Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories Building and Combining Unification and Matching Procedures: A Hierarchical Approach¹

Christophe Ringeissen

{Inria, Université de Lorraine, CNRS, LORIA}, Nancy, France

Summer Workshop in Mathematics, UnB, February 2024

¹Joint work with Serdar Erbatur (UT Dallas) and Andrew Marshall (Univ. Mary Washington)

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in E-Constructed Theories

Unification Problems

Unification problem: finite set of equations between terms

$$\{x+b=a+y, y=b\}$$

Solution to a unification problem: a substitution of variables making each equation true

$$\{x \mapsto a, y \mapsto b\}$$

Applications: in logic programming, theorem proving, deductive verification to perform a deduction/computation

▶ Unification is used when applying resolution between clauses

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Syntactic Unification and Equational Unification

Syntactic unification: s = t is true iff s and t are identical

Equational unification: s = t is true iff s and t are equal modulo an equational theory, e.g.,

Associativity-Commutativity: $AC(+) = \{X + Y = Y + X, X + (Y + Z) = (X + Y) + Z\}$

Abelian Groups: $AG(+) = AC(+) \cup \{X + 0 = X, X + (-X) = 0\}$

Exclusive Or: $XOR(\oplus) = AC(\oplus) \cup \{X \oplus 0 = X, X \oplus X = 0\}$

Equational unification is undecidable in general, but decidable for some particular equational theories such as the ones above

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Equational Matching

Equational unification: solving equations $s =_{\mathcal{E}}^{?} t$ modulo an equational theory \mathcal{E} where s and t are arbitrary terms

Equational matching: solving equations $s =_{\mathcal{E}}^{?} t$ modulo an equational theory \mathcal{E} where s or t is **ground**

Applications: (equational) rewriting, rule-based programming, simplification in theorem proving,

Equational matching/unification is undecidable in general, but decidable for particular equational theories \mathcal{E} possibly including

- Associativity: $A(*) = \{X * (Y * Z) = (X * Y) * Z\}$
- Commutativity: $C(*) = \{X * Y = Y * X\}$
- Associativity-Commutativity: $AC(*) = A(*) \cup C(*)$

Example:
$$x * y = b * b * d$$
 $\vdash_{AC(*)-Match} x = b * b, y = d$
 $\vdash_{AC(*)-Match} x = b, y = b * d$

. . .

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

Rule-based Unification

Goal: Design a unification procedure as inference system transforming equational problems

$$\Gamma = \{s_1 = t_1, \ldots, s_n = t_n\}$$

until reaching solved forms, and satisfying the following properties:

sound If $\Gamma \vdash \Gamma'$, then any unifier of Γ' is a unifier of Γ complete If $\Gamma \vdash \Gamma'$, then any unifier of Γ is a unifier of Γ' terminating if $\Gamma \vdash \Gamma'$, then $c(\Gamma) > c(\Gamma')$, where c is a measure associated to equational problems, and > is an ordering with no infinite decreasing chain

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Rule-based Unification: Solved Forms

An equational problem is irreducible with respect to a rule-based unification procedure if and only if it is a solved form.

Two kinds of solved forms:

Tree solved form $\Gamma = \{x_1 = t_1, \dots, x_n = t_n\}$ where for $i = 1, \dots, n$, x_i is a variable occurring once in Γ Dag solved form $\{x_1 = t_1, \dots, x_n = t_n\}$ where for $i, j = 1, \dots, n$, $i \neq j$ implies x_i and x_j are distinct variables, and $i \leq j$ implies x_i does not occur in t_j NB: a solved form yields a most general unifier.

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Syntactic vs. Equational Unification

The following decomposition rule is sound and complete for syntactic unification:

Dec
$$\{f(s_1,\ldots,s_n)=f(t_1,\ldots,t_n)\}\cup \Gamma$$

 $\vdash \{s_1=t_1,\ldots,s_n=t_n\}\cup \Gamma$

Dec remains sound for equational unification, but additional transformation rules are needed to retrieve completeness.

For example, when f is a commutative binary symbol: **Mut** $\{f(s_1, s_2) = f(t_1, t_2)\} \cup \Gamma$ $\vdash \{s_1 = t_2, \dots, s_2 = t_1\} \cup \Gamma$

 $\{ \textbf{Dec}, \textbf{Mut} \}$ leads to a sound, complete and terminating commutative unification procedure.

