
Rewriting, Explicit Substitutions and Normalisation
XXXVI Escola de Verão do MAT

Universidade de Brasilia

Part 1/3

Eduardo Bonelli

LIFIA (Fac. de Informática, UNLP, Arg.) and CONICET
eduardo@lifia.info.unlp.edu.ar

February, 2006

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 1 / 73

Applications

Operational
Semantics

Mathematical

Specification

Languages
Resolution

Transformation
Program

Algebraic

Security
Protocol

Hardware
Design

Natural

Reasoning

Constraint

Rewrite Systems

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 2 / 73

Example - Arithmetic

Natural numbers as Peano numerals: 0, s(0), s(s(0)), etc.
Rewrite system

a(x , 0) → x
a(x , s(y)) → s(a(x , y))
m(x , 0) → 0
m(x , s(y)) → a(m(x , y), x)

Reduction sequence

“2 + 2′′ = a(s(s(0)), s(s(0))) → s(a(s(s(0)), s(0)))

→ s(s(a(s(s(0)), 0)))

→ s(s(s(s(0))))

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 3 / 73

Example - Negation Normal Form

Rewrite system

x =⇒ y → ¬x ∨ y
¬(x ∧ y) → ¬x ∨ ¬y
¬(x ∨ y) → ¬x ∧ ¬y
¬¬x → x

Reduction sequence

¬(¬(x =⇒ y) ∨ z) → ¬(¬(¬x ∨ y) ∨ z)

→ ¬((¬¬x ∧ ¬y) ∨ z)
→ ¬((x ∧ ¬y) ∨ z)

→ ¬(x ∧ ¬y) ∧ ¬z

→ (¬x ∨ ¬¬y) ∧ ¬z

→ (¬x ∨ y) ∧ ¬z

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 4 / 73

Example - Combinatory Logic

Rewrite system

((((S · x) · y) · z) → ((x · z) · (y · z))
((K · x) · y) → x
(I · x) → x

Reduction sequence

(((S · I) · I) · x) → ((I · x) · (I · x))

→ (x · (I · x))

→ (x · x)

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 5 / 73

Example - Functional Programming

Rewrite system

map(λx .M, nil) → nil
map(λx .M, cons(X ,T)) → cons(M{x/X},map(λx .M,T))

Reduction sequence ([n] abbreviates cons(n, nil))

map(λx .cons(x , nil), cons(1, (cons(2, nil))))

→ cons([1],map(λx .cons(x , nil), cons(2, nil)))

→ cons([1], cons([2],map(λx .cons(x , nil), nil)))

→ cons([1], cons([2], nil))

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 6 / 73

Example - Object Oriented Programming

Terms

M ::= x variable

| [li = ς(xi)Ni
i∈{1..n}] object

| M.l method invocation
| M.l x ς(x)N method update

Rewrite system (o = [li = ς(xi)Ni
i∈{1..n}] and j ∈ 1..n)

o.lj → Nj{xj/o}
o.lj x ς(x)N → [l = ς(x)N, li = ς(xi)Ni

i∈{1..n}\{j}]

Reduction sequence

[l = ς(y)(y .l x ς(x)x)].l → [l = ς(y)(y .l x ς(x)x)].l x ς(x)x

→ [l = ς(x)x]

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 7 / 73

Bibliography - Rewriting

1 Term Rewriting Systems, TERESE, Cambridge Tracts in
Theoretical Computer Science, Vol. 55, CUP, 2003.

2 Term Rewriting and All That, Franz Baader, Tobias Nipkow,
CUP, 1998.

3 Advanced Topics in Rewriting, Enno Ohlebusch, Springer,
2002.

More information at the rewriting home page

http://rewriting.loria.fr

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 9 / 73

Bibliography - Lambda Calculus

The Lambda Calculus: Its Syntax and Semantics, Henk
Barendregt, North Holland, 1984.

