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How many of your proofs are correct?

How does proof writing compare to software development?
Some anecdotal evidence:

on average, a programmer introduces 1.5 bugs per line while typing

about one bug per hundred lines of computer code ships to market without
detection

one in each three math papers contain mistakes
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How many of your proofs are correct?

How does proof writing compare to software development?
Some anecdotal evidence:

on average, a programmer introduces 1.5 bugs per line while typing

about one bug per hundred lines of computer code ships to market without
detection

one in each three math papers contain mistakes

Not a big issue? [Doron Zeilberger 1998, Opinion 91]

“Most mathematical papers are leaves in the web
of knowledge, that no one reads, or will ever use
to prove something else.”
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How many of your proofs are correct?

How does proof writing compare to software development?

Does experimental mathematics give you just the worst of both worlds?
An optimistic note: (analogies by M. Feigenbaum)

computers as ‘bubble chambers’

machines to help ‘creating intuition’
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How many of your proofs are correct?

How does proof writing compare to software development?

Does experimental mathematics give you just the worst of both worlds?

Do structured proofs deliver the right amount
of precision ?

“...the tiniest proof at the beginning of the Theory of
Sets would already require several hundreds of signs for
its complete formalization... formalized mathematics
cannot in practice be written down in full... We shall
therefore very quickly abandon formalized mathemat-
ics.”
— N. Bourbaki 1968

Indeed: [A. Matthias 2002]
Just to expand the definition of the number ‘1’ fully

in terms of Bourbaki primitives requires over 4 trillion symbols.
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How many of your proofs are correct?

How does proof writing compare to software development?

Does experimental mathematics give you just the worst of both worlds?

Do structured proofs deliver the right amount
of precision, rigour ?
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How many of your proofs are correct?

How does proof writing compare to software development?

Does experimental mathematics give you just the worst of both worlds?

Do structured proofs deliver the right amount
of precision, rigour and beauty?

“Dirichlet alone, not I, nor Cauchy, nor Gauss knows
what a completely rigorous mathematical proof is.
Rather we learn it first from him. When Gauss says
that he has proved something, it is very clear; when
Cauchy says it, one can wager as much pro as con;
when Dirichlet says it, it is certain. . . ”
— Carl Jacobi, quoted by Schubring
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How many of your proofs are correct?

How does proof writing compare to software development?

Does experimental mathematics give you just the worst of both worlds?

Do structured proofs deliver the right amount
of precision, rigour and beauty?

Some criticisms on structured proofs: [L. Lamport 1993]

“They are too complicated.”

“They don’t explain why the proof works.”

“A proof should be great literature.”
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Does experimental mathematics give you just the worst of both worlds?

Do structured proofs deliver the right amount
of precision, rigour and beauty?

To be really convincing, shouldn’t proofs be human-surveyable?
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How many of your proofs are correct?

How does proof writing compare to software development?

Does experimental mathematics give you just the worst of both worlds?

Do structured proofs deliver the right amount
of precision, rigour and beauty?

To be really convincing, shouldn’t proofs be human-surveyable?
Yet recall, for instance:

F. Almgren’s ‘Big Paper’ in geometric measure theory
— the preprint is 1728 pages long, written for longer than a decade

D. Gorenstein’s announcement, in 1983, that the classification of finite
simple groups had been completed
— a missing gap in the treatment of the class of ‘quasithin’ groups was not
filled until 2001, with a 1,221-page proof by M. Aschbacher & S. Smith
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How many of your proofs are correct?

How does proof writing compare to software development?

Does experimental mathematics give you just the worst of both worlds?

Do structured proofs deliver the right amount
of precision, rigour and beauty?

To be really convincing, shouldn’t proofs be human-surveyable?

Are theoreticians in need of techniques of proof engineering?