Question: can we generalize this idea of *mutation* rule to other equational theories?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Syntactic Theories

Definition [Kirchner and Klay, 1990, Nipkow, 1990]: An equational presentation E is said be to *resolvent*, if for any E-equality $s =_E t$ there exists an equational proof $s \leftrightarrow_E^* t$ such that \leftrightarrow_E^* includes **at most one** equational step \leftarrow_E applied at the **root** position.

A theory is *syntactic* if it has a resolvent presentation.

Examples: A, C, AC are syntactic.

Motivation: If a theory is *syntactic*, then it admits a set of mutation rules transforming any unification problem in a sound and complete way.

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Unification and Matching in Syntactic Theories

Fact. Any finite theory E with finitary E-unification is syntactic [Kirchner and Klay, 1990], where E is said to be *finite* if every equivalence class of $=_E$ has finitely many terms.

➤ A sound and complete unification procedure for syntactic theories, but not necessarily terminating

→ A sound, complete and **terminating** matching procedure for finite syntactic theories (A, C, AC, ...)

➤ A sound, complete and terminating unification procedure for particular subclasses of syntactic theories:

- shallow theories [Comon et al., 1994],
- theories closed by paramodulation [Lynch and Morawska, 2002],
- theories with the Finite Variant Property [Eeralla et al., 2019].

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Union of Theories

A problem is usually expressed modulo a union of theories, e.g., $\mathcal{E} = \mathcal{E}_1 \cup \mathcal{E}_2$ where $\mathcal{E}_i = A(*_i), C(*_i), AC(*_i), \ldots$

Combination methods: solve the problem in a modular way by reusing the solvers known for individual theories \mathcal{E}_1 and \mathcal{E}_2

Existing combination methods for unions of disjoint theories:

- unification in arbitrary theories [Schmidt-Schauß, 1989, Baader and Schulz, 1996]
- matching in regular theories [Nipkow, 1991]
- matching in "regulo-linear" theories [Ringeissen, 1996]

Unions of theories sharing only constructors initiated in [Domenjoud et al., 1994, Baader and Tinelli, 2002]

Context

Syntacticnes

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Solving in a Union of Theories

- Separate the input problem into pure sub-problems (via variable abstraction)
- Solve the pure sub-problems by applying the respective solvers
- S Merge the solutions by taking care of the following problematic cases:
 - conflict of theories: a variable can be instantiated in several theories

$$x = t_1$$
, $x = t_2$

• compound cycle: a cycle between several theories

$$x = t_1[y] , y = t_2[x]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where t_1 and t_2 are (non-variable) pure terms in distinct theories.

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

Disjoint Union of Theories

• [Yelick, 1987]

The problematic cases are trivially solved (no solution) in any union of **regular and collapse-free** disjoint theories

- A theory *E* is *regular* if for any *l* = *r* ∈ *E*, *l* and *r* have the same set of variables.
- A theory *E* is *collapse-free* if there is no axiom *I* = *x* ∈ *E*, where *x* is a variable.

• [Schmidt-Schauß, 1989, Baader and Schulz, 1996] Use unification with constant restriction to solve the problematic cases in any union of disjoint theories

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in *E*-Constructed Theories

Non-disjoint Union of Theories

In this talk: study non-disjoint unions $\mathcal{E}=\mathcal{E}_1\cup\mathcal{E}_2$

- What happens when the individual theories \mathcal{E}_1 and \mathcal{E}_2 are two "conservative extensions" of a shared subtheory *E*
- What happens when the solvers known for \mathcal{E}_1 and \mathcal{E}_2 are built as "extensions" of a solver for E?
- What happens when \mathcal{E}_1 and \mathcal{E}_2 are syntactic theories?

Assumption:

For i = 1, 2, $\mathcal{E}_i = F_i \cup E$ where F_i is *E*-constructed, and the function symbols shared by F_1 and F_2 occur necessarily in *E*.