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 10 / 73

An Aside

Definitions

Examples

Highlights or comments

Thm/Lemma/Proof

Statement of Thm/Lemma and proofs

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 11 / 73

Structure of Today’s Talk

1 Abstract Reduction Systems

2 First-Order Rewriting

3 Lambda Calculus

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 12 / 73

Introduction

An Abstract Reduction System (ARS) is a structure 〈A, {→α |α ∈ I}〉
where

A is a set

{→α |α ∈ I} is a family of binary relations on A indexed by I

The relations →α are called reduction relations

In the case of just one reduction relation we write →

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 13 / 73

Examples

1

• •
α

oo
α

55 •
β

uu

2 A = {•, ◦}+ and u → v for u, v ∈ A if
I u = u1lu2 and v = u1ru2

I 〈l , r〉 is one of

〈• ◦ , ◦ ◦ ◦ •〉
〈◦ • , •〉
〈• • , ◦ ◦ ◦ ◦〉
〈◦ ◦ , ◦〉

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 14 / 73

Reduction

A reduction sequence or derivation w.r.t. →α is a finite or infinite
sequence a0 →α a1 →α a2 →α . . .

A reduction step is an occurrence of →α in a reduction sequence

Recall from above
〈• ◦ , ◦ ◦ ◦ •〉
〈◦ • , •〉
〈• • , ◦ ◦ ◦ ◦〉
〈◦ ◦ , ◦〉

• ◦ • → ◦ ◦ ◦ • • → ◦ ◦ ◦ ◦ ◦ ◦ ◦ →→→→→→ ◦

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 15 / 73

Notation

→=
α reflexive closure of →α

→+
α transitive closure of →α

�α reflexive, transitive closure of →α

Note: a �α b iff there is a finite reduction sequence

a = a0 →α a1 →α . . . →α an = b

• ◦ • � ◦ since

• ◦ • → ◦ ◦ ◦ • • → ◦ ◦ ◦ ◦ ◦ ◦ ◦ →→→→→→ ◦

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 16 / 73

Confluence

Diamond Property (DP)

a

����
��

��
��

��?
??

??
??

?

b

��

c

��
d

∀ a, b, c s.t. a → b and a → c ,
∃d s.t. b → d and c → d

Weak Church Rosser (WCR)

a

����
��

��
��

��?
??

??
??

?

b

�� ��

c

����
d

∀ a, b, c s.t. a → b and a → c ,
∃d s.t. b � d and c � d

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 17 / 73

Confluence

Confluence or Church-Rosser (CR)

a

������
��

��
��

�� ��?
??

??
??

?

b

�� ��

c

����
d

∀ a, b, c s.t. a � b and a � c , ∃d s.t. b � d and c � d

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 18 / 73

Normalization

Consider an ARS (A,→).

a ∈ A is a normal form if there exists no b s.t. a → b

a ∈ A is weakly normalizing if a � b for b a normal form; → is
weakly normalizing (WN) if every a ∈ A is weakly normalizing

a ∈ A is strongly normalizing if every reduction sequence starting
from a is finite; → is strongly normalizing (SN) if every a ∈ A is
strongly normalizing

WN, ¬SN
• •oo 55 •uu

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 19 / 73

Interrelation between Properties

CR =⇒ WCR (trivial)

Lemma

WCR ; CR

Proof (counterexample - Hindley)

• •oo 55 •uu // •

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 20 / 73

Interrelation between Properties

Thm (Newman’s Lemma)

WCR and SN =⇒ CR

Proof [Huet1980]

By well-founded induction •

����
��

��
�

��@
@@

@@
@@

•

�� ��@
@@

@@
@@

������
��

��
�

WCR •

������
��

��
�

�� ��@
@@

@@
@@

•

�� ��@
@@

@@
@@

IH •

������
��

��
�

IH

•

������
��

��
�

•

�� ��@
@@

@@
@@

•

������
��

��
�

•

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 21 / 73

1 Abstract Reduction Systems

2 First-Order Rewriting
Terms
Unification
Rewrite Systems
Confluence

3 Lambda Calculus

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 22 / 73

Terms

Σ set of function symbols equipped with an arity n (n ∈ IN)
X set of variables
T (Σ) set of Σ-terms over X

x ∈ X

x ∈ T (Σ)

f ∈ Σ of arity n M1, . . . ,Mn ∈ T (Σ)

f (M1, . . . ,Mn) ∈ T (Σ)

Var(M) denotes the variables in M

M is closed if Var(M) = ∅

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 23 / 73

Terms - Example

Signature

0 (arity 0) s (arity 1)
a (arity 2) m (arity 2)

Terms

s(0) a(s(0), 0) a(m(x , y), 0)

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 24 / 73

Terms as Trees

The term tree of a(m(x , y), 0)

a

~~
~~

~~
~~

??
??

