repeated elements from a sequence.

I Idea: Compute a normal form with respect to
remove duplicates.

I Query:

nf (remove duplicates) :: (a, f(a), f(a), a) =⇒ Result.

nf : PρLog’s strategy for computing normal forms.

I Result: Result = (a, f(a)).
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Example: Flattening

I A program to remove from a term a nested occurrence of the
function symbol F :

flatten(F ) :: C(F (X,F (Y ), Z)) =⇒ C(F (X,Y , Z)).

I Remove a nested occurrence of f . Query:

flatten(f) :: g(f(a, f(b, f(c, d))), g(e)) =⇒ Result .

I Two answers, computed via backtracking:

Result = g(f(a, b, f(c, d)), g(e)),

Result = g(f(a, f(b, c, d)), g(c)).
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I A program to remove form a term a nested occurrence of the
function symbol F :

flatten(F ) :: C(F (X,F (Y ), Z)) =⇒ C(F (X,Y , Z)).

I Remove a nested occurrence of g. Query:

flatten(g) :: g(f(a, f(b, f(c, d))), g(e)) =⇒ Result .

I One answer:

Result = g(f(a, b, f(c, d)), e).
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Constructing Complex Strategies

Complex strategies can be constructed from simpler ones by
strategy combinators.

Example

I The strategy definition

flatten all and remove all duplicates(F ) :=

compose(map1(nf (flatten(F ))), nf (remove duplicates)).

defines a strategy that composes two strategies:
map1(nf (flatten(F ))) and nf (remove duplicates).

I map1(nf (flatten(F ))) applies the strategy nf (flatten(F )) to
each element of the input sequence.

I The result sequence is then processed by the strategy
nf (remove duplicates) to remove all duplicates.
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Example: Flatten All and Remove All Duplicates

I Flatten all occurrences of f from the input sequence
(g(a), f(a, f(b)), g(g(a)), f(f(a, b))) and remove all duplicates
from the obtained sequence.
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(g(a), f(a, f(b)), g(g(a)), f(f(a, b))) =⇒ Result.

I Answer: Result = (g(a), f(a, b), g(g(a))).
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Applications of PρLog

We have applications of PρLog in

I XML processing,

I Web reasoning, and

I implementing rewriting strategies.

PρLog can be downloaded from
http://www.risc.jku.at/people/tkutsia/software.html

http://www.risc.jku.at/people/tkutsia/software.html
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Pattern-Based Calculi

I Functional programming has its roots in the lambda calculus.

I Pattern calculi generalize the lambda calculus.
I The main idea behind the generalization:

I Integrate pattern matching into the lambda calculus.
I Abstraction on arbitrary terms (patterns), not only on

variables.

I “A small typed pattern calculus supports all the main
programming styles.”

B. Jay. The Pattern Calculus. Springer, 2009.

Example

λf(x). g(x) is a well-formed expression in the lambda calculus with
patterns.
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Pattern-Based Calculi

β-reduction idea:

(λP.M)Q→Mσ, where σ is a matcher of P to Q.



Various Pattern Calculi

I Lambda calculus with patterns (van Oostrom, 1990,
Klop et al, 2008).

I ρ-calculus (Cirstea and Kirchner, 2000).

I Lambda (eta) calculus with a case construct (Arbiser et al,
2009).

I Pure pattern calculus (Jay and Kesner, 2006, 2009).

I ...



Properties of Pattern Calculi

I Patterns themselves can be reduced and instantiated.

I It makes pattern calculi expressive, but there is a price to pay
for it.

I Good properties of the lambda calculus (confluence,
termination of reduction in the presence of types) are lost.

I Restrictions are needed to recover them.
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Example of Non-Confluence

I Assume matching is done syntactically (not modulo
β-reduction).

I The term (λ(x a). x) ((λy.y) a) can be reduced in two
different ways to non-joinable terms:

I (λ(x a). x) ((λy.y) a)→ λy.y.
I (λ(x a). x) ((λy.y) a)→ (λ(x a). x) a.



Confluence

I Confluence is a desirable property.

I It allows to reason about programs with respect to any
convenient sequence of reductions, since the other reductions
lead to the same result.



Sufficient Conditions for Confluence for Unitary Matching

Various works on establishing conditions for confluence when
matching is unitary:

I van Oostrom, 1990,

I Cirstea and Faure, 2007,

I Klop et al, 2008,

I Jay and Kesner, 2009.

But we have finitary matching...
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Confluence for Finitary Matching

How to deal with multiple reductions caused by multiple matchers?

I Commutative f .

I (λf(x, y).x)f(a, b)→ a.

I (λf(x, y).x)f(a, b)→ b.

Idea: Permit term sums as terms:

(λf(x, y).x)f(a, b)→ a+ b.

+ should be associative, commutative, idempotent, and
application should distribute over it (the ACID property).
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Confluence for Finitary Matching

The rule for β-reduction:

(λV P.N)Q→ Nϕ1 + · · ·+Nϕn,

where solve(P �V Q) = {ϕ1, . . . , ϕn}, n ≥ 1.

solve is a parameter: a matching function.



Confluence for Finitary Matching

I Properties of solve affect confluence.
I We proved confluence when solve satisfies three conditions:

I matchers introduce no new free variables,
I matching is stable under substitution application,
I matching is stable under reduction.



Instances of the Matching Function

I Our proof is generic, for any finitary matching function that
satisfies the confluence conditions.

I From it one can obtain confluence proofs for concrete
instantiations of the underline matching.

I We presented three concrete instances of the matching
function:

I free sequence matching (and its special case, commutative
matching),

I unordered sequence matching,
I sequence matching with linear algebraic patterns.



Summary

I We defined CLP(SC) with a sound and terminating constraint
solver over the domain of sequences and contexts.

I We implemented the PρLog language and applied to several
domains (rewriting, XML processing, Web reasoning).

I We defined a finitary pattern calculus with sequence variables
and proved its confluence under certain conditions on the
matching function.



Future Work

I Define higher-order typed term language with sequence
variables.

I Study computationally well-behaved fragments of higher-order
matching with sequence variables.

I Construction of rewriting rules over the proposed term
language.

I Investigate syntactic restrictions for rewrite systems under
which confluence and termination hold.
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