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

E-Constructed Theories: Examples

Let E = AC(*)

Exponentiation: $EX = \{e(e(X, Y), Z) = e(X, Y * Z)\}$ Homomorphism: $H = \{e(X * Y, Z) = e(X, Z) * e(Y, Z)\}$ Homomorphic Exponentiation: $EXH = EX \cup H$ $F = EX, H, EXH, \dots$

Union of Theories $\mathcal{E}_1 \cup \mathcal{E}_2$ where $\mathcal{E}_i = F_i \cup E$ and F_i is obtained from F by renaming any function symbol f by f_i if f does not occur in E.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in E-Constructed Theories

E-Constructed Term Rewrite Systems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Consider the left-to-right orientation of the Exponentiation: Let AC = AC(*), $R = \{ e(e(X, Y), Z) \rightarrow e(X, Y * Z) \}$.

(R, AC) is an AC-constructed Term Rewrite System:

- (*R*, *AC*) is *AC*-convergent: existence and unicity of normal forms modulo *AC*,
- all the symbols in AC are constructors for R: for any rule
 I → *r* ∈ R, *I* is not rooted by the AC-symbol *.

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

Union of *E*-Constructed Rewrite Systems

Questions addressed in this talk:

- What happens when the individual theories are E-constructed TRSs (sharing only symbols in E)? And syntactic?
- What happens when the unification procedures known for *E*-constructed TRSs are built in a hierarchical way as extensions of a *E*-unification procedure?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

Use of *E*-Unification in *E*-Constructed Rewrite Systems

Property. If (R, E) is *E*-constructed, then *E*-unification is sound and complete to solve $R \cup E$ -unification problems built over symbols of *E*.

- → A crucial property to build an $R \cup E$ -unification procedure in a hierarchical way as a combined procedure including
 - an *E*-unification algorithm to solve all the equations that are *pure* in *E*,
 - an additional inference system to solve all the other equations, typically via a set of mutation rules.

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in *E*-Constructed Theories

Hierarchical Unification Procedure

Let Σ_0 be the signature of E, and Σ the signature of $R \cup E$.

A hierarchical unification procedure $H_E(U)$ is given by:

- some combination rules, to get a separate form $\Gamma \cup \Gamma_0$ where Γ_0 is a set of Σ_0 -equations and Γ is a set of $\Sigma \setminus \Sigma_0$ -rooted flat equations.
- an *E*-unification algorithm (encapsulated into a **Solve** rule), to solve Γ_0
- an additional inference system U, to simplify Γ
 - ▶ U may be a set of mutation rules, if $R \cup E$ is syntactic

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in E-Constructed Theories

Unification: Combination Rules

Coalesce $\{x = y\} \cup \Gamma \vdash \{x = y\} \cup (\Gamma\{x \mapsto y\})$ where x and y are distinct variables occurring both in Γ .

Split $\{f(\vec{v}) = t\} \cup \Gamma \vdash \{x = f(\vec{v}), x = t\} \cup \Gamma$ where $f \in \Sigma \setminus \Sigma_0$, *t* is a non-variable term and *x* is a fresh variable.

Flatten $\{v = f(\dots, u, \dots)\} \cup \Gamma$ $\vdash \{v = f(\dots, x, \dots), x = u\} \cup \Gamma$

where $f \in \Sigma \setminus \Sigma_0$, v is a variable, u is a non-variable term, and x is a fresh variable.

VA $\{s = t[u]\} \cup \Gamma \vdash \{s = t[x], x = u\} \cup \Gamma$ where *t* is Σ_0 -rooted, *u* is an alien subterm of *t*, and *x* is a fresh variable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Solving Rule

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

C. Ringeissen

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

Solve
$$\Gamma \cup \Gamma_0 \vdash \bigvee_{\sigma_0 \in CSU_E(\Gamma_0)} \Gamma \cup \hat{\sigma}_0$$

where

- Γ is a set of $\Sigma \setminus \Sigma_0$ -equations,
- Γ₀ is a set of Σ₀-equations,
- Γ_0 is *E*-unifiable and not in tree solved form,
- CSU_E(Γ₀) is a complete set of E-unifiers of Γ₀ computed by an E-unification algorithm,
- $\hat{\sigma}_0$ is the tree solved form associated to a unifier σ_0 .

