Inconsistency 000000000

PRACTICAL REASONING, INCONSITENCY AND MODELLING

Marcelo Finger

Department of Computer Science Instituto de Matemathics and Statistics University of Sao Paulo, Brazil

Joint work with Glauber De Bona and Eduardo Menezes de Morais

2016

MAR	CELO	FINGER
UnB	2016	

TOPICS

PROBABILISTIC SATISFIABILITY (PSAT)

MEASUIRING LOGIC-PROBABILISTIC INCONSISTENCY Classical Measurements

O DISTANCES

Extended Logic-Probabilistic Inference

- Classical Inference
- Extended Inference

Inconsistency 000000000

NEXT TOPIC

PROBABILISTIC SATISFIABILITY (PSAT)

MEASUIRING LOGIC-PROBABILISTIC INCONSISTENCY Classical Measurements

3 DISTANCES

- **Extended Logic-Probabilistic Inference**
 - Classical Inference
 - Extended Inference

PSAT FORMAL DEFINITION

- x_1, \ldots, x_n : atomic propositions
- $\varphi_1, \ldots, \varphi_k$: classical propositional formulas
- {P(φ_i) = p_i, 1 ≤ i ≤ k}: set of probabilistic constraints (PSAT instance)
- $W = \{w_1, \ldots, w_{2^n}\}$: possible worlds (valuations)
- $\pi: \mathcal{W} \to [0,1]$: probability mass
- $\pi(\varphi_i) = \sum \{\pi(w_j) | w_j \models \varphi_i\}$
- Question: Is there a π such that $\pi(\varphi_i) = p_i$, $1 \le i \le k$?

Results obtained for PSAT

• Theoretical study; normal form

- Bridge Logic-Probability via Linear Algebra
- Exponentially-sized linear programs
- Logic probabilistic inference as optimization
- Polynomial reduction to SAT, NP-completeness
- 4 different algorithms
 - Phase transition detected for all algorithms
 - Opens sourse implementations: psat.sourceforge.net
- Applications to problems with hard-soft constraints
- Papers: IJCAI 2011, SAT 2013, AIJ 2015, AMAI 2015
- Extensions: JSBC 2015

NEXT TOPIC

D Probabilistic Satisfiability (PSAT)

2 Measuiring Logic-Probabilistic Inconsistency

Classical Measurements

3 DISTANCES

- **EXTENDED LOGIC-PROBABILISTIC INFERENCE**
 - Classical Inference
 - Extended Inference

• When a PSAT instance is UNSAT, we want to understand how to deal with inconsistency

- When a PSAT instance is UNSAT, we want to understand how to deal with inconsistency
- And possibly fix it (consolidate it).

- When a PSAT instance is UNSAT, we want to understand how to deal with inconsistency
- And possibly fix it (consolidate it).
- Inconsistency measures can guide change in the probabilities toward consistency.
 - $\mathbb{K}:$ set of logic-probabilistic theories

 $\mathcal{I}:\mathbb{K}\to\mathbb{R}^+$

- When a PSAT instance is UNSAT, we want to understand how to deal with inconsistency
- And possibly fix it (consolidate it).
- Inconsistency measures can guide change in the probabilities toward consistency.
 - $\mathbb{K}:$ set of logic-probabilistic theories

$$\mathcal{I}:\mathbb{K}\to\mathbb{R}^+$$

• Compare the inconsistency measure of incoherent agents (formal epistemology)

- When a PSAT instance is UNSAT, we want to understand how to deal with inconsistency
- And possibly fix it (consolidate it).
- Inconsistency measures can guide change in the probabilities toward consistency.
 - $\mathbb{K}:$ set of logic-probabilistic theories

$$\mathcal{I}:\mathbb{K}\to\mathbb{R}^+$$

- Compare the inconsistency measure of incoherent agents (formal epistemology)
- Is any such \mathcal{I} a possible inconsistency measure?

• Rationality Postulates: desirable properties that guide the choice of measurement

- Rationality Postulates: desirable properties that guide the choice of measurement
- Hunter proposes postulates for inconsistency measures in classical bases

- Rationality Postulates: desirable properties that guide the choice of measurement
- Hunter proposes postulates for inconsistency measures in classical bases
- Thimm extended those postulates to probabilistic logic,

- Rationality Postulates: desirable properties that guide the choice of measurement
- Hunter proposes postulates for inconsistency measures in classical bases
- Thimm extended those postulates to probabilistic logic, buth in an inconsistent way!

- Rationality Postulates: desirable properties that guide the choice of measurement
- Hunter proposes postulates for inconsistency measures in classical bases
- Thimm extended those postulates to probabilistic logic, buth in an inconsistent way!
- We want to analyse and repair (consolidade) those postulates

NEXT TOPIC

PROBABILISTIC SATISFIABILITY (PSAT)

MEASUIRING LOGIC-PROBABILISTIC INCONSISTENCY Classical Measurements

3 DISTANCES

D Extended Logic-Probabilistic Inference

- Classical Inference
- Extended Inference

DISTANCES

INFERENCE 00000000

CLASSICAL MEASUREMENTS

Consistency Measurements and the Consistency Postulate

• Let \mathbb{K} the set of bases $\Delta = \{P(\varphi_i) = p_i | 1 \le i \le k\}$

