< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definability and full abstraction in lambda-calculi

Antonio Bucciarelli

Laboratoire Preuves, Programmes et Systèmes Université Paris Diderot

Outline

2 The full abstraction problem for PCF

Quantitative models

4) The resource calculus

Conclusion

Terminology

Language

A typed or untyped λ -calculus endowed with an *operational semantics*, defined via a notion of *reduction* \rightsquigarrow , and with a notion of *observational equivalence* \equiv_{obs} . The observational equivalence is *contextual* : two terms *M* and *N* are equivalent if for any context *C*[], *C*[*M*] and *C*[*N*] are observably indistinguishable.

Examples :		
Language	Reduction	Observation
untyped λ -calculus	β -reduction	head normal forms
PCF	β - δ -Y-reduction	ground constants (integer and booleans)

Hence, in PCF, $M \equiv_{obs} N$ if for all context C[] of ground type, $C[M] \rightsquigarrow c$ iff $C[N] \rightsquigarrow c$, c being a ground constant. In the untyped λ -calculus $M \equiv_{obs} N$ if for all context C[], C[M] has a head normal form iff C[N] has a head normal form.

Terminology

Model

A Cartesian closed category, where types of are interpreted by objects, and terms by morphisms. In the untyped case, a model is a reflexive object of the ccc. Convertible terms get the same interpretation : $M \rightsquigarrow N \Rightarrow [\![M]\!] = [\![M]\!]$.

Examples for PCF :

Model	Objects	Morphisms
Scott model	Scott domains	Scott-continuous functions
Stable model	coherence spaces	stable functions

Examples for the untyped λ -calculus : Graph models, Scott's D_{∞} .

Semantic brackets [[]] (possibly with superscript : [[]^{Scott}, [[]]^{stab}) denote the interpretation of types and terms. For instance, in the Scott's model of PCF : [[boo1]] = ({ \pm , true, false}, \pm < true, false) [[fun (x : boo1) \rightarrow x]] = {(\pm , \pm), (true, true), (false, false)}

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Full abstraction and definability

L a language, $\mathcal M$ one of its models :

Adequacy

- \mathcal{M} is adequate for L if, for all terms $M, N, \llbracket M \rrbracket^{\mathcal{M}} = \llbracket N \rrbracket^{\mathcal{M}} \Rightarrow M \equiv_{obs} N$.
- \mathcal{M} is *fully abstract* for *L* if, for all terms M, N, $\llbracket M \rrbracket^{\mathcal{M}} = \llbracket N \rrbracket^{\mathcal{M}} \Leftrightarrow M \equiv_{obs} N$.

Definability

- A morphism f of \mathcal{M} is L-definable if there is a closed L-term M such that $\llbracket M \rrbracket = f$.
- If all the (finite) elements of \mathcal{M} are *L*-definable, then (under some reasonable hypothesis) \mathcal{M} is fully abstract for *L*.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Historical digression

- The λ -calculus, paradigm of the untyped functional languages, was defined by Alonzo Church around 1930. Its first model was found by D. Scott some 40 years later.
- For PCF, paradigm of typed functional languages, the definition of the canonical Scott model, i.e. of the category of Scott domains and Scott-continuous functions, came some years before the precise definition of the language and of its operational semantics (due to Plotkin, around 1975).

Outline

2 The full abstraction problem for PCF

Quantitative models

4) The resource calculus

Conclusion

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ めるの

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Plotkin's terms

```
let rec omega = fun () -> (omega (): bool);;
(* omega() denotes the undefined boolean value *)
let p = fun (f:bool->bool->bool)->
  if f (omega()) true then
    if f true (omega()) then
      if not(f false false) then true
    else omega()
   else omega()
  else omega();;
let g = fun (f:bool->bool->bool)->
  if f (omega()) true then
    if f true (omega()) then
      if not(f false false) then false
     else omega()
   else omega()
  else omega();;
```

Is there a context allowing to make a difference between $\rm p$ and $\rm q\, ?$

The *parallel or* function

$$por \ x \ y = \begin{cases} true & \text{if } x = true \text{ or } y = true \\ false & \text{if } x = false \text{ and } y = false \\ \bot & \text{otherwise} \end{cases}$$

Fact

por is a Scott-continous function.

$$\begin{bmatrix} p \end{bmatrix}^{Scott} \neq \llbracket q \end{bmatrix}^{Scott} & since \\ \llbracket p \end{bmatrix}^{Scott} por = true & and \\ \llbracket q \end{bmatrix}^{Scott} por = false$$

Theorem (Plotkin)

- The parallel or function is not PCF-definable.
- The terms *p* and *q* (the "parallel or testers") above are observationally equivalent.
- If PCF is endowed with a new constant computing the parallel or function, then all the finite elements of the Scott model become definable, and the model itself become fully abstract.

