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PSAT Formal Definition

x1, . . . , xn: atomic propositions

ϕ1, . . . , ϕk : classical propositional formulas

{P(ϕi ) = pi , 1 ≤ i ≤ k}: set of probabilistic constraints
(PSAT instance)

W = {w1, . . . ,w2n}: possible worlds (valuations)

π : W → [0, 1]: probability mass

π(ϕi )=
∑
{π(wj)|wj |= ϕi}

Question: Is there a π such that π(ϕi ) = pi , 1 ≤ i ≤ k?
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Results obtained for PSAT

Theoretical study; normal form

Bridge Logic-Probability via Linear Algebra
Exponentially-sized linear programs
Logic probabilistic inference as optimization

Polynomial reduction to SAT, NP-completeness

4 different algorithms

Phase transition detected for all algorithms
Opens sourse implementations: psat.sourceforge.net

Applications to problems with hard-soft constraints

Papers: IJCAI 2011, SAT 2013, AIJ 2015, AMAI 2015

Extensions: JSBC 2015

Marcelo Finger IME-USP

UnB 2016

psat.sourceforge.net


Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Next Topic

1 Probabilistic Satisfiability (PSAT)

2 Measuiring Logic-Probabilistic Inconsistency
Classical Measurements

3 Distances

4 Extended Logic-Probabilistic Inference
Classical Inference
Extended Inference

Marcelo Finger IME-USP

UnB 2016



Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Measuiring Inconsistency

When a PSAT instance is UNSAT, we want to understand
how to deal with inconsistency

And possibly fix it (consolidate it).

Inconsistency measures can guide change in the probabilities
toward consistency.
K: set of logic-probabilistic theories

I : K→ R+

Compare the inconsistency measure of incoherent agents
(formal epistemology)

Is any such I a possible inconsistency measure?
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Dealing with Inconsistency

Rationality Postulates: desirable properties that guide the
choice of measurement

Hunter proposes postulates for inconsistency measures in
classical bases

Thimm extended those postulates to probabilistic logic,

buth
in an inconsistent way!

We want to analyse and repair (consolidade) those postulates
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Classical Measurements

Consistency Measurements and the
Consistency Postulate

Let K the set of bases ∆ = {P(ϕi ) = pi |1 ≤ i ≤ k}

An inconsistency measurement is a function

I : K→ [0,∞)

Postulate (Consistency (Hunter 2006))

I(∆) = 0 iff ∆ is consistent
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Classical Measurements

A Drastic Measure

Idr (∆) =

{
0 , if ∆ consistent
1 , otherwise

∆= {P(x1) = 0, 6,P(¬x1) = 0, 6}
Γ= ∆ ∪ {P(⊥) = 0, 1}.
Idr (∆) = Idr (Γ) = 1

But Γ seems “more inconsistent”

∆ has a single Minimal Inconsistent Subset, Γ has two
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Classical Measurements

Measurements Based on Minimal Inconsistent
Subsets (MIS)

IMIS(∆) = |MIS(∆)| = |{Ψ|Ψisa MIS in ∆}|

Example:
∆= {P(x1) = 0.6,P(¬x1) = 0.6} IMIS(∆) = 1
Γ=∆∪{P(⊥) = 0.1} IMIS(Γ) = 2
IMIS considers the number of minimal conflicts, but not their
“seriousness”: IMIS(∆) = IMIS({P(⊥) = 0, 1}) = 1.

IMISC (∆) =
∑

Ψ∈MIS(∆)

1

|Ψ|

IMISC (∆) = 1/2 IMISC ({P(⊥) = 0, 1}) = 1.
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Classical Measurements

The Independence Postulate

MISs are seen as “causing” inconsistencies.

Formulas not in any MIS in ∆ do not take part in ∆’s
inconsistency

Those formulas are called free in ∆

Adding a free formula in a base should not alter its
inconsistency measurement

Postulate (Independence (Thimm 2013) after
(Hunter 2006))

If α is free in ∆, then I(∆) = I(∆ \ {α})
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Classical Measurements

Continuity Postulate

Classical measurements are qualitative, but probability allows
for quantitative measurements

Rationale: small probability change should lead to small
changes in the inconsistency measurement

Map vectors to theories: Given ∆ = {P(ϕi ) = pi |1 ≤ i ≤ k},
let Λ∆ : [0, 1]k → K such that
Λ∆([q1 . . . qk ]) = {P(ϕi ) = qi |1 ≤ i ≤ k}.