NB: Solve is implemented by calling an E-unification algorithm

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Distributive Exponentiation

Let
$$AC = AC(\circledast)$$

Consider two rewrite systems:

$R_{\mathcal{E}} = \left\{ \begin{array}{l} exp(exp(X,Y),Z) \to exp(X,Y \circledast Z) \\ exp(X * Y,Z) \to exp(X,Z) * exp(Y,Z) \end{array} \right\}$

2

A

 $R_{\mathcal{F}} = \{ enc(enc(X, Y), Z) \rightarrow enc(X, Y \circledast Z) \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $(R_{\mathcal{E}}, AC)$ and $(R_{\mathcal{F}}, AC)$ are AC-constructed.

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

Unification in Distributive Exponentiation

Revisiting [Erbatur et al., 2011],

- **1** $\mathcal{E}_{AC} = R_{\mathcal{E}} \cup AC$ admits a hierarchical unification algorithm of the form $H_{AC}(U_{\mathcal{E}})$.
- 2 *F_{AC}* = *R_F* ∪ *AC* admits a hierarchical unification algorithm of the form *H_{AC}(U_F*).

For instance, $U_{\mathcal{E}}$ includes the following rule: $\{L = exp(v, w), L = exp(x, y)\} \cup \Gamma$ $\vdash \{L = exp(x, y), y = z \circledast w, v = exp(x, z)\} \cup \Gamma.$

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Combined Hierarchical Unification

Let F_1 and F_2 be two *E*-constructed theories sharing only symbols in *E* such that

for $i = 1, 2, F_i \cup E$ admits a sound and complete unification procedure of the form $H_E(U_i)$.

Under which conditions do we that $H_E(U_1 \cup U_2)$ is a sound and complete unification procedure for $F_1 \cup F_2 \cup E$?

► Consider *layer-preserving* theories

How to get a terminating $H_E(U_1 \cup U_2)$ procedure when $H_E(U_1)$ and $H_E(U_2)$ are both terminating?

► Consider a common decreasing measure

Context

Syntacticnes

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

Layer-preserving Theories

Any term viewed as a "mounting" of two kinds of layers:
Σ₀-layer, built over Σ₀-symbols (the symbols in *E*),
Σ\Σ₀-layer, built over Σ\Σ₀-symbols.

An equational theory $F \cup E$ is said to be *layer-preserving* if, e.g., any term rooted by a $\Sigma \setminus \Sigma_0$ -layer is necessarily equal modulo $F \cup E$ to a term rooted by a $\Sigma \setminus \Sigma_0$ -layer. Example: distributive exponentiation theories

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

Termination of Combined Hierarchical Unification

Find a complexity measure defined as a mapping C from separate forms to natural numbers such that $H_E(U)$ inference system is C-decreasing,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where C-decreasingness is a modular property:

If $H_E(U_1)$ and $H_E(U_2)$ are C-decreasing, then $H_E(U_1 \cup U_2)$ is C-decreasing.

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

Union of Distributive Exponentiation Theories

Consider the distributive exponentiation theories \mathcal{E}_{AC} and \mathcal{F}_{AC} and their respective hierarchical unification algorithms $H_{AC}(U_{\mathcal{E}})$ and $H_{AC}(U_{\mathcal{F}})$.

- *E*_{AC} and *F*_{AC} are layer-preserving AC-constructed theories.
 Consequence: *H*_{AC}(*U*_E ∪ *U*_F) is sound and complete.
- There exists a complexity measure SVC defined according to the number of equivalence classes of abstraction variables shared by Γ and Γ_0 such that:

 $H_{AC}(U_{\mathcal{E}} \cup U_{\mathcal{F}})$ is a *SVC*-decreasing since $H_{AC}(U_{\mathcal{E}})$ and $H_{AC}(U_{\mathcal{F}})$ are both *SVC*-decreasing. Consequence: $H_{AC}(U_{\mathcal{E}} \cup U_{\mathcal{F}})$ is also **terminating**.

Context

Syntacticne

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Beyond E-Constructed TRSs

An equational theory F is E-constructed if there exists a normalizing mapping NF satisfying some properties including

$$s =_{F \cup E} t$$
 iff $NF(s) =_E NF(t)$

and for any function symbol f in E,

$$NF(f(t_1,\ldots,t_n)) =_E f(NF(t_1),\ldots,NF(t_n))$$

Consequence: $F \cup E$ -equality is decidable if NF is computable and E-equality is decidable.