??
??

m

��
��

��
��

??
??

??
?? 0

x y

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 25 / 73

Positions

IN? set of positions, where a position is a sequence of natural
numbers i1 i2 . . . in (Note: we use ε for the empty sequence)

Example: ε, 13, 249 (Note: We only use sequences of single digit
numbers to avoid ambiguities)

pos(M): Positions of the term tree of M

a
1

~~
~~

~~
~~ 2

??
??

??
??

m
1

��
��

��
�� 2

??
??

??
?? 0

x y

M = a(m(x , y), 0)
pos(M) = {ε, 1, 2, 11, 12}

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 26 / 73

Positions - Concatenation

Concatenation of positions

ε · q = q

(i p) · q = i (p · q)

Prefix preorder

p � q (“p is a prefix of q”) iff ∃r ∈ IN? p · r = q

ε � p, for all p
1 � 122
21 � 213
21 ‖ 22 (disjoint positions)

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 27 / 73

Subterms at a position

M |p: Subterm of M at position p ∈ pos(M)

M |ε= M

Mi |q= N i ∈ {1..n}

f (M1, . . . ,Mn) |i q= N

a(m(x , y), 0) |1= m(x , y) a(m(x , y), 0) |1 2= y

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 28 / 73

1 Abstract Reduction Systems

2 First-Order Rewriting
Terms
Unification
Rewrite Systems
Confluence

3 Lambda Calculus

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 29 / 73

Substitution

A substitution is a map σ : T (Σ) → T (Σ) which satisfies

σ(f (M1, . . . ,Mn)) = f (σ(M1), . . . , σ(Mn))

We usually write Mσ instead of σ(M)

σ = {x1/M1, . . . , xn/Mn} determines a unique substitution (the
expected one)

If M = f (x , g(y)) and σ = {x/g(a), y/f (x , x)}, then

Mσ = f (g(a), g(f (x , x)))

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 30 / 73

Unification

Terms M,N are said to be unifiable iff there exists a substitution σ
(unifier) s.t. Mσ = Nσ

1 x is always unifiable with any M (provided that x /∈ Var(M))

2 f (x , g(x , a)) is unifiable with f (f (a), y) with unifier
σ = {x/f (a), y/g(f (a), a)}

3 f (x , g(x , a)) and f (f (a), g(b, a)) are not unifiable

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 31 / 73

Preorder on Substitutions

Composition of substitutions σ, τ , written σ ◦ τ ,

Mσ◦τ = (Mτ)σ

Subsumption (σ is more general than τ)

σ ≤ τ iff ∃υ s.t. υ ◦ σ = τ

Note: ≤ is a preorder on substitutions (upto renaming)

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 32 / 73

Most General Unifier

Thm

If M,N are unifiable, then there exists a most general unifier (MGU) of
M,N. Furthermore, this MGU is unique upto renaming.

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 33 / 73

Unification Algorithm (Martelli-Montanari)

E finite set of matching equations

{f (M1, . . . ,Mn)
.
= f (N1, . . . ,Nn)} ∪ E =⇒ {M1

.
= N1, . . . ,Mn

.
= Nn} ∪ E

{f (M1, . . . ,Mn)
.
= g(N1, . . . ,Nm)} ∪ E =⇒ fail

{x .
= x} ∪ E =⇒ E

{f (M1, . . . ,Mn)
.
= x} ∪ E =⇒ {x .

= f (M1, . . . ,Mn)} ∪ E
{x .

= f (M1, . . . ,Mn)} ∪ E =⇒ fail
if x ∈ Var(M1, . . . ,Mn)

{x .
= M} ∪ E =⇒ {x .