Marcelo Finger UNB 2016

DISTANCES

INFERENCE 00000000

CLASSICAL MEASUREMENTS

Consistency Measurements and the Consistency Postulate

- Let \mathbb{K} the set of bases $\Delta = \{P(\varphi_i) = p_i | 1 \le i \le k\}$
- An inconsistency measurement is a function

 $\mathcal{I}:\mathbb{K}\to [0,\infty)$

Marcelo Finger UNB 2016

DISTANCES

INFERENCE 00000000

CLASSICAL MEASUREMENTS

Consistency Measurements and the Consistency Postulate

- Let \mathbb{K} the set of bases $\Delta = \{P(\varphi_i) = p_i | 1 \le i \le k\}$
- An inconsistency measurement is a function

$$\mathcal{I}:\mathbb{K} o [0,\infty)$$

POSTULATE (CONSISTENCY (HUNTER 2006)) $\mathcal{I}(\Delta) = 0$ iff Δ is consistent

Mare	CELO	Finger
UnB	2016	

PROBABILISTIC SATISFIABILITY (PSAT)

Inconsistency

DISTANCE

INFERENCE 00000000

CLASSICAL MEASUREMENTS

A DRASTIC MEASURE

$${\mathcal I}_{dr}(\Delta) = \left\{ egin{array}{cc} 0 & ext{, if } \Delta ext{ consistent} \ 1 & ext{, otherwise} \end{array}
ight.$$

Marcelo Finger UnB 2016 IME-USP

PROBABILISTIC SATISFIABILITY (PSAT)

Inconsistency

DISTANCE

INFERENCE 00000000

CLASSICAL MEASUREMENTS

A DRASTIC MEASURE

$${\mathcal I}_{dr}(\Delta) = \left\{egin{array}{cc} 0 & ext{, if } \Delta ext{ consistent} \ 1 & ext{, otherwise} \end{array}
ight.$$

•
$$\Delta = \{P(x_1) = 0, 6, P(\neg x_1) = 0, 6\}$$

• $\Gamma = \Delta \cup \{P(\bot) = 0, 1\}.$

Marcelo Finger UnB 2016

DISTANCE

CLASSICAL MEASUREMENTS

A DRASTIC MEASURE

$${\cal I}_{dr}(\Delta) = \left\{egin{array}{cc} 0 & ext{, if } \Delta ext{ consistent} \ 1 & ext{, otherwise} \end{array}
ight.$$

•
$$\Delta = \{P(x_1) = 0, 6, P(\neg x_1) = 0, 6\}$$

• $\Gamma = \Delta \cup \{P(\bot) = 0, 1\}.$

•
$$\mathcal{I}_{dr}(\Delta) = \mathcal{I}_{dr}(\Gamma) = 1$$

But Γ seems "more inconsistent"

DISTANCE

CLASSICAL MEASUREMENTS

A DRASTIC MEASURE

$${\mathcal I}_{dr}(\Delta) = \left\{egin{array}{cc} 0 & ext{, if } \Delta ext{ consistent} \ 1 & ext{, otherwise} \end{array}
ight.$$

•
$$\Delta = \{P(x_1) = 0, 6, P(\neg x_1) = 0, 6\}$$

• $\Gamma = \Delta \cup \{P(\bot) = 0, 1\}.$

•
$$\mathcal{I}_{dr}(\Delta) = \mathcal{I}_{dr}(\Gamma) = 1$$

• But Γ seems "more inconsistent"

• Δ has a single Minimal Inconsistent Subset, Γ has two

DISTANCES

CLASSICAL MEASUREMENTS

MEASUREMENTS BASED ON MINIMAL INCONSISTENT SUBSETS (MIS)

 $\mathcal{I}_{MIS}(\Delta) = |MIS(\Delta)| = |\{\Psi|\Psi isa \text{ MIS in } \Delta\}|$

Marcelo Finger UNB 2016

Inconsistency 0000000

DISTANCES

CLASSICAL MEASUREMENTS

MEASUREMENTS BASED ON MINIMAL INCONSISTENT SUBSETS (MIS)

$$\mathcal{I}_{MIS}(\Delta) = |MIS(\Delta)| = |\{\Psi|\Psi$$
isa MIS in $\Delta\}|$

• Example:

$$\Delta = \{P(x_1) = 0.6, P(\neg x_1) = 0.6\}$$
 $\mathcal{I}_{MIS}(\Delta) = 1$
 $\Gamma = \Delta \cup \{P(\bot) = 0.1\}$ $\mathcal{I}_{MIS}(\Gamma) = 2$

Marcelo Finger UnB 2016 IME-USP

MEASUREMENTS BASED ON MINIMAL INCONSISTENT SUBSETS (MIS)

$$\mathcal{I}_{MIS}(\Delta) = |MIS(\Delta)| = |\{\Psi|\Psi$$
isa MIS in $\Delta\}|$

• Example:

$$\Delta = \{P(x_1) = 0.6, P(\neg x_1) = 0.6\} \quad \mathcal{I}_{MIS}(\Delta) = 1$$

$$\Gamma = \Delta \cup \{P(\bot) = 0.1\} \qquad \qquad \mathcal{I}_{MIS}(\Gamma) = 2$$

• \mathcal{I}_{MIS} considers the number of minimal conflicts, but not their "seriousness": $\mathcal{I}_{MIS}(\Delta) = \mathcal{I}_{MIS}(\{P(\bot) = 0, 1\}) = 1.$