J. Marcos (UFRN) 〈LOGIC〉 DOES ME GOOD MAT-UnB 2 / 8



Can computers assist you in doing math?
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— A. Turing 1948 (report), Intelligent Machinery (report)
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Computer-assisted proofs:
A mathematical proof that has been
at least partially generated by computer.
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Can computers assist you in doing math?
“[...] intellectual activity consists mainly of various kinds of search.”
— A. Turing 1948 (report), Intelligent Machinery (report)

Computer-assisted proofs:
A mathematical proof that has been
at least partially generated by computer.

A computer may surely be useful!

exploring mathematical phenomena

searching for relevant information in databases of mathematical facts

verifying correctness of proofs

assisting the production of formally verified math

discovering new theorems
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Can computers assist you in doing math?
“[...] intellectual activity consists mainly of various kinds of search.”
— A. Turing 1948 (report), Intelligent Machinery (report)

Computer-assisted proofs:
A mathematical proof that has been
at least partially generated by computer.

A computer may surely be useful!

What are the risks?
In informal proof, mistakes arise from: [J. Avigad & J. Harrison 2014]

gaps in the reasoning

appeal to faulty intuitions

imprecise definitions

misapplied background facts

and fiddly special cases or side conditions the author failed to check.

How are more reliable: Computers or humans? [D. Mackenzie 2001]

What to learn from computer programmers?
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Computer-assisted proofs:
A mathematical proof that has been
at least partially generated by computer.

A computer may surely be useful!

What are the risks?
Calculemus

Exhaustive checking: Connect-Four, Rubik’s Cube, Four-Color Theorem

Model generation: Tarski High School Algebra Problem

Proof Generation: Robbins Algebras

Formal verification: Flyspeck Project

Decidability: Presburger Arithmetic, Gröbner basis algorithms,
Theory of Real Closed Fields
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Theory of Real Closed Fields

J. Marcos (UFRN) 〈LOGIC〉 DOES ME GOOD MAT-UnB 3 / 8



Can computers assist you in doing math?
“[...] intellectual activity consists mainly of various kinds of search.”
— A. Turing 1948 (report), Intelligent Machinery (report)

Computer-assisted proofs:
A mathematical proof that has been
at least partially generated by computer.

A computer may surely be useful!

What are the risks?
Calculemus

Exhaustive checking: Connect-Four, Rubik’s Cube, Four-Color Theorem

Model generation: Tarski High School Algebra Problem

Proof Generation: Robbins Algebras

Formal verification: Flyspeck Project

Decidability: Presburger Arithmetic, Gröbner basis algorithms,
Theory of Real Closed Fields

Formal correctness assessed only modulo an underlying axiomatic framework.
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Can computers assist you in doing math?
“[...] intellectual activity consists mainly of various kinds of search.”
— A. Turing 1948 (report), Intelligent Machinery (report)

Computer-assisted proofs:
A mathematical proof that has been
at least partially generated by computer.

A computer may surely be useful!

What are the risks?
Calculemus

Exhaustive checking: Connect-Four, Rubik’s Cube, Four-Color Theorem

Model generation: Tarski High School Algebra Problem

Proof Generation: Robbins Algebras

Formal verification: Flyspeck Project

Decidability: Presburger Arithmetic, Gröbner basis algorithms,
Theory of Real Closed Fields

Peeking into the future: A new role for referees!
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Exhaustive checking: Four-Color Theorem

It all starts with a puzzle by Francis Guthrie, in 1852.

Milestones:
An influential wrong proof lingers for 11 years. [A. Kempe 1879]

Overall strategy: an induction on the reduction of map configurations
(and their dual graphs)
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Exhaustive checking: Four-Color Theorem

It all starts with a puzzle by Francis Guthrie, in 1852.