Introduction	The full abstraction problem for PCF	Quantitative models	The resource calculus	Conclusion
Stability				

A property shared by all PCF-definable functions, not respected by *por*, is *stability* : A Scott-continuous function *f* is stable if for all $x, y : x \uparrow y \Rightarrow f(x \land y) = f(x) \land f(y)$ where $x \uparrow y$ means $\exists z x, y \leq z$.

Stable model (Berry-Girard)

- Objects : coherence spaces.
- Morphisms : stable functions.

In this model, $\llbracket p \rrbracket = \llbracket q \rrbracket = \bot_{(bool \rightarrow bool \rightarrow bool) \rightarrow bool}$

Nevertheless, the theory of the stable model is not closer to the observational equivalence than the one of the Scott model (they are actually incomparable).

A higher-order example

```
let left_or = fun x y \rightarrow if x then true else y;;
```

let right_or = fun x y -> if y then true else x;;

```
let or_tester = fun (f: (bool-> bool -> bool) -> bool ) -> bool)
if f left_or then
    if not(f right_or) then true
    else omega()
else omega();;
```

In the Scott model, the interpretations of left_or and right_or are upper bounded by the parallel or. Hence, no functional can yield *true* on the former and *false* on the latter.

```
As a consequence

[or\_tester]^{Scott} =

[fun(f:(bool \rightarrow bool \rightarrow bool) \rightarrow bool) \rightarrow omega()]^{Scott} = \bot

On the other hand

[or\_tester]^{stab}F = true

if F[left\_or]^{stab} = true and F[right\_or]^{stab} = false, and such a functional F does

exist in the stable model.

Hence [or\_tester]^{stab} \neq [fun f \rightarrow omega()]^{stab}
```

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Toward full abstraction for PCF

Stability is not enough to characterise the definable functions in a purely functional, sequential language like PCF. Further developments :

- Model of sequential algorithms(Berry-Curien).
- Strongly stable model (B.-Ehrhard).
- Game models (Abramsky-Jagadeesan-Malacaria, Hyland-Ong) (first solutions to the full abstraction problem of PCF).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Full abstraction for PCF-like languages :

Language	Model
PCF + por	Scott
PCF stable	stab
PCF	Games and innocent strategies
PCF + H	Hypercoherences and strongly stable functions
PCF + references (Idealised Algol)	Games and well balanced strategies
PCF + catch (SPCF)	Concrete Data Structures and sequential algorithms

Introduction	The full abstraction problem for PCF	Quantitative models	The resource calculus	Conclusion
Outline				

2 The full abstraction problem for PCF

4) The resource calculus

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The redundant identity

let id = fun (x:bool) -> x;; let r_id = fun x -> if x then x else x;; $[id] = [r_id]$ in Scott and stable models. (hence, a fortiori, $id \equiv_{obs} r_id$).

It is natural to distinguish between these two terms, in order to take into account the usage of resources by a program (intuitively r_id uses its argument twice, whereas id uses it once.

This boils down to move from *qualitative* models to *quantitative* ones, like the *relational model*.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The category MRel

- Objects : sets
- Morphisms : MRel(A, B) = P(M_{fin}(A) × B) where M_{fin}(A) denotes the set of finite multi-sets over A, and P(A) the set of subsets of A.
- Identities : $id_A = \{([\alpha], \alpha] \mid \alpha \in A\}$
- Composition : $f \in MRel(A, B), g \in MRel(B, C) g \circ f = \{(m_1 \uplus \dots \uplus m_k, \gamma) \mid \exists \beta_1, \dots \beta_k \in B, (m_i, \beta_i) \in f, 1 \le i \le k, ([\beta_1, \dots, \beta_k], \gamma) \in g\}$
- Terminal object : Ø
- Cartesian product : disjoint union
- Function spaces : $B^A = \mathcal{M}_{fin}(A) \times B$)

Fact

MRel is Cartesian closed.

The quantitative flavour of MRel

Let $\llbracket \rrbracket^{rel}$ denote the interpretation of PCF term in *MRel*. Then :

 $[[id]]^{rel} = \{([true], true), ([false], false)\}$

 $[[r_id]]^{rel} = \{([true, true], true), ([false, false], false), ([true, false], true), ([true, false], false)\}$

A reflexive object in MRel

The model M_{∞}

• $M_0 = \emptyset$

•
$$M_{n+1} = (\mathcal{M}_{fin}(D_n))^{<\omega}$$

•
$$M_{\infty} = \bigcup_{n \in \omega} D_n$$

In particular $M_1 = \{([], [], \dots, [], \dots)\}$, call \star the unique element of M_1 . The isomorphism $M_{\infty} \leftrightarrow M_{\infty}^{M_{\infty}}$ is trivial : $(m_0, m_1, \dots, m_k, \dots) \leftrightarrow (m_0, (m_1, \dots, m_k, \dots))$. The interpretation of a closed λ -term in M_{∞} coincides with the set of its non-idempotent intersection types.

Full abstraction (without definability)

- M_∞ is fully abstract for the untyped λ-calculus, that is, its theory is the maximal semi-sensible λ-theory H^{*}.
- Nevertheless, * is not definable, that is, no closed λ-term is typable with *.

Outline

2 The full abstraction problem for PCF

Quantitative models

The resource calculus

Conclusion

・ 日 ト ・ 日 ト ・ 日 ト ・ 日 ・ うへぐ

Toward a resource calculus

Resource calculi are intended to take into account, from an operational point of view, the linear/non linear use of resources (arguments).

Key idea : linear substitution t(t'/x) denotes the term t in which exactly one occurrence of x is replaced by t'.

Example : $xx\langle\lambda z.z/x\rangle = (\lambda z.z)x + x(\lambda z.z)$

Linear substitution \Rightarrow Non determinism.

The *resource (or differential)* λ -calculus (Ehrhard-Regnier) is an extension of both typed and untyped λ -calculi, featuring linear and classical substitutions.

The untyped resource calculus

Reduction

$$(\lambda x.t)[t_1,\ldots,t_k,t^!] \rightsquigarrow t\langle t_1/x\rangle \ldots \langle t_k/x\rangle \{t/x\}$$

Observational equivalence

A term is in outer normal form, if it has no redexes but under a !; two terms t, t' are observationally equivalent if for all context C[], C[t] reduces to an outer normal form if and only if C[t'] reduces to an outer normal form.

As for λ -calculus, the interpretation of terms of the resource calculus in M_{∞} may be given via a suitable typing system.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

M_{∞} and resource calculi

Adequacy

 M_{∞} is an adequate model of the resource calculus.

Full abstraction

- M_{∞} is not fully abstract for the resource calculus (Breuvart, 2013).
- M_{∞} is fully abstract for an extension of the resource calculus : the resource calculus with tests. (B.,Carraro,Ehrhard,Manzonetto 2011).

Test elimination

A test elimination procedure allows to give an alternative proof of the full abstraction of M_{∞} w.r.t. the untyped λ -calculus, and an original proof of the full abstraction of M_{∞} w.r.t. the !-free fragment of the resource calculus.

Outline

2 The full abstraction problem for PCF

Quantitative models

4 The resource calculus

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Some open problems

- Full abstraction for the resource calculus.
- Full abstraction for the non deterministic λ-calculus.
- Definability and full abstraction for probabilistic PCF.
- Dual problems : given a model, provide an operational characterisation of the theory it induces.

For instance : provide an operational characterisation of the theory of M_{∞} in the resource calculus.

Introduction	The full abstraction problem for PCF	Quantitative models	The resource calculus	Conclusion
Reference	es			

- Dana S. Scott : A Type-Theoretical Alternative to ISWIM, CUCH, OWHY. Theor. Comput. Sci. 121(1,2) : 411-440 (1993).
- Gordon D. Plotkin : LCF Considered as a Programming Language. Theor. Comput. Sci. 5(3) : 223-255 (1977).
- Jean-Yves Girard : Linear Logic. Theor. Comput. Sci. 50 : 1-102 (1987).
- Gérard Berry : Stable Models of Typed lambda-Calculi. ICALP 1978 : 72-89.
- Antonio Bucciarelli, Thomas Ehrhard : Sequentiality in an Extensional Framework Inf. Comput. 110(2) : 265-296 (1994)
- Samson Abramsky, Radha Jagadeesan, Pasquale Malacaria : Full Abstraction for PCF. Inf. Comput. 163(2) : 409-470 (2000)
- J. M. E. Hyland, C.-H. Luke Ong : On Full Abstraction for PCF : I, II, and III. Inf. Comput. 163(2) : 285-408 (2000).
- Thomas Ehrhard, Laurent Regnier : The differential lambda-calculus. Theor. Comput. Sci. 309(1-3) : 1-41 (2003)
- Antonio Bucciarelli, Thomas Ehrhard, Giulio Manzonetto : Not Enough Points Is Enough. CSL 2007 : 298-312

- Antonio Bucciarelli, Thomas Ehrhard, Giulio Manzonetto : Categorical Models for Simply Typed Resource Calculi. Electr. Notes Theor. Comput. Sci. 265 : 213-230 (2010).
- Antonio Bucciarelli, Alberto Carraro, Thomas Ehrhard, Giulio Manzonetto : Full Abstraction for Resource Calculus with Tests. CSL 2011 : 97-111
- Flavien Breuvart : The resource lambda calculus is short-sighted in its rezlational model. To appear (TLCA 2013).

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@