MEASUREMENTS BASED ON MINIMAL INCONSISTENT SUBSETS (MIS)

$$\mathcal{I}_{MIS}(\Delta) = |MIS(\Delta)| = |\{\Psi|\Psi$$
isa MIS in $\Delta\}|$

• Example: $\Delta = \{P(x_1) = 0.6, P(\neg x_1) = 0.6\} \quad \mathcal{I}_{MIS}(\Delta) = 1$ $\Gamma = \Delta \cup \{P(\bot) = 0.1\} \qquad \qquad \mathcal{I}_{MIS}(\Gamma) = 2$ • \mathcal{I}_{MIS} considers the number of minimal conflicts, but not their "seriousness": $\mathcal{I}_{MIS}(\Delta) = \mathcal{I}_{MIS}(\{P(\bot) = 0, 1\}) = 1.$ $\mathcal{I}_{MIS^{C}}(\Delta) = \sum_{\Psi \in MIS(\Delta)} \frac{1}{|\Psi|}$

MEASUREMENTS BASED ON MINIMAL INCONSISTENT SUBSETS (MIS)

$$\mathcal{I}_{MIS}(\Delta) = |MIS(\Delta)| = |\{\Psi|\Psi$$
isa MIS in $\Delta\}|$

• Example:

$$\Delta = \{P(x_1) = 0.6, P(\neg x_1) = 0.6\} \quad \mathcal{I}_{MIS}(\Delta) = 1$$

$$\Gamma = \Delta \cup \{P(\bot) = 0.1\} \qquad \mathcal{I}_{MIS}(\Gamma) = 2$$
• \mathcal{I}_{MIS} considers the number of minimal conflicts, but not their
"seriousness": $\mathcal{I}_{MIS}(\Delta) = \mathcal{I}_{MIS}(\{P(\bot) = 0, 1\}) = 1.$

$$\mathcal{I}_{MIS^{C}}(\Delta) = \sum_{\Psi \in MIS(\Delta)} \frac{1}{|\Psi|}$$

•
$$\mathcal{I}_{MIS}c(\Delta) = 1/2$$
 $\mathcal{I}_{MIS}c(\{P(\bot) = 0, 1\}) = 1.$

Marcelo Finger UnB 2016

The Independence Postulate

- MISs are seen as "causing" inconsistencies.
- \bullet Formulas not in any MIS in Δ do not take part in Δ 's inconsistency
- Those formulas are called *free* in Δ
- Adding a free formula in a base should not alter its inconsistency measurement

Postulate (Independence (Thimm 2013) After (Hunter 2006))

If α is free in Δ , then $\mathcal{I}(\Delta) = \mathcal{I}(\Delta \setminus \{\alpha\})$

DISTANCE

CLASSICAL MEASUREMENTS

CONTINUITY POSTULATE

• Classical measurements are **qualitative**, but probability allows for **quantitative** measurements

CONTINUITY POSTULATE

- Classical measurements are **qualitative**, but probability allows for **quantitative** measurements
- **Rationale**: small probability change should lead to small changes in the inconsistency measurement

CONTINUITY POSTULATE

- Classical measurements are **qualitative**, but probability allows for **quantitative** measurements
- **Rationale**: small probability change should lead to small changes in the inconsistency measurement
- Map vectors to theories: Given $\Delta = \{P(\varphi_i) = p_i | 1 \le i \le k\}$, let $\Lambda_{\Delta} : [0, 1]^k \to \mathbb{K}$ such that $\Lambda_{\Delta}([q_1 \dots q_k]) = \{P(\varphi_i) = q_i | 1 \le i \le k\}$.

CONTINUITY POSTULATE

- Classical measurements are **qualitative**, but probability allows for **quantitative** measurements
- **Rationale**: small probability change should lead to small changes in the inconsistency measurement
- Map vectors to theories: Given $\Delta = \{P(\varphi_i) = p_i | 1 \le i \le k\}$, let $\Lambda_{\Delta} : [0, 1]^k \to \mathbb{K}$ such that $\Lambda_{\Delta}([q_1 \dots q_k]) = \{P(\varphi_i) = q_i | 1 \le i \le k\}.$

POSTULATE (CONTINUITY (THIMM, 2013))

The function $\mathcal{I} \circ \Lambda_{\Delta} : [0,1]^k \to [0,\infty)$ is continuous for all $\Delta \in \mathbb{K}$.

Marcelo Finger UnB 2016

CONTINUITY POSTULATE

- Classical measurements are **qualitative**, but probability allows for **quantitative** measurements
- **Rationale**: small probability change should lead to small changes in the inconsistency measurement
- Map vectors to theories: Given $\Delta = \{P(\varphi_i) = p_i | 1 \le i \le k\}$, let $\Lambda_{\Delta} : [0, 1]^k \to \mathbb{K}$ such that $\Lambda_{\Delta}([q_1 \dots q_k]) = \{P(\varphi_i) = q_i | 1 \le i \le k\}.$

POSTULATE (CONTINUITY (THIMM, 2013))

The function $\mathcal{I} \circ \Lambda_{\Delta} : [0,1]^k \to [0,\infty)$ is continuous for all $\Delta \in \mathbb{K}$.

• Classical measurements do not satisfy continuity!!!