Postulate (Continuity (Thimm, 2013))

The function I ◦ Λ∆ : [0, 1]k → [0,∞) is continuous for all ∆ ∈ K.

Classical measurements do not satisfy continuity!!!
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Classical Measurements

The Incompatibility of Inconsistency
Postulates

Theorem (De Bona and Finger 2015)

There is no inconsistency measurement that jointly satisfies the
consistency, continuity and independence postulates

Consistency and Continuity Postulates have strong appeal

Intuition tells us that independence should be rejected

MISs do not capture the totality of existing conflicts

Based on how probabilities are changed, a different notion of
conflict may guarantee the compatibility of postulates
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Classical Measurements

Widening as weakening

∆1 = {P(x) ∈ [0.4, 0.6],P(y) = 0.7}
∆2 = {P(x) ∈ [0.3, 0.7],P(y) ∈ [0.6, 0.7]}

∆2 is a widening of ∆1

∆2 is a consolidation of ∆1 iff it is a widening and ∆2 is
consistent

Widening to [0, 1] has the effect of deleting a condition, so
every base has a consolidation

∆2 is a dominant consolidation of ∆1 if it is a consolidation
that is a minimal widening

A probabilistic condition in ∆ is innocuous if it belongs to
every dominant consolidation of ∆
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Classical Measurements

The i-Independence Postulate

Every innocuous α in ∆ is free in ∆

The converse does not hold

Adding an innocuous formula in a base should not alter its
inconsistency measurement

Postulate (i-Independence (De Bona and Finger
2015))

If α is innoucuous in ∆, then I(∆) = I(∆ \ {α})

An infinite number of measurements satisfy consistency,
i-independence and continuity
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Measurements as Distances

Idea: a measurement is the smallest distance between a base
and one of its consolidations

Distance in vectorial spaces are typically continuous

For every ∆ = {P(ϕi ) = pi |1 ≤ i ≤ k}, there is
q = [q1 q2 . . . qk ] s.t. {P(ϕi ) = qi |1 ≤ i ≤ k} is consistent

Let ∆[q] denote ∆ with probabilities q = [q1 q2 . . . qk ]

Define the inconsistency measure of ∆ = ∆[p] as the smallest
distance between p and q such that ∆[q] is consistent
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Distances via `-norms

Definition

Let k, ` ≥ 1 ∈ Z. A distance `-norm between p = [p1 . . . pk ] and
q = [q1 . . . qk ]:

dk
` (p, q) =

√̀√√√ k∑
i=1

|pi − qi |`

I`(∆) = min{d |∆|
` (p, q)|∆ = ∆[p],∆[q] consistent}

Theorem (De Bona and Finger 2015)

Every inconsistency measure based on `-norm distance satisfy
consistency, i-independence and continuity
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Example of distances base on norms

∆A = {P(C ) = 60%,P(¬C ) = 60%}.

∆′
A = {P(C ) = 50%,P(¬C ) = 50%}.

∆B = {P(P) = 50%,P(C ) = 90%,P(P ∧ C ) = 25%}.
∆′

B = {P(P) = 45%,P(C ) = 85%,P(P ∧ C ) = 30%}.
In(∆′

A) = In(∆′
B) = 0, n ∈ N ∪ {∞}

I1(∆A) = 0.2 I1(∆B) = 0.15.

I2(∆A) =
√

2/10 u 0.141 I2(∆B) =
√

3/20 u 0.087.

Define dk
∞(p, q) = lim`→∞ dk

` (p, q) = maxi |pi − qi |.
I∞(∆A) = 0.1 I∞(∆B) = 1/20 = 0.05.
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Two measurements lead to linear programs

Minimize dk
` (p, q), such that each P(ϕ) = q yield a linear

restriction

Only ` = 1, ` =∞ lead to linear programs using column
generation

I1 and I∞ can be computed with greater efficiency

Open problem: how to compute I2 with quadratic
programming and column generation?
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Final comment on Inconsistency Measures

Inconsistency measures are related to a topic in the
foundations of probability and Formal Epistemology: Dutch
Books

A Dutch Book is a bet which is guaranteed to yield a loss

No loss is guaranteed iff laws of probabilities are obeyed

Higher losses are associated with more inconsistent bases

Different bets correspond to different inconsistency measures

Details in [De Bona and Finger 2015]
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Next Topic

1 Probabilistic Satisfiability (PSAT)

2 Measuiring Logic-Probabilistic Inconsistency
Classical Measurements

3 Distances

4 Extended Logic-Probabilistic Inference
Classical Inference
Extended Inference
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Classical Inference

Next Topic
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Classical Inference

Logic Probabilistic Inference

Problem (Probabilistic Inference)

Given a PSAT instance Σ = {P(αi ) = pi} and a target formula α,
find the largest interval of probabilities [p, p̄] for which α is
consistent with Σ.