= M} ∪ E{x/M}

if x /∈ Var(M) ∧ x ∈ Var(E)

To compute MGU of M and N, begin with {M .
= N} and apply rules

repeatedly

This process is CR and SN

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 34 / 73

1 Abstract Reduction Systems

2 First-Order Rewriting
Terms
Unification
Rewrite Systems
Confluence

3 Lambda Calculus

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 35 / 73

Example

a(x , 0) → x
a(x , s(y)) → s(a(x , y))
m(x , 0) → 0
m(x , s(y)) → a(m(x , y), x)

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 36 / 73

Reduction Rule

A reduction rule for a signature Σ is a pair 〈l , r〉 of terms in T (Σ) such
that

1 the left-hand side l is not a variable

2 every variable occurring in the right-hand side r occurs in l as well

We often write l → r

We sometimes give rules a name and write ρ : l → r

We say ρ is left-linear if l contains at most one occurrence of any
variable

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 37 / 73

Context

Context: Term over Σ ∪ {�}. Special symbol � denotes a hole.
If C is a context containing exactly n holes, then C [M1, . . . ,Mn] denotes
the term resulting from replacing the holes of C from left to right with
M1, . . . ,Mn

Unless stated, we restrict to contexts with exactly one occurence of �

The p in C [M]p indicates C |p= �

1 a(m(s(�), x), 0)

2 a(0,�)

3 �

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 38 / 73

Redex

A ρ-redex is an instance lσ of the left-hand side of rule ρ : l → r in a term
M (source)

We use letters r , s for redexes

A redex is determined by

1 Pair of terms (source,target)

2 Rule name

3 Position

4 Substitution

In some cases, not all items are necessary

Redexes that have the same source are called coinitial

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 39 / 73

Redex - Example

ρ : f (x) → x

Consider the term f (f (y)); it has two ρ-redexes

Source f (f (y)) f (f (y))
Target f (y) f (y)
Rule ρ ρ
Position ε 1
Subst {x/f (y)} {x/y}

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 40 / 73

Redex Patterns

The pattern of a rule ρ : l → r is l ε where xε = � for all variables x . The
pattern of a ρ-redex is the pattern of ρ.
Let P be the pattern of a ρ-redex s. Then

1 s = lσ = P[xσ
1 , . . . , xσ

n] (note multiple holes) and

2 xσ
1 , . . . , xσ

n are the arguments of s

Pattern of
a(x , s(y)) → s(a(x , y))

a

��
��

��
�

<<
<<

<<
<

� s

�

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 41 / 73

Nested, Disjoint, Overlapping

Two coinitial redexes s and r are said to be

1 Disjoint: if their positions are disjoint

2 Nested (say s nests r): if r occurs in an argument of s

3 Overlapping: if their patterns share at least one symbol occurrence

Consider the TRS

f (g(x)) → x
g(a) → y

overlapping nested
f(g(g(a))) f(g(g(a)))

We say f(g(g(a))) nests g(a)

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 42 / 73

Reduction Step

A reduction step according to the rule ρ : l → r consists of contracting a
redex within an arbitrary context

C [lσ] →ρ C [rσ]

Occasionally we write C [lσ] →s C [rσ] (or even s) for this reduction
step, where s is the ρ-redex lσ in C [lσ]

If s1, . . . , sn are composable redexes we write s1; . . . ; sn for the
resulting derivation

We sometimes give derivations names d : s1; . . . ; sn

We write |d | for the number of steps in d

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 43 / 73

Example

ρ : a(x , 0) → x
a(x , s(y)) → s(a(x , y))
m(x , 0) → 0
m(x , s(y)) → a(m(x , y), x)

Reduction step (C = s(�), σ = {x/s(s(0))})

s(a(s(s(0)), s(0))) →ρ s(s(a(s(s(0)), 0)))

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 44 / 73

Term Rewrite System

A Term Rewrite System is a pair R = 〈Σ,R〉 of a signature Σ and a set of
reduction rules R for Σ
The one-step reduction relation of R is defined as the union

→=
⋃
{→s |M →s N, s a ρ-redex in M, ρ ∈ R}

Note:

〈T (Σ),→〉 is an ARS

Thus all concepts of ARS are applicable to TRS

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 45 / 73

1 Abstract Reduction Systems

2 First-Order Rewriting
Terms
Unification
Rewrite Systems
Confluence

3 Lambda Calculus

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 46 / 73

Confluence - Reminder

Confluence (CR)

a

������
��

��
��

�� ��?
??