Milestones:
An influential wrong proof lingers for 11 years. [A. Kempe 1879]

Overall strategy: an induction on the reduction of map configurations
(and their dual graphs)

[K. Appel and W. Haken 1976]
Suppose, by absurd, a map needed five colors.
Possible configurations are divided into 1,936 minimal such maps.
Show that each configuration can be reduced into a smaller configuration
which also needs five colours.
Note: The reduction was made by a computer!
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Exhaustive checking: Four-Color Theorem

It all starts with a puzzle by Francis Guthrie, in 1852.

Milestones:
An influential wrong proof lingers for 11 years. [A. Kempe 1879]

[K. Appel and W. Haken 1976]
[N. Robertson, D. Sanders, P. Seymour and R. Thomas 1996]
Simpler proof involving only 633 configurations.
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[N. Robertson, D. Sanders, P. Seymour and R. Thomas 1996]

Georges Gonthier (Microsoft Research Cambridge) enters the scene.
A formal program proof should be code that:

describes what the machine should do

and also why it should be doing it
(i.e. contain a computer-checked proof of correctness)
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Exhaustive checking: Four-Color Theorem

It all starts with a puzzle by Francis Guthrie, in 1852.

Milestones:
An influential wrong proof lingers for 11 years. [A. Kempe 1879]

[K. Appel and W. Haken 1976]
[N. Robertson, D. Sanders, P. Seymour and R. Thomas 1996]

Georges Gonthier (Microsoft Research Cambridge) enters the scene.
A formal program proof should be code that:

describes what the machine should do

and also why it should be doing it
(i.e. contain a computer-checked proof of correctness)

> Compilation succeeds. [G. Gonthier 2005]
uses Coq
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Model generation: Tarski’s High School Identities
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Model generation: Tarski’s High School Identities
Consider the following identities:

1 x + y = y + x

2 x + (y + z) = (x + y) + z

3 x · y = y · x
4 x · (y · z) = (x · y) · z
5 x · 1 = x

6 x · (y + z) = (x · y) + (x · z)
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Model generation: Tarski’s High School Identities
Consider the following identities:

1 x + y = y + x

2 x + (y + z) = (x + y) + z

3 x · y = y · x
4 x · (y · z) = (x · y) · z
5 x · 1 = x

6 x · (y + z) = (x · y) + (x · z)

Facts:

these characterize precisely the equational theory of N̂ = 〈N,+, ·, 1〉

there is a decision procedure for this theory
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Model generation: Tarski’s High School Identities
Consider the following identities (HSI): [R. Dedekind 1888]

1 x + y = y + x

2 x + (y + z) = (x + y) + z

3 x · y = y · x
4 x · (y · z) = (x · y) · z
5 x · 1 = x

6 x · (y + z) = (x · y) + (x · z)

7 1x = 1

8 x1 = x

9 (x · y)z = xz · y z

10 x (y+z) = xy · xz

11 (xy )z = x (y ·z)
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Model generation: Tarski’s High School Identities
Consider the following identities (HSI): [R. Dedekind 1888]

1 x + y = y + x

2 x + (y + z) = (x + y) + z

3 x · y = y · x
4 x · (y · z) = (x · y) · z
5 x · 1 = x

6 x · (y + z) = (x · y) + (x · z)

7 1x = 1

8 x1 = x

9 (x · y)z = xz · y z

10 x (y+z) = xy · xz

11 (xy )z = x (y ·z)

A Computer Science perspective. Let

# ::=© | #++ | +(#,#) | ·(#,#) | ↑(#,#)

Take © and ++ as primitive, as in PA. [G. Peano 1889]

Then define, recursively:
[b(+)] +(x,©) = x [b(·)] ·(x,©) =© [b(↑)] ↑(x,©) =©++

[r(+)] +(x, y++) = (+(x, y))++ [r(·)] ·(x, y++) = +(·(x, y), x) [r(↑)] ↑(x, y++) = ·(↑(x, y), x)
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Model generation: Tarski’s High School Identities
Consider the following identities (HSI): [R. Dedekind 1888]

1 x + y = y + x

2 x + (y + z) = (x + y) + z

3 x · y = y · x
4 x · (y · z) = (x · y) · z
5 x · 1 = x

6 x · (y + z) = (x · y) + (x · z)

7 1x = 1

8 x1 = x

9 (x · y)z = xz · y z

10 x (y+z) = xy · xz

11 (xy )z = x (y ·z)

A Computer Science perspective. Let

# ::=© | #++ | +(#,#) | ·(#,#) | ↑(#,#)

Take © and ++ as primitive, as in PA. [G. Peano 1889]

Then define, recursively:
[b(+)] +(x,©) = x [b(·)] ·(x,©) =© [b(↑)] ↑(x,©) =©++

[r(+)] +(x, y++) = (+(x, y))++ [r(·)] ·(x, y++) = +(·(x, y), x) [r(↑)] ↑(x, y++) = ·(↑(x, y), x)

Now prove the above identities by (structural) induction!
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Model generation: Tarski’s High School Identities
Consider the following identities (HSI): [R. Dedekind 1888]

1 x + y = y + x

2 x + (y + z) = (x + y) + z

3 x · y = y · x
4 x · (y · z) = (x · y) · z
5 x · 1 = x

6 x · (y + z) = (x · y) + (x · z)

7 1x = 1

8 x1 = x

9 (x · y)z = xz · y z

10 x (y+z) = xy · xz

11 (xy )z = x (y ·z)

‘Natural’ questions: [A. Tarski 1969]

do the above characterize the equational theory of N = 〈N,+, ·, ↑, 1〉?

NO!

is there a decision procedure for this theory?

YES! [A. Macintyre 1981]
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Model generation: Tarski’s High School Identities
Consider the following identities (HSI): [R. Dedekind 1888]

1 x + y = y + x

2 x + (y + z) = (x + y) + z

3 x · y = y · x
4 x · (y · z) = (x · y) · z
5 x · 1 = x

6 x · (y + z) = (x · y) + (x · z)

7 1x = 1

8 x1 = x

9 (x · y)z = xz · y z

10 x (y+z) = xy · xz

11 (xy )z = x (y ·z)

Here is an unprovable true identity , W (x , y): [A. Wilkie 1980–81]

(Ay + By )x · (C x + Dx)y = (Ax + Bx)y · (C y + Dy )x

where A = 1 + x , B = 1 + x + x · x , C = 1 + x · x · x , D = 1 + x · x + x · x · x · x .
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Model generation: Tarski’s High School Identities
Here is an unprovable true identity , W (x , y): [A. Wilkie 1980–81]

(Ay + By )x · (C x + Dx)y = (Ax + Bx)y · (C y + Dy )x

where A = 1 + x , B = 1 + x + x · x , C = 1 + x · x · x , D = 1 + x · x + x · x · x · x .

Exercise:
Let E = 1− x + x · x and check that W (x , y) is true by factoring:

C as A · E , and D as B · E

The trouble with HSI:
Inability to manipulate polynomials with negative coefficients!
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Model generation: Tarski’s High School Identities
Here is an unprovable true identity , W (x , y): [A. Wilkie 1980–81]

(Ay + By )x · (C x + Dx)y = (Ax + Bx)y · (C y + Dy )x

where A = 1 + x , B = 1 + x + x · x , C = 1 + x · x · x , D = 1 + x · x + x · x · x · x .

On the nonderivability of the exotic identity W (x , y):
Induction on the length of a supposed derivation of W (x , y) from HSI.

(proof-theoretical argument)
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Here is an unprovable true identity , W (x , y): [A. Wilkie 1980–81]

(Ay + By )x · (C x + Dx)y = (Ax + Bx)y · (C y + Dy )x

where A = 1 + x , B = 1 + x + x · x , C = 1 + x · x · x , D = 1 + x · x + x · x · x · x .

On the nonderivability of the exotic identity W (x , y):
Induction on the length of a supposed derivation of W (x , y) from HSI.

(proof-theoretical argument)

Finding actual counterexamples to W (x , y): (model-theoretical argument)
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Model generation: Tarski’s High School Identities
Here is an unprovable true identity , W (x , y): [A. Wilkie 1980–81]

(Ay + By )x · (C x + Dx)y = (Ax + Bx)y · (C y + Dy )x

where A = 1 + x , B = 1 + x + x · x , C = 1 + x · x · x , D = 1 + x · x + x · x · x · x .

On the nonderivability of the exotic identity W (x , y):
Induction on the length of a supposed derivation of W (x , y) from HSI.

(proof-theoretical argument)

Finding actual counterexamples to W (x , y): (model-theoretical argument)
From 59 elements in [R. Gurevič 1985]

to 12 elements on [S. Burris & K. Yeats 2001], (note intensive use
but with at least 11 elements [J. Zhang 2005]. of computers!)
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On the nonderivability of the exotic identity W (x , y):
Induction on the length of a supposed derivation of W (x , y) from HSI.

(proof-theoretical argument)

Finding actual counterexamples to W (x , y): (model-theoretical argument)
From 59 elements in [R. Gurevič 1985]

to 12 elements on [S. Burris & K. Yeats 2001], (note intensive use
but with at least 11 elements [J. Zhang 2005]. of computers!)

Further:
Non-finite axiomatizability of N = 〈N,+, ·, ↑, 1〉 [R. Gurevič 1990]

(bonus: connections to the theory of type isomorphisms in lambda calculi)
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Proof generation: Robbins Algebras are Boolean

You know, of course, what a Boolean Algebra is!
A complemented distributive lattice 〈B,u,t,−〉.
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You know, of course, what a Boolean Algebra is!
A complemented distributive lattice 〈B,u,t,−〉.

But can you really recognize one when you see it?

Here is a parsimonial axiomatization of Boolean Algebras:
Assume t commutative and associative, and add
the Huntington identity:

(∀x , y) −(−x t y) t −(−x t −y) = x

[E. V. Huntington 1933]
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You know, of course, what a Boolean Algebra is!
A complemented distributive lattice 〈B,u,t,−〉.

But can you really recognize one when you see it?

Here is a parsimonial axiomatization of Boolean Algebras:
Assume t commutative and associative, and add
the Huntington identity:

(∀x , y) −(−x t y) t −(−x t −y) = x

[E. V. Huntington 1933]

What if we added, instead , the following ‘equivalent’ Robbins identity?

(∀x , y) −(−(x t y) t −(x t −y)) = x

[H. Robbins +−1933]
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Proof generation: Robbins Algebras are Boolean

Robbins Algebras are born! Specification:
t is commutative
t is associative
(∀x , y) −(−(x t y) t −(x t −y)) = x
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Proof generation: Robbins Algebras are Boolean

Robbins Algebras are born! Specification:
t is commutative
t is associative
(∀x , y) −(−(x t y) t −(x t −y)) = x

A cute benchmark problem for provers: Are Robbins Algebras Boolean?

Human Provers first!
Some sufficient conditions: [S. Winker 1990, 1992]

(∀x) −−x = x
(∃y)(∀x) x t y = x
(∀x) x t x = x
(∃x , y) x t y = x [first Winker condition]
(∃x , y) −(x t y) = −x [second Winker condition]
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(∃y)(∀x) x t y = x
(∀x) x t x = x
(∃x , y) x t y = x [first Winker condition]
(∃x , y) −(x t y) = −x [second Winker condition]
Automated Provers enter the scene! [W. McCune 1997]

What if we can prove a contradiction by adding to Robbins Algebras
the negation of the second Winker condition?
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Proof generation: Robbins Algebras are Boolean

Robbins Algebras are born! Specification:
t is commutative
t is associative
(∀x , y) −(−(x t y) t −(x t −y)) = x

A cute benchmark problem for provers: Are Robbins Algebras Boolean?

(∃x , y) −(x t y) = −x [second Winker condition]
Automated Provers enter the scene! [W. McCune 1997]

What if we can prove a contradiction by adding to Robbins Algebras
the negation of the second Winker condition?

The Argonne National Laboratory hits the news:

“The successful search took about 8 days on an RS/6000 processor and used
about 30 megabytes of memory. (For those who have the EQP preprint, the
search used basic paramodulation with the super0 restriction on AC unifiers,
the pair algorithm with ratio 1, and max-weight 70.)”

McCune used the automated theorem provers EQP and Otter.
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Proof generation: Robbins Algebras are Boolean

Robbins Algebras are born! Specification:
t is commutative
t is associative
(∀x , y) −(−(x t y) t −(x t −y)) = x

A cute benchmark problem for provers: Are Robbins Algebras Boolean?

(∃x , y) −(x t y) = −x [second Winker condition]
Automated Provers enter the scene! [W. McCune 1997]

What if we can prove a contradiction by adding to Robbins Algebras
the negation of the second Winker condition?

Computers heavily used in:

finding the proof

parsing the proof

refining the proof

checking the proof
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Formal verification: Kepler Conjecture
The problem: Packing spheres
“No arrangement of equally sized spheres filling space has a greater average density than that

of the cubic close packing (face-centered cubic) and hexagonal close packing arrangements.”

Conjecture: density π√
18

(≈ 74%)
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Formal verification: Kepler Conjecture
The problem: Packing spheres

Conjecture: density π√
18

(≈ 74%)

Its history, in brief:

piling cannonballs [1606]: Sir Walter Raleigh & Thomas Harriot

J. Kepler [1611]: “Strena seu de Nive Sexangula”

C. F. Gauss [1831]: solution checked for regular lattices

A. Thue [1890]: two-dimensional analog, density π√
12

(≈ 91%)

Hilbert’s 18th problem [1900]

L. Fejes Tóth [1953]: give me enough computational power!

Wu-Yi Hsiang [1993;2001]: an incomplete geometrical proof. . .

Thomas Hales [1998-2005;2006;2014] & Samuel P. Ferguson:
proofs with computational flavor
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Formal verification: Kepler Conjecture
The problem: Packing spheres

Conjecture: density π√
18

(≈ 74%)

On the Hales-Ferguson proof:

1990s: Annals of Mathematics starts to accept computer proofs

1998: invited Hales to submit proof
(300 pages of mathematical argument
+ 40K lines of computer code and 3Gb of data)

Jan 1999: panel of 12 experts led by Gabor Fejes Tóth,
conference at IAS Princeton

4 years later. . . “We’re 99% certain it is correct.”
“The news from the referees is bad, from my perspective. They have not been able to

certify the correctness of the proof, and will not be able to certify it in the future, because

they have run out of energy to devote to the problem. This is not what I had hoped for...”

— Robert MacPherson, editor of Annals
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Formal verification: Kepler Conjecture
The problem: Packing spheres

Conjecture: density π√
18

(≈ 74%)

On the Hales-Ferguson proof:

1990s: Annals of Mathematics starts to accept computer proofs

1998: invited Hales to submit proof
(300 pages of mathematical argument
+ 40K lines of computer code and 3Gb of data)

Jan 1999: panel of 12 experts led by Gabor Fejes Tóth,
conference at IAS Princeton

4 years later. . . “We’re 99% certain it is correct.”

100-page mathematical kernel the paper published in 2004 at Annals

computational part published elsewhere [2006]
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Formal verification: Kepler Conjecture
The problem: Packing spheres

Conjecture: density π√
18

(≈ 74%)

The aftermath:

Annals will no longer try to fully verify correctness of ‘math-code’

Hales gets a position at Pitt

Hales wins the 2006 AMS Robbins Prize

[Hales & Ferguson 2006] wins the Fulkerson Prize, in 2009
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Formal verification: Kepler Conjecture
The problem: Packing spheres

Conjecture: density π√
18

(≈ 74%)

The ambitious FlysPecK Project starts in 2003.