Marcelo Finger UNB 2016

DISTANCES

Inference 00000000

CLASSICAL MEASUREMENTS

The Incompatibility of Inconsistency Postulates

THEOREM (DE BONA AND FINGER 2015)

There is no inconsistency measurement that jointly satisfies the **consistency**, **continuity** and **independence** postulates

Marcelo Finger UNB 2016

DISTANCES

INFERENCE 00000000

CLASSICAL MEASUREMENTS

The Incompatibility of Inconsistency Postulates

THEOREM (DE BONA AND FINGER 2015)

There is no inconsistency measurement that jointly satisfies the **consistency**, **continuity** and **independence** postulates

- Consistency and Continuity Postulates have strong appeal
- Intuition tells us that independence should be rejected

DISTANCES

INFERENCE 00000000

CLASSICAL MEASUREMENTS

The Incompatibility of Inconsistency Postulates

THEOREM (DE BONA AND FINGER 2015)

There is no inconsistency measurement that jointly satisfies the **consistency**, **continuity** and **independence** postulates

- Consistency and Continuity Postulates have strong appeal
- Intuition tells us that independence should be rejected
- MISs do not capture the totality of existing conflicts

DISTANCES

INFERENCE 00000000

CLASSICAL MEASUREMENTS

The Incompatibility of Inconsistency Postulates

THEOREM (DE BONA AND FINGER 2015)

There is no inconsistency measurement that jointly satisfies the **consistency**, **continuity** and **independence** postulates

- Consistency and Continuity Postulates have strong appeal
- Intuition tells us that independence should be rejected
- MISs do not capture the totality of existing conflicts
- Based on how probabilities are changed, a different notion of conflict may guarantee the compatibility of postulates

Probabilistic Satisfiability (PSAT)

Inconsistency

DISTANCE

INFERENCE 00000000

CLASSICAL MEASUREMENTS

WIDENING AS WEAKENING

$$\begin{aligned} \Delta_1 &= \{ P(x) \in [0.4, 0.6], P(y) = 0.7 \} \\ \Delta_2 &= \{ P(x) \in [0.3, 0.7], P(y) \in [0.6, 0.7] \} \end{aligned}$$

• Δ_2 is a **widening** of Δ_1

Probabilistic Satisfiability (PSAT)

INCONSISTENCY 00000000 DISTANCE

CLASSICAL MEASUREMENTS

$$\Delta_1 = \{ P(x) \in [0.4, 0.6], P(y) = 0.7 \}$$

$$\Delta_2 = \{ P(x) \in [0.3, 0.7], P(y) \in [0.6, 0.7] \}$$

- Δ_2 is a **widening** of Δ_1
- Δ_2 is a consolidation of Δ_1 iff it is a widening and Δ_2 is consistent

DISTANCE

CLASSICAL MEASUREMENTS

$$\Delta_1 = \{ P(x) \in [0.4, 0.6], P(y) = 0.7 \}$$

$$\Delta_2 = \{ P(x) \in [0.3, 0.7], P(y) \in [0.6, 0.7] \}$$

- Δ_2 is a **widening** of Δ_1
- Δ_2 is a **consolidation** of Δ_1 iff it is a widening and Δ_2 is consistent
- Widening to [0,1] has the effect of deleting a condition, so every base has a consolidation

DISTANCE

CLASSICAL MEASUREMENTS

$$\Delta_1 = \{ P(x) \in [0.4, 0.6], P(y) = 0.7 \}$$

$$\Delta_2 = \{ P(x) \in [0.3, 0.7], P(y) \in [0.6, 0.7] \}$$

- Δ_2 is a **widening** of Δ_1
- Δ_2 is a **consolidation** of Δ_1 iff it is a widening and Δ_2 is consistent
- Widening to [0, 1] has the effect of deleting a condition, so every base has a consolidation
- Δ_2 is a **dominant consolidation** of Δ_1 if it is a consolidation that is a minimal widening

DISTANCE

CLASSICAL MEASUREMENTS

$$\Delta_1 = \{ P(x) \in [0.4, 0.6], P(y) = 0.7 \}$$

$$\Delta_2 = \{ P(x) \in [0.3, 0.7], P(y) \in [0.6, 0.7] \}$$

- Δ_2 is a **widening** of Δ_1
- Δ_2 is a **consolidation** of Δ_1 iff it is a widening and Δ_2 is consistent
- Widening to [0, 1] has the effect of deleting a condition, so every base has a consolidation
- Δ_2 is a **dominant consolidation** of Δ_1 if it is a consolidation that is a minimal widening
- A probabilistic condition in Δ is **innocuous** if it belongs to every dominant consolidation of Δ

Probabilistic Satisfiability (PSAT)

INCONSISTENCY

DISTANCE

INFERENCE 00000000

CLASSICAL MEASUREMENTS

THE *i*-INDEPENDENCE POSTULATE

- Every innocuous α in Δ is free in Δ
- The converse does not hold
- Adding an innocuous formula in a base should not alter its inconsistency measurement

Probabilistic Satisfiability (PSAT)

INCONSISTENCY

DISTANCE

INFERENCE 00000000

CLASSICAL MEASUREMENTS

The *i*-Independence Postulate

- Every innocuous α in Δ is free in Δ
- The converse does not hold
- Adding an innocuous formula in a base should not alter its inconsistency measurement

Postulate (*i*-Independence (De Bona and Finger 2015))

If α is innoucuous in Δ , then $\mathcal{I}(\Delta) = \mathcal{I}(\Delta \setminus \{\alpha\})$