??
??

?

b

�� ��

c

����
d

∀ a, b, c s.t. a � b and a � c , ∃d s.t. b � d and c � d

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 47 / 73

Techniques for Proving Confluence

Abstract: Formulated for Abstract Reduction Systems

Concrete: Formulated for Term Rewrite Systems

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 48 / 73

Techniques for Proving Confluence

Abstract: Confluence by

I Strong confluence
I Equivalence
I ...

Concrete: Confluence by

I Critical pairs
I Orthogonality
I ...

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 49 / 73

Strong Confluence [Huet1980]

•

��~~
~~

~~
~

��@
@@

@@
@@

•

�� ��

•

=��
•

f (x , x) → g(x)
f (x , y) → g(y)
g(x) → f (x , a)

Beware of asymmetry!

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 50 / 73

Equivalence

〈A,→A〉,〈B,→B〉 ARS

1 →A⊆→B⊆�A and

2 →B strongly confluent

Then →A is confluent

Proof
1 (1) implies �A=�B

2 (2) implies →B confluent

3 Result follows from (1),(2)

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 51 / 73

Equivalence

Let R be the TRS

f (x) → g(x , x)
g(x , y) → f (y)

Define ⇒ as

x ⇒ x

M ⇒ M ′

f (M) ⇒ f (M ′)

M ⇒ M ′ N ⇒ N ′

g(M,N) ⇒ g(M ′,N ′)

1 Show →R⊆⇒⊆�R

2 Show ⇒ is strongly
confluent

3 Conclude R is confluent

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 52 / 73

Techniques for Proving Confluence

Abstract: Confluence by

I Strong confluence
I Equivalence
I ...

Concrete: Confluence by

I Critical pairs
I Orthogonality
I ...

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 53 / 73

Critical Pairs

Overlap between two left-hand sides of rewrite rules

l → r and g → d variable disjoint rewrite rules. A critical pair between
them is a pair 〈lσ[dσ]p, rσ〉 where

1 p ∈ pos(l) and l |p is not a variable

2 σ is a MGU of l |p and g

Note:

lσ = lσ[gσ]p

xxqqqqqqqqqq

%%JJJJJJJJJJJ

lσ[dσ]p rσ

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 54 / 73

Example

Rewrite system

¬(true) → false
¬(false) → true
¬(¬(x)) → x
and(true, x) → x
and(false, x) → false

Critical pairs (are there others?)

¬(¬(true))

zzuuuuuuuuu

""EE
EE

EE
EE

E

¬(false) true

¬(¬(false))

zzuuuuuuuuu

##FF
FF

FF
FF

F

¬(true) false

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 55 / 73

Example

Rewrite system

x ⊕ (y ⊕ z) → (x ⊕ y)⊕ z

Critical pairs

x ⊕ (y ⊕ (z ⊕ w))

uukkkkkkkkkkkkkkk

))TTTTTTTTTTTTTTT

x ⊕ ((y ⊕ z)⊕ w) (x ⊕ y)⊕ (z ⊕ w)

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 56 / 73

WCR by Critical Pairs

Thm

R is WCR iff every critical pair is joinable

Proof

⇒) Trivial
⇐) Take an arbitrary peak M

s0

����
��

�� s1

��6
66

66
6

P0 P1

and consider all possible cases

in which this arises

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 57 / 73

s0 and s1 are disjoint - Direct

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 58 / 73

s0 and s1 are nested - Direct

The bottom-right arrow may have to perform multiple steps if the rewrite
rules are not left-linear

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 59 / 73

s0 and s1 overlap - Use hypothesis

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 60 / 73

Decidable Case of Confluence

Thm

Let R be finite and SN. Then confluence is decidable.