Problem (Optimization version)

min/max Pπ(α)
subject to Pπ(αi ) = pi

π ≥ 0
∑
πi = 1

Note: max P(α) = min P(¬α)

Marcelo Finger IME-USP

UnB 2016



Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Classical Inference

Logic Probabilistic Inference

Problem (Probabilistic Inference)

Given a PSAT instance Σ = {P(αi ) = pi} and a target formula α,
find the largest interval of probabilities [p, p̄] for which α is
consistent with Σ.

Problem (Optimization version)

min/max Pπ(α)
subject to Pπ(αi ) = pi

π ≥ 0
∑
πi = 1

Note: max P(α) = min P(¬α)

Marcelo Finger IME-USP

UnB 2016



Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Classical Inference
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Classical Inference

Inference Under Consistency

Problem (Phase 1: PSAT succeeds)

find π
such that Pπ(αi ) = pi

π ≥ 0
∑
πi = 1

Problem (Phase 1: Linear algebra)

min c · π [= 0]
subject to A · π = p

π ≥ 0
∑
πi = 1 cj ∈ {0, 1}

Σ = (Γ,Ψ = {P(yi ) = pi}), aij = vj(yi ), 1 ≤ j ≤ 2n

cj = 1 iff column Aj is Γ-inconsistent
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Classical Inference

Consistent Inference

Problem (Phase 2: Linear algebra)

min c · π [min P(α)]
subject to A · π = p

π ≥ 0
∑
πi = 1 cj ∈ {0, 1}

Σ = (Γ,Ψ = {P(yi ) = pi}), aij = vj(yi ), 1 ≤ j ≤ 2n

cj = 1 iff column Aj is α ∧Γ-consistent

Problem (Phase 2: Linear algebra)

min c · π [max P(α)]
subject to A · π = p

π ≥ 0
∑
πi = 1 cj ∈ {0, 1}

Σ = (Γ,Ψ = {P(yi ) = pi}), aij = vj(yi ), 1 ≤ j ≤ 2n

cj = 1 iff column Aj is ¬α ∧Γ-consistent
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Extended Inference

Next Topic

1 Probabilistic Satisfiability (PSAT)

2 Measuiring Logic-Probabilistic Inconsistency
Classical Measurements

3 Distances

4 Extended Logic-Probabilistic Inference
Classical Inference
Extended Inference
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Extended Inference

Extended Inference Under Inconsistency

Problem (Phase 1: P-UnSAT)

min c · π [> 0]
subject to A · π = p

π ≥ 0
∑
πi = 1 cj ∈ {0, 1}

Σ = (Γ,Ψ = {P(yi ) = pi}), aij = vj(yi ), 1 ≤ j ≤ 2n

cj = 1 iff column Aj is Γ-inconsistent
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Extended Inference

Extended Inference: minimize distance from
consistency

Problem (Phase 2: Linear algebra)

min ||ε||` [min P(α)]
subject to ε = A · π − p

π ≥ 0
∑
πi ≤ 1

Σ = (Γ,Ψ = {P(yi ) = pi}), aij = vj(yi ), 1 ≤ j ≤ 2n

πj > 0 if column Aj is α ∧ Γ-consistent

` = 1,∞: linear program, column generation

` = 2: quadratic program of exponential size
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Probabilistic Satisfiability (PSAT) Inconsistency Distances Inference

Extended Inference

Inference of Conditional Probabilities

Problem (Conditional Model)

min/max Pπ(α|β)
subject to Pπ(αi |βi ) = pi

π ≥ 0
∑
πi = 1 P(β) > 0

In the consistent case, can be solved with linear program and
column generation

In the inconsistent case: can be approximated with a linear
program and column generation using ||ε||`

` = 1,∞
This is sometimes called the OPSAT problem
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