CLASSICAL MEASUREMENTS

The *i*-Independence Postulate

- Every innocuous α in Δ is free in Δ
- The converse does not hold
- Adding an innocuous formula in a base should not alter its inconsistency measurement

POSTULATE (*i*-INDEPENDENCE (DE BONA AND FINGER 2015))

If α is innoucuous in Δ , then $\mathcal{I}(\Delta) = \mathcal{I}(\Delta \setminus \{\alpha\})$

An infinite number of measurements satisfy consistency, *i*-independence and continuity

NEXT TOPIC

PROBABILISTIC SATISFIABILITY (PSAT)

MEASUIRING LOGIC-PROBABILISTIC INCONSISTENCY Classical Measurements

3 Distances

D Extended Logic-Probabilistic Inference

- Classical Inference
- Extended Inference

MEASUREMENTS AS DISTANCES

- Idea: a measurement is the smallest distance between a base and one of its consolidations
- Distance in vectorial spaces are typically continuous
- For every $\Delta = \{P(\varphi_i) = p_i | 1 \le i \le k\}$, there is $q = [q_1 q_2 \dots q_k]$ s.t. $\{P(\varphi_i) = q_i | 1 \le i \le k\}$ is consistent
- Let $\Delta[q]$ denote Δ with probabilities $q = [q_1 \ q_2 \ \dots \ q_k]$
- Define the inconsistency measure of Δ = Δ[p] as the smallest distance between p and q such that Δ[q] is consistent

DISTANCES VIA ℓ -NORMS

DEFINITION

Let $k, \ell \ge 1 \in \mathbb{Z}$. A distance ℓ -norm between $p = [p_1 \dots p_k]$ and $q = [q_1 \dots q_k]$:

$$d^k_\ell(p,q) = \sqrt[\ell]{\sum_{i=1}^k |p_i-q_i|^\ell}$$

•
$$\mathcal{I}_\ell(\Delta) = \min\{d_\ell^{|\Delta|}(p,q) | \Delta = \Delta[p], \Delta[q] ext{ consistent} \}$$

Distances via ℓ -norms

DEFINITION

Let $k, \ell \ge 1 \in \mathbb{Z}$. A distance ℓ -norm between $p = [p_1 \dots p_k]$ and $q = [q_1 \dots q_k]$:

$$d^k_\ell(p,q) = \sqrt[\ell]{\sum_{i=1}^k |p_i-q_i|^\ell}$$

•
$$\mathcal{I}_\ell(\Delta) = \min\{d_\ell^{|\Delta|}(p,q) | \Delta = \Delta[p], \Delta[q] ext{ consistent}\}$$

THEOREM (DE BONA AND FINGER 2015)

Every inconsistency measure based on ℓ -norm distance satisfy consistency, i-independence and continuity

DISTANCES

INFERENCE 00000000

EXAMPLE OF DISTANCES BASE ON NORMS

• $\Delta_A = \{ P(C) = 60\%, P(\neg C) = 60\% \}.$

Mare	CELO	FINGER
UnB	2016	

DISTANCES

INFERENCE 00000000

EXAMPLE OF DISTANCES BASE ON NORMS

•
$$\Delta_A = \{P(C) = 60\%, P(\neg C) = 60\%\}.$$

•
$$\Delta'_A = \{P(C) = 50\%, P(\neg C) = 50\%\}.$$

DISTANCES

INFERENCE 00000000

EXAMPLE OF DISTANCES BASE ON NORMS

DISTANCES

EXAMPLE OF DISTANCES BASE ON NORMS

•
$$\Delta_A = \{P(C) = 60\%, P(\neg C) = 60\%\}.$$

• $\Delta'_A = \{P(C) = 50\%, P(\neg C) = 50\%\}.$
• $\Delta_B = \{P(P) = 50\%, P(C) = 90\%, P(P \land C) = 25\%\}.$
• $\Delta'_B = \{P(P) = 45\%, P(C) = 85\%, P(P \land C) = 30\%\}.$

DISTANCES

EXAMPLE OF DISTANCES BASE ON NORMS

•
$$\Delta_A = \{P(C) = 60\%, P(\neg C) = 60\%\}.$$

• $\Delta'_A = \{P(C) = 50\%, P(\neg C) = 50\%\}.$
• $\Delta_B = \{P(P) = 50\%, P(C) = 90\%, P(P \land C) = 25\%\}.$
• $\Delta'_B = \{P(P) = 45\%, P(C) = 85\%, P(P \land C) = 30\%\}.$
• $\mathcal{I}_n(\Delta'_A) = \mathcal{I}_n(\Delta'_B) = 0, n \in \mathbb{N} \cup \{\infty\}$

DISTANCES

EXAMPLE OF DISTANCES BASE ON NORMS

•
$$\Delta_A = \{P(C) = 60\%, P(\neg C) = 60\%\}.$$

• $\Delta'_A = \{P(C) = 50\%, P(\neg C) = 50\%\}.$
• $\Delta_B = \{P(P) = 50\%, P(C) = 90\%, P(P \land C) = 25\%\}.$
• $\Delta'_B = \{P(P) = 45\%, P(C) = 85\%, P(P \land C) = 30\%\}.$
• $\mathcal{I}_n(\Delta'_A) = \mathcal{I}_n(\Delta'_B) = 0, n \in \mathbb{N} \cup \{\infty\}$
• $\mathcal{I}_1(\Delta_A) = 0.2$ $\mathcal{I}_1(\Delta_B) = 0.15.$