Property: the class of E-constructed theories is closed by non-disjoint union (sharing only the symbols in E).

Remark: the definition of an *E*-constructed theory does not require that *NF* is computable.

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in E-Constructed Theories

E-Constructed Theories: More Examples

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The following theories are *E*-constructed, if *E* is the empty theory over $\{pk\}$:

 $K = \{keyex(X, pk(X'), Y, pk(Y')) = keyex(X', pk(X), Y', pk(Y))\}$

$$ENC = \begin{cases} adec(aenc(M, pk(S)), S) = M \\ checksign(sign(M, S), M, pk(S)) = ok \\ getmsg(sign(M, S)) = M \\ sdec(senc(M, K), K) = M \end{cases}$$

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

From Unification to Matching

Consider any set of equations $\{\ldots, s = t, \ldots\}$

Unification problem: *s* and *t* are arbitrary.

Matching problem: *s* or *t* is ground.

Word problem: *s* and *t* are ground.

A key principle to solve Γ : eargerly normalize ground terms in Γ , via an appropriate normalizing mapping,

not necessarily NF, since NF is not assumed to be computable.

In practice, use of a weaker notion of normal form for any term t, called layer-reduced form of t, denoted by $t \Downarrow$, such that $t \Downarrow$ has the the same mounting of layers as NF(t).

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in *E*-Constructed Theories

Combined Word Problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Combination Theorem. Let F_1 and F_2 be any *E*-constructed theories sharing only symbols in *E* such that

for i = 1, 2, $F_i \cup E$ has a layer-reduced term mapping \Downarrow_i and a decidable equality.

Then, $F_1 \cup F_2 \cup E$ has a (combined) layer-reduced term mapping $\bigcup_{1,2}$ and a decidable equality.

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Matching in Regular Theories

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Property. In regular theories, any solution of any matching problem is necessarily ground: it is a matching problem in solved form.

Consider a matching problem $\{s_1[x] = t_1, s_2[x] = t_2\}$. For i = 1, 2, solving $s_i[x] = t_i$ yields $x = t'_i$ where t'_i is ground. Then, we just have to check whether $t'_1 = t'_2$.

Consequences for combined matching in regular theories:

- conflicts solved by checking (ground) equalities,
- no compound cycle.

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Combined Matching in Regular Theories

Combination Theorem. Let F_1 and F_2 be any regular *E*-constructed theories sharing only symbols in *E* such that

for i = 1, 2, $F_i \cup E$ has a layer-reduced term mapping \Downarrow_i and a matching algorithm.

Then, $F_1 \cup F_2 \cup E$ has a (combined) layer-reduced term mapping $\bigcup_{1,2}$ and a (combined) matching algorithm.

Question(s):

- What happens when the matching algorithms for F₁ ∪ E and F₂ ∪ E can be expressed in a hierarchical way?
- How to get a (combined) hierarchical matching algorithm for F₁ ∪ F₂ ∪ E?

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Hierarchical Matching Procedure

A hierarchical $F \cup E$ -matching procedure $HM_E(\Downarrow, U)$ given by:

- a layer-reduced term mapping \Downarrow ,
- some fixed combination rules, to get a separate form
 Γ ∪ Γ₀ such that Γ₀ (resp., Γ) is a set of match-equations
 where the non-ground terms are built over symbols in *E* (resp., symbols not in *E*),
- an *E*-matching algorithm Solve-M to solve Γ₀: can be applied without loss of completeness,
- an additional inference system U to simplify/mutate Γ .

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Matching: Combination Rules

Let Σ_0 be the signature of E, and Σ the signature of $F \cup E$.

```
Norm \{s = t\} \cup \Gamma \vdash \{s = t\Downarrow\} \cup \Gamma
where t is ground and t\Downarrow \neq t.
```

Triv $\{s = t\} \cup \Gamma \vdash \Gamma$ where s, t are ground, $s \Downarrow = s$, $t \Downarrow = t$, and $s =_{F \cup E} t$.

Rep $\{x = t\} \cup \Gamma \vdash \{x = t\} \cup (\Gamma\{x \mapsto t\})$ where x is a variable occurring in Γ and t is a ground term.