Estimated to take 20 work-years. Completed in 2014.
From: <HALES@pitt.edu>

Date: Sun, Aug 10, 2014 at 4:26 PM

Subject: Flyspeck project completion

To: Thomas Hales <hales@pitt.edu>

We are pleased to announce the completion of the Flyspeck project,

which has constructed a formal proof of the Kepler conjecture. The

Kepler conjecture asserts that no packing of congruent balls in

Euclidean 3-space has density greater than the face-centered cubic

packing. It is the oldest problem in discrete geometry. The proof of

the Kepler conjecture was first obtained by Ferguson and Hales in

1998. The proof relies on about 300 pages of text and on a large

number of computer calculations.

The formalization project covers both the text portion of the proof

and the computer calculations. The blueprint for the project appears

in the book "Dense Sphere Packings," published by Cambridge University

Press. The formal proof takes the same general approach as the

original proof, with modifications in the geometric partition of space

that have been suggested by Marchal.
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Formal verification: Kepler Conjecture
The problem: Packing spheres

Conjecture: density π√
18

(≈ 74%)

The ambitious FlysPecK Project starts in 2003.

Estimated to take 20 work-years. Completed in 2014.

Three essential uses of computation: [J. Avigad & J. Harrison 2014]

enumerating a class of combinatorial structures called
“tame hypermaps”

uses Isabelle

using linear-programming methods to establish bounds
on a large number of systems of linear constraints

using interval methods to verify
approximately 1,000 nonlinear inequalities that arise in the proof

use HOL Light
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Buggy proofs: On a major screwup by Kurt Gödel
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Buggy proofs: On a major screwup by Kurt Gödel

Definition of screwup: (apud Mark Dominus, in his blog)
A purported proof of a false statement that remains undetected

for a long period, and is actually built upon by others as if it were true.
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Buggy proofs: On a major screwup by Kurt Gödel

Definition of screwup: (apud Mark Dominus, in his blog)
A purported proof of a false statement that remains undetected

for a long period, and is actually built upon by others as if it were true.

Buggy software vs. buggy theorems.
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Definition of screwup: (apud Mark Dominus, in his blog)
A purported proof of a false statement that remains undetected

for a long period, and is actually built upon by others as if it were true.

Here is a correct (yet surprising) result: [K. Gödel 1933]
The class of sentences of the form

∃∗∀n∃∗ϕ
where ϕ is quantifier-free, is decidable if (and only if) n ≤ 2
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Here is a correct (yet surprising) result: [K. Gödel 1933]
The class of sentences of the form

∃∗∀n∃∗ϕ
where ϕ is quantifier-free, is decidable if (and only if) n ≤ 2,
with an incorrect coda:
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The class of sentences of the form

∃∗∀n∃∗ϕ
where ϕ is quantifier-free, is decidable if (and only if) n ≤ 2,
with an incorrect coda:

“Zum S˜luı m]˜te i˜ no˜ ´merken, ˚ı si˜ Sa> I au˜ f^r Formeln,
wel˜e ˚s =-Zei˜en ent¯lten, na˜ ˇmsel´n Verfahren ´weisen l[ıt.”

Indeed . . .

J. Marcos (UFRN) 〈LOGIC〉 DOES ME GOOD MAT-UnB 8 / 8



Buggy proofs: On a major screwup by Kurt Gödel
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Here is a correct (yet surprising) result: [K. Gödel 1933]
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∃∗∀n∃∗ϕ
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with an incorrect coda:
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Indeed . . .
. . . the proof is not extensible to the language with ‘=’ [S. Aanderaa 1960s]

. . . and as a matter of fact the assertion is false! [W. Goldfarb 1983]

The Grand Challenge: Will YOU fare better?
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