DISTANCES

EXAMPLE OF DISTANCES BASE ON NORMS

•
$$\Delta_A = \{P(C) = 60\%, P(\neg C) = 60\%\}.$$

• $\Delta'_A = \{P(C) = 50\%, P(\neg C) = 50\%\}.$
• $\Delta_B = \{P(P) = 50\%, P(C) = 90\%, P(P \land C) = 25\%\}.$
• $\Delta'_B = \{P(P) = 45\%, P(C) = 85\%, P(P \land C) = 30\%\}.$
• $\mathcal{I}_n(\Delta'_A) = \mathcal{I}_n(\Delta'_B) = 0, n \in \mathbb{N} \cup \{\infty\}$
• $\mathcal{I}_1(\Delta_A) = 0.2$ $\mathcal{I}_1(\Delta_B) = 0.15.$
• $\mathcal{I}_2(\Delta_A) = \sqrt{2}/10 \approx 0.141$ $\mathcal{I}_2(\Delta_B) = \sqrt{3}/20 \approx 0.087.$

DISTANCES

INFERENCE 00000000

EXAMPLE OF DISTANCES BASE ON NORMS

•
$$\Delta_A = \{P(C) = 60\%, P(\neg C) = 60\%\}.$$

• $\Delta'_A = \{P(C) = 50\%, P(\neg C) = 50\%\}.$
• $\Delta_B = \{P(P) = 50\%, P(C) = 90\%, P(P \land C) = 25\%\}.$
• $\Delta'_B = \{P(P) = 45\%, P(C) = 85\%, P(P \land C) = 30\%\}.$
• $\mathcal{I}_n(\Delta'_A) = \mathcal{I}_n(\Delta'_B) = 0, n \in \mathbb{N} \cup \{\infty\}$
• $\mathcal{I}_1(\Delta_A) = 0.2$ $\mathcal{I}_1(\Delta_B) = 0.15.$
• $\mathcal{I}_2(\Delta_A) = \sqrt{2}/10 \approx 0.141$ $\mathcal{I}_2(\Delta_B) = \sqrt{3}/20 \approx 0.087.$
• Define $d^k_{\infty}(p, q) = \lim_{\ell \to \infty} d^k_{\ell}(p, q) = \max_i |p_i - q_i|.$

DISTANCES

INFERENCE 00000000

EXAMPLE OF DISTANCES BASE ON NORMS

•
$$\Delta_A = \{P(C) = 60\%, P(\neg C) = 60\%\}.$$

• $\Delta'_A = \{P(C) = 50\%, P(\neg C) = 50\%\}.$
• $\Delta_B = \{P(P) = 50\%, P(C) = 90\%, P(P \land C) = 25\%\}.$
• $\Delta'_B = \{P(P) = 45\%, P(C) = 85\%, P(P \land C) = 30\%\}.$
• $\mathcal{I}_n(\Delta'_A) = \mathcal{I}_n(\Delta'_B) = 0, n \in \mathbb{N} \cup \{\infty\}$
• $\mathcal{I}_1(\Delta_A) = 0.2$ $\mathcal{I}_1(\Delta_B) = 0.15.$
• $\mathcal{I}_2(\Delta_A) = \sqrt{2}/10 \approx 0.141$ $\mathcal{I}_2(\Delta_B) = \sqrt{3}/20 \approx 0.087.$
• Define $d^k_{\infty}(p, q) = \lim_{\ell \to \infty} d^k_{\ell}(p, q) = \max_i |p_i - q_i|.$
• $\mathcal{I}_{\infty}(\Delta_A) = 0.1$ $\mathcal{I}_{\infty}(\Delta_B) = 1/20 = 0.05.$

• Minimize $d_{\ell}^{k}(p,q)$, such that each $P(\varphi) = q$ yield a linear restriction

- Minimize $d_{\ell}^{k}(p,q)$, such that each $P(\varphi) = q$ yield a linear restriction
- Only $\ell=1,\,\ell=\infty$ lead to linear programs using column generation

- Minimize $d_{\ell}^{k}(p,q)$, such that each $P(\varphi) = q$ yield a linear restriction
- Only $\ell=1,\ \ell=\infty$ lead to linear programs using column generation
- $\bullet~\mathcal{I}_1$ and \mathcal{I}_∞ can be computed with greater efficiency

- Minimize $d_{\ell}^{k}(p,q)$, such that each $P(\varphi) = q$ yield a linear restriction
- Only $\ell=1,\ \ell=\infty$ lead to linear programs using column generation
- $\bullet~\mathcal{I}_1$ and \mathcal{I}_∞ can be computed with greater efficiency
- Open problem: how to compute I_2 with quadratic programming and column generation?

FINAL COMMENT ON INCONSISTENCY MEASURES

- Inconsistency measures are related to a topic in the foundations of probability and Formal Epistemology: Dutch Books
- A Dutch Book is a bet which is guaranteed to yield a loss
- No loss is guaranteed iff laws of probabilities are obeyed
- Higher losses are associated with more inconsistent bases
- Different bets correspond to different inconsistency measures
- Details in [De Bona and Finger 2015]

NEXT TOPIC

PROBABILISTIC SATISFIABILITY (PSAT)

MEASUIRING LOGIC-PROBABILISTIC INCONSISTENCY Classical Measurements

3 DISTANCES

Extended Logic-Probabilistic Inference

- Classical Inference
- Extended Inference

PROBABILISTIC SATISFIABILITY	(PSAT)
------------------------------	--------

CLASSICAL INFERENCE

NEXT TOPIC

PROBABILISTIC SATISFIABILITY (PSAT)

MEASUIRING LOGIC-PROBABILISTIC INCONSISTENCY Classical Measurements

3 DISTANCES

EXTENDED LOGIC-PROBABILISTIC INFERENCE
 Classical Inference
 Extended Inference

DISTANCE

INFERENCE

CLASSICAL INFERENCE

LOGIC PROBABILISTIC INFERENCE

PROBLEM (PROBABILISTIC INFERENCE)

Given a PSAT instance $\Sigma = \{P(\alpha_i) = p_i\}$ and a target formula α , find the largest interval of probabilities $[\underline{p}, \overline{p}]$ for which α is consistent with Σ .

DISTANCE

CLASSICAL INFERENCE

LOGIC PROBABILISTIC INFERENCE

PROBLEM (PROBABILISTIC INFERENCE)

Given a PSAT instance $\Sigma = \{P(\alpha_i) = p_i\}$ and a target formula α , find the largest interval of probabilities $[\underline{p}, \overline{p}]$ for which α is consistent with Σ .

PROBLEM (OPTIMIZATION VERSION)

 $egin{array}{lll} {min/max} & {\mathcal P}_\pi(lpha) \ {subject to} & {\mathcal P}_\pi(lpha_i) = {\mathcal p}_i \ \pi \ge 0 & \sum \pi_i = 1 \end{array}$

DISTANCE

INFERENCE

CLASSICAL INFERENCE

LOGIC PROBABILISTIC INFERENCE

PROBLEM (PROBABILISTIC INFERENCE)

Given a PSAT instance $\Sigma = \{P(\alpha_i) = p_i\}$ and a target formula α , find the largest interval of probabilities $[\underline{p}, \overline{p}]$ for which α is consistent with Σ .

PROBLEM (OPTIMIZATION VERSION)

 $egin{array}{lll} {min/max} & {\mathcal P}_{\pi}(lpha) \ {subject to} & {\mathcal P}_{\pi}(lpha_i) = {\it p}_i \ \pi \geq 0 & \sum \pi_i = 1 \end{array}$

Note: max $P(\alpha) = \min P(\neg \alpha)$

Probabilistic Satisfiability (PSAT)

INCONSISTENCY 000000000 DISTANCE

INFERENCE

CLASSICAL INFERENCE

INFERENCE UNDER CONSISTENCY

PROBLEM (PHASE 1: PSAT SUCCEEDS)

find
$$\pi$$

such that $P_{\pi}(\alpha_i) = p_i$
 $\pi \ge 0 \quad \sum \pi_i = 1$

Marcelo Finger UnB 2016 IME-USP

DISTANCE

INFERENCE

CLASSICAL INFERENCE

INFERENCE UNDER CONSISTENCY

PROBLEM (PHASE 1: PSAT SUCCEEDS)

$$egin{array}{lll} {\it find} & \pi \ {\it such that} & {\it P}_{\pi}(lpha_i) = {\it p}_i \ & \pi \geq 0 & \sum \pi_i = 1 \end{array}$$

PROBLEM (PHASE 1: LINEAR ALGEBRA)

$$\begin{array}{ll} \mbox{min} & c \cdot \pi & [= 0] \\ \mbox{subject to} & A \cdot \pi = p \\ & \pi \geq 0 \quad \sum \pi_i = 1 \quad c_j \in \{0, 1\} \\ & \Sigma = (\Gamma, \Psi = \{P(y_i) = p_i\}), \quad a_{ij} = v_j(y_i), 1 \leq j \leq 2^n \\ & c_j = 1 \mbox{ iff column } A^j \mbox{ is } \Gamma \mbox{-inconsistent} \end{array}$$

DISTANCE

CLASSICAL INFERENCE

CONSISTENT INFERENCE

PROBLEM (PHASE 2: LINEAR ALGEBRA)

 $\begin{array}{ll} \mbox{min} & c \cdot \pi & [\mbox{min} \ P(\alpha)] \\ \mbox{subject to} & A \cdot \pi = p \\ & \pi \geq 0 \quad \sum \pi_i = 1 \quad c_j \in \{0, 1\} \\ & \Sigma = (\Gamma, \Psi = \{P(y_i) = p_i\}), \quad a_{ij} = v_j(y_i), 1 \leq j \leq 2^n \\ & c_j = 1 \ iff \ column \ A^j \ is \ \alpha \ \wedge \Gamma \ - consistent \end{array}$

DISTANCE

INFERENCE

CLASSICAL INFERENCE

CONSISTENT INFERENCE

PROBLEM (PHASE 2: LINEAR ALGEBRA)

 $\begin{array}{ll} \mbox{min} & c \cdot \pi & [\mbox{min} \ P(\alpha)] \\ \mbox{subject to} & A \cdot \pi = p \\ & \pi \ge 0 \quad \sum \pi_i = 1 \quad c_j \in \{0, 1\} \\ & \Sigma = (\Gamma, \Psi = \{P(y_i) = p_i\}), \quad a_{ij} = v_j(y_i), 1 \le j \le 2^n \\ & c_j = 1 \ iff \ column \ A^j \ is \ \alpha \ \wedge \Gamma \ - consistent \end{array}$

PROBLEM (PHASE 2: LINEAR ALGEBRA)

 $\begin{array}{ll} \mbox{min} & c \cdot \pi & [\max P(\alpha)] \\ \mbox{subject to} & A \cdot \pi = p \\ & \pi \geq 0 & \sum \pi_i = 1 \quad c_j \in \{0, 1\} \\ & \Sigma = (\Gamma, \Psi = \{P(y_i) = p_i\}), \quad a_{ij} = v_j(y_i), 1 \leq j \leq 2^n \\ & c_j = 1 \ iff \ column \ A^j \ is \neg \alpha \ \wedge \Gamma \ consistent \end{array}$

MARCELO FINGER

UNB 2016

PROBABILISTIC SATISFIABILITY (]	PSAT)
---------------------------------	------	---

EXTENDED INFERENCE

NEXT TOPIC

PROBABILISTIC SATISFIABILITY (PSAT)

MEASUIRING LOGIC-PROBABILISTIC INCONSISTENCY Classical Measurements

3 DISTANCES

EXTENDED LOGIC-PROBABILISTIC INFERENCE

• Extended Inference

Probabilistic Satisfiability (PSAT)

INCONSISTENCY 000000000 DISTANCES

INFERENCE

EXTENDED INFERENCE

EXTENDED INFERENCE UNDER INCONSISTENCY

PROBLEM (PHASE 1: P-UNSAT)

$$\begin{array}{ll} \mbox{min} & c \cdot \pi & [> 0] \\ \mbox{subject to} & A \cdot \pi = p \\ & \pi \geq 0 \quad \sum \pi_i = 1 \quad c_j \in \{0, 1\} \\ & \Sigma = (\Gamma, \Psi = \{P(y_i) = p_i\}), \quad a_{ij} = v_j(y_i), 1 \leq j \leq 2^n \\ & c_j = 1 \mbox{ iff column } A^j \mbox{ is } \Gamma \mbox{-inconsistent} \end{array}$$

Marcelo Finger UnB 2016 IME-USP

EXTENDED INFERENCE

EXTENDED INFERENCE: MINIMIZE DISTANCE FROM CONSISTENCY

PROBLEM	(Phase 2: Linear Algebra)
min	$\ \varepsilon\ _{\ell}$ [min $P(\alpha)$]
subject to	$arepsilon = \mathbf{A} \cdot \pi - \mathbf{p}$
	$\pi \geq 0$ $\sum \pi_i \leq 1$
	$\Sigma = (\Gamma, \overline{\Psi} = \{P(y_i) = p_i\}), a_{ij} = v_j(y_i), 1 \le j \le 2^n$
	$\pi_j > 0$ if column A^j is $\alpha \wedge \Gamma$ -consistent

Marcelo Finger UnB 2016 IME-USP

EXTENDED INFERENCE

EXTENDED INFERENCE: MINIMIZE DISTANCE FROM CONSISTENCY

PROBLEM (PHASE 2: LINEAR ALGEBRA) min $\|\varepsilon\|_{\ell}$ [min $P(\alpha)$] subject to $\varepsilon = A \cdot \pi - p$ $\pi \ge 0$ $\sum \pi_i \le 1$ $\Sigma = (\Gamma, \Psi = \{P(y_i) = p_i\}), \quad a_{ij} = v_j(y_i), 1 \le j \le 2^n$ $\pi_i > 0$ if column A^j is $\alpha \land \Gamma$ -consistent

• $\ell = 1, \infty$: linear program, column generation

EXTENDED INFERENCE

EXTENDED INFERENCE: MINIMIZE DISTANCE FROM CONSISTENCY

PROBLEM (PHASE 2: LINEAR ALGEBRA) min $\|\varepsilon\|_{\ell}$ [min $P(\alpha)$] subject to $\varepsilon = A \cdot \pi - p$ $\pi \ge 0$ $\sum \pi_i \le 1$ $\Sigma = (\Gamma, \Psi = \{P(y_i) = p_i\}), \quad a_{ij} = v_j(y_i), 1 \le j \le 2^n$ $\pi_i > 0$ if column A^j is $\alpha \land \Gamma$ -consistent

DISTANCES

INFERENCE

EXTENDED INFERENCE

INFERENCE OF CONDITIONAL PROBABILITIES

PROBLEM (CONDITIONAL MODEL)

 $egin{array}{lll} {min/max} & {P_\pi(lpha|eta)} \ {subject to} & {P_\pi(lpha_i|eta_i)} = {p_i} \ & \pi \ge 0 & \sum {\pi_i} = 1 & {P(eta)} > 0 \end{array}$

Marcelo Finger UnB 2016 IME-USP

DISTANCES

INFERENCE

EXTENDED INFERENCE

INFERENCE OF CONDITIONAL PROBABILITIES

PROBLEM (CONDITIONAL MODEL)

 $\begin{array}{ll} \min/\max & P_{\pi}(\alpha|\beta) \\ \text{subject to} & P_{\pi}(\alpha_{i} \wedge \beta_{i}) - p_{i} \cdot P(\beta_{i}) = 0 \\ & \pi \geq 0 \quad \sum \pi_{i} = 1 \quad P(\beta) > 0 \end{array}$

- In the consistent case, can be solved with linear program and column generation
- In the inconsistent case: can be **approximated** with a linear program and column generation using $\|\varepsilon\|_{\ell}$

• $\ell = 1,\infty$

• This is sometimes called the OPSAT problem