Flatten-M $\{f(\vec{u}) = t\} \cup \Gamma \vdash \{f(\vec{x}) = t, \vec{u} = \vec{x}\} \cup \Gamma$ where $f(\vec{u})$ is a non-ground $\Sigma \setminus \Sigma_0$ -rooted term, t is ground, and \vec{x} are fresh variables.

VA-M $\{s[u] = t\} \cup \Gamma \vdash \{s[x] = t, u = x\} \cup \Gamma$ where *s* is a non-ground Σ_0 -rooted term, *u* is an alien subterm of *s*, *t* is a ground, and *x* is a fresh variable.

Context

Syntacticness

L

Combination

Unification in E-Constructed Theories

Matching in *E*-Constructed Theories

Applying the Procedure

Let
$$F = \{h(X * Y) = h(X) * h(Y)\}$$
 and $E = AC(*)$.
Input $x * h(b) = h(a * b * c)$
 $\vdash_{Norm} x * h(b) = h(a) * h(b) * h(c)$
 $\vdash_{VA-M} x * v = h(a) * h(b) * h(c), v = h(b)$
 $\vdash_{Rep} x = h(a), v = h(b) * h(c), v = h(b)$
 $\vdash_{Rep} x = h(a), v = h(b), h(b) = h(b) * h(c)$
 $\stackrel{\vdash}{Rep} x = h(a) * h(b), v = h(c), v = h(b)$
 $\vdash_{Rep} x = h(a) * h(b), v = h(b), h(b) = h(c)$
 $\vdash_{Solve-M} x = h(a) * h(c), v = h(b), h(b) = h(c)$
 $\vdash_{Solve-M} x = h(a) * h(c), v = h(b), h(b) = h(c)$
 $\vdash_{Solve-M} x = h(a) * h(c), v = h(b), h(b) = h(b)$
 $\vdash_{Triv} x = h(a) * h(c), v = h(b)$
 $4 \dots$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in E-Constructed Theories

Hierarchical Matching Algorithms: Examples

Let
$$F = \{h(X * Y) = h(X) * h(Y)\}$$
 and $E = AC(*)$.
$$h(x) = h(a) * h(b) \vdash_{U} x = a * b$$

The *E*-constructed TRS ({ $h(X * Y) \rightarrow h(X) * h(Y)$ }, *E*) is an *innermost resolvent presentation* of $F \cup E$, where any innermost rewrite derivation has **at most one step applied at the root**.

Similar to the definition of resolvent presentation [Kirchner and Klay, 1990, Nipkow, 1990]

Result. If a theory has a (*innermost*) *resolvent* presentation, then it admits a set of mutation rules U leading to a sound and complete matching algorithm $HM_E(\Downarrow, U)$.

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in *E*-Constructed Theories

Combined Hierarchical Matching

Combination Theorem. Let F_1 and F_2 be any regular *E*-constructed theories sharing only symbols in *E* such that for $i = 1, 2, F_i \cup E$ has a matching algorithm $HM_E(\Downarrow_i, U_i)$. Then, $F_1 \cup F_2 \cup E$ has a matching algorithm $HM_E(\Downarrow_{1,2}, U_1 \cup U_2)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Context

Syntacticnes

Combination

Unification in *E*-Constructed Theories

Matching in *E*-Constructed Theories

Combined Hierachical Solving

Development of a hierarchical solving framework dedicated to E-constructed theories.

- study of several terminating scenarios
 - 1 unification in forward-closed *E*-constructed TRSs [Erbatur et al., 2020]
 - 2 unification in paramodulation-closed *E*-constructed theories [Erbatur et al., 2021]
 - 3 matching in regular *E*-constructed theories (and word problem in arbitrary *E*-constructed theories) [Erbatur et al., 2022]
- Future work:
 - matching: beyond regular theories?
 - unification: a uniform treatment of terminating cases?
 - disunification?
 - knowledge problems arising in protocol analysis

Context

Syntacticness

Combination

Unification in E-Constructed Theories

Matching in *E*-Constructed Theories

Baader, F. and Schulz, K. U. (1996).

Unification in the union of disjoint equational theories: Combining decision procedures. *J. Symb. Comput.*, 21(2):211–243.