Proof
1 Generate all critical pairs
2 For each critical pair 〈u, v〉 reduce u and v to their normal forms u, v

1 if u 6= v for some 〈u, v〉 then fail
2 Otherwise, the system is confluent

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 61 / 73

Orthogonal TRS

A TRS is called orthogonal (OTRS) if it is

1 left-linear and

2 without critical pairs

Thm

Orthogonal TRS are confluent

Note that, in contrast to the previous result, we do not require the
TRS to be SN

Proof relies on the fact that coinitial, diverging reduction steps can
always be joined

More on orthogonal TRS later

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 62 / 73

1 Abstract Reduction Systems

2 First-Order Rewriting

3 Lambda Calculus

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 63 / 73

What is the Lambda Calculus

A model of computation

Concise and expressive

Strong connections to proof theory and category theory

Shown to be equivalent to Turing Machines

Considered a suitable abstract model of programming languages

Lambda calculus
+

Your new programming construct
=

Good testbed

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 64 / 73

Informal Introduction

Fundamental construction: abstraction

λx .x + 1

I Similar to f (x) = x + 1 except that it is “anonymous”

Fundamental operation: application of functions to arguments

(λx .x + 1) 2

Both of these combined in their purest form:

I Everything is a function!

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 65 / 73

Syntax

λ-terms (T (λ))

M ::= x variable
| M N application
| λx .M abstraction

In an abstraction
I x is the (formal) parameter and M is the body
I λx binds all occurrences of x in M not under another λx
I notion of free and bound variables similar to that of first-order logic
I free variables of M: fv(M)

In an application N is called an argument

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 66 / 73

Examples of λ-Terms

λx .x

x

λx .x x (self-application!)

λx .λy .x

(λx .x)(λx .x)

x y

λx .x = λy .y (terms differing only in the name of bound variables are
considered equal; this is called α-equivalence)

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 67 / 73

Reduction

β : (λx .M) N → M{x/N}

1 Substitution: M{x/N} denotes the term M where all free occurrences
of x are replaced by N

2 Substitution may need to rename bound variables in order to avoid
variable capture

(λx .y){y/x} = λx .x No! Variable capture
(λx .y){y/x} = λz .x Rename. Ok!

We ignore extensionality in our presentation

η : λx .M x → M if x /∈ fv(M)

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 68 / 73

Example

1 I y → x{x/y} = y (where I = λx .x)

2 ∆ (I y) → (I y)(I y) (where ∆ is λx .x x)

3 ∆ (I y) → ∆y → y y

4 (λx .z)(I y) → z

5 ω ω → (x x){x/ω} = ω ω (where ω = λx .x x)

6 (λx .z) (ω ω) → z

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 69 / 73

Two Basic Properties

Lemma

β is not WN (hence not SN)

Proof (counterexample)

ω ω → ω ω → ω ω → . . . (where ω = λx .x x)

Thm

β is confluent

Proof

Use confluence by equivalence technique

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 70 / 73

De Bruijn Indices (“I don’t really like de Bruijn indices myself” (N. de

Bruijn))

The idea: replace variable names by reference to declaration point

λx .x becomes λ1
λx .λy .x becomes λλ2

Consequence: Renaming not necessary (replaced by index adjustment)

λx .(λy .λz .y) x →β λx .λz .x
becomes

λ(λλ2) 1 →βDB
λ((λ2){1/1}) = λλ2{2/2} = λλ2

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 71 / 73

De Bruijn Indices

βDB : (λM) N → M{{1/N}}

M{{1/N}} is substitution on terms with indices

β is isomorphic to βDB

β is easier for study purposes

βDB is easier for implementation

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 72 / 73

Lambda Calculus vs First-Order Rewriting

First-Order Rewriting
F natural model of computation
F concise representation of algebraic data types
X functions are not treated as data

Lambda Calculus
F natural model for reasoning about functions
F can encode programs, derivations, specifications
X inefficient representation of algebraic types
X more complex metatheory

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 73 / 73

	Examples
	Examples
	Resources

	Abstract Reduction Systems
	First-Order Rewriting
	Terms
	Unification
	Rewrite Systems
	Confluence

	Lambda Calculus