Baader, F. and Tinelli, C. (2002).

Combining decision procedures for positive theories sharing constructors.

In Tison, S., editor, Rewriting Techniques and Applications, 13th International Conference, RTA 2002, Copenhagen, Denmark, July 22-24, 2002, Proceedings, volume 2378 of Lecture Notes in Computer Science, pages 352–366. Springer.

Comon, H., Haberstrau, M., and Jouannaud, J.-P. (1994). Syntacticness, cycle-syntacticness, and shallow theories. *Inf. Comput.*, 111(1):154–191.

Domenjoud, E., Klay, F., and Ringeissen, C. (1994).

Combination techniques for non-disjoint equational theories.

In Bundy, A., editor, Automated Deduction - CADE-12, 12th International Conference on Automated Deduction, Nancy, France, June 26 - July 1, 1994, Proceedings, volume 814 of Lecture Notes in Computer Science, pages 267–281. Springer.

Eeralla, A. K., Erbatur, S., Marshall, A. M., and Ringeissen, C. (2019).

Rule-based unification in combined theories and the finite variant property. In Martín-Vide, C., Okhotin, A., and Shapira, D., editors, Language and Automata Theory and Applications - 13th International Conference, LATA 2019, St. Petersburg, Russia, March 26-29, 2019, Proceedings, volume 11417 of Lecture Notes in Computer Science, pages 356–367. Springer.

Erbatur, S., Marshall, A. M., Kapur, D., and Narendran, P. (2011).

Unification over distributive exponentiation (sub)theories. *J. Autom. Lang. Comb.*, 16(2-4):109–140. References I

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in E-Constructed Theories

Erbatur, S., Marshall, A. M., and Ringeissen, C. (2020).

Terminating non-disjoint combined unification.

In Fernández, M., editor, Logic-Based Program Synthesis and Transformation - 30th International Symposium, LOPSTR 2020, Bologna, Italy, September 7-9, 2020, Proceedings, volume 12561 of Lecture Notes in Computer Science, pages 113–130. Springer.

References II

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Erbatur, S., Marshall, A. M., and Ringeissen, C. (2021).

Non-disjoint combined unification and closure by equational paramodulation. In Konev, B. and Reger, G., editors, *Frontiers of Combining Systems*, pages 25–42, Cham. Springer International Publishing.

-

Erbatur, S., Marshall, A. M., and Ringeissen, C. (2022).

Combined hierarchical matching: The regular case.

In Felty, A. P., editor, 7th International Conference on Formal Structures for Computation and Deduction, FSCD 2022, August 2-5, 2022, Haifa, Israel, volume 228 of LIPIcs, pages 26:1–26:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Kirchner, C. and Klay, F. (1990).

Syntactic theories and unification.

In Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS '90), Philadelphia, Pennsylvania, USA, June 4-7, 1990, pages 270–277. IEEE Computer Society.

Lynch, C. and Morawska, B. (2002).

Basic syntactic mutation.

In Voronkov, A., editor, Automated Deduction - CADE-18, 18th International Conference on Automated Deduction, Copenhagen, Denmark, July 27-30, 2002, Proceedings, volume 2392 of Lecture Notes in Computer Science, pages 471–485. Springer.

Context

Syntacticness

Combination

Unification in *E*-Constructed Theories

Matching in E-Constructed Theories

Nipkow, T. (1990).

Proof transformations for equational theories.

In Proceedings of the Fifth Annual Symposium on Logic in Computer Science (LICS '90), Philadelphia, Pennsylvania, USA, June 4-7, 1990, pages 278–288. IEEE Computer Society.

Nipkow, T. (1991).

Combining matching algorithms: The regular case. J. Symb. Comput., 12(6):633-654.

Ringeissen, C. (1996).

Combining decision algorithms for matching in the union of disjoint equational theories. *Inf. Comput.*, 126(2):144–160.

Schmidt-Schauß, M. (1989).

Unification in a combination of arbitrary disjoint equational theories. *J. Symb. Comput.*, 8(1/2):51–99.

Yelick, K. A. (1987).

Unification in combinations of collapse-free regular theories. Journal of Symbolic Computation, 3(1-2):153–181.

References III

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで