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Example - Arithmetic

Natural numbers as Peano numerals: 0, s(0), s(s(0)), etc.
Rewrite system

a(x , 0) → x
a(x , s(y)) → s(a(x , y))
m(x , 0) → 0
m(x , s(y)) → a(m(x , y), x)

Reduction sequence

“2 + 2′′ = a(s(s(0)), s(s(0))) → s(a(s(s(0)), s(0)))

→ s(s(a(s(s(0)), 0)))

→ s(s(s(s(0))))
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Example - Negation Normal Form

Rewrite system

x =⇒ y → ¬x ∨ y
¬(x ∧ y) → ¬x ∨ ¬y
¬(x ∨ y) → ¬x ∧ ¬y
¬¬x → x

Reduction sequence

¬(¬(x =⇒ y) ∨ z) → ¬(¬(¬x ∨ y) ∨ z)

→ ¬((¬¬x ∧ ¬y) ∨ z)
→ ¬((x ∧ ¬y) ∨ z)

→ ¬(x ∧ ¬y) ∧ ¬z

→ (¬x ∨ ¬¬y) ∧ ¬z

→ (¬x ∨ y) ∧ ¬z
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Example - Combinatory Logic

Rewrite system

((((S · x) · y) · z) → ((x · z) · (y · z))
((K · x) · y) → x
(I · x) → x

Reduction sequence

(((S · I ) · I ) · x) → ((I · x) · (I · x))

→ (x · (I · x))

→ (x · x)
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Example - Functional Programming

Rewrite system

map(λx .M, nil) → nil
map(λx .M, cons(X ,T )) → cons(M{x/X},map(λx .M,T ))

Reduction sequence ([n] abbreviates cons(n, nil))

map(λx .cons(x , nil), cons(1, (cons(2, nil))))

→ cons([1],map(λx .cons(x , nil), cons(2, nil)))

→ cons([1], cons([2],map(λx .cons(x , nil), nil)))

→ cons([1], cons([2], nil))
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Example - Object Oriented Programming

Terms

M ::= x variable

| [li = ς(xi )Ni
i∈{1..n}] object

| M.l method invocation
| M.l x ς(x)N method update

Rewrite system (o = [li = ς(xi )Ni
i∈{1..n}] and j ∈ 1..n)

o.lj → Nj{xj/o}
o.lj x ς(x)N → [l = ς(x)N, li = ς(xi )Ni

i∈{1..n}\{j}]

Reduction sequence

[l = ς(y)(y .l x ς(x)x)].l → [l = ς(y)(y .l x ς(x)x)].l x ς(x)x

→ [l = ς(x)x ]
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An Aside

Definitions

Examples

Highlights or comments

Thm/Lemma/Proof

Statement of Thm/Lemma and proofs
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Structure of Today’s Talk

1 Abstract Reduction Systems

2 First-Order Rewriting

3 Lambda Calculus
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Introduction

An Abstract Reduction System (ARS) is a structure 〈A, {→α |α ∈ I}〉
where

A is a set

{→α |α ∈ I} is a family of binary relations on A indexed by I

The relations →α are called reduction relations

In the case of just one reduction relation we write →
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Examples

1

• •
α

oo
α

55 •
β

uu

2 A = {•, ◦}+ and u → v for u, v ∈ A if
I u = u1lu2 and v = u1ru2

I 〈l , r〉 is one of

〈• ◦ , ◦ ◦ ◦ •〉
〈◦ • , •〉
〈• • , ◦ ◦ ◦ ◦〉
〈◦ ◦ , ◦〉
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Reduction

A reduction sequence or derivation w.r.t. →α is a finite or infinite
sequence a0 →α a1 →α a2 →α . . .

A reduction step is an occurrence of →α in a reduction sequence

Recall from above
〈• ◦ , ◦ ◦ ◦ •〉
〈◦ • , •〉
〈• • , ◦ ◦ ◦ ◦〉
〈◦ ◦ , ◦〉

• ◦ • → ◦ ◦ ◦ • • → ◦ ◦ ◦ ◦ ◦ ◦ ◦ →→→→→→ ◦
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Notation

→=
α reflexive closure of →α

→+
α transitive closure of →α

�α reflexive, transitive closure of →α

Note: a �α b iff there is a finite reduction sequence

a = a0 →α a1 →α . . . →α an = b

• ◦ • � ◦ since

• ◦ • → ◦ ◦ ◦ • • → ◦ ◦ ◦ ◦ ◦ ◦ ◦ →→→→→→ ◦
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Confluence

Diamond Property (DP)

a

����
��

��
��

��?
??

??
??

?

b

��

c

��
d

∀ a, b, c s.t. a → b and a → c ,
∃d s.t. b → d and c → d

Weak Church Rosser (WCR)

a

����
��

��
��

��?
??

??
??

?

b

�� ��

c

����
d

∀ a, b, c s.t. a → b and a → c ,
∃d s.t. b � d and c � d
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Confluence

Confluence or Church-Rosser (CR)

a

������
��

��
��

�� ��?
??

??
??

?

b

�� ��

c

����
d

∀ a, b, c s.t. a � b and a � c , ∃d s.t. b � d and c � d
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Normalization

Consider an ARS (A,→).

a ∈ A is a normal form if there exists no b s.t. a → b

a ∈ A is weakly normalizing if a � b for b a normal form; → is
weakly normalizing (WN) if every a ∈ A is weakly normalizing

a ∈ A is strongly normalizing if every reduction sequence starting
from a is finite; → is strongly normalizing (SN) if every a ∈ A is
strongly normalizing

WN, ¬SN
• •oo 55 •uu
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Interrelation between Properties

CR =⇒ WCR (trivial)

Lemma

WCR ; CR

Proof (counterexample - Hindley)

• •oo 55 •uu // •
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Interrelation between Properties

Thm (Newman’s Lemma)

WCR and SN =⇒ CR

Proof [Huet1980]

By well-founded induction •

����
��

��
�

��@
@@

@@
@@

•

�� ��@
@@

@@
@@

������
��

��
�

WCR •

������
��

��
�

�� ��@
@@

@@
@@

•

�� ��@
@@

@@
@@

IH •

������
��

��
�

IH

•

������
��

��
�

•

�� ��@
@@

@@
@@

•

������
��

��
�

•
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1 Abstract Reduction Systems

2 First-Order Rewriting
Terms
Unification
Rewrite Systems
Confluence

3 Lambda Calculus
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Terms

Σ set of function symbols equipped with an arity n (n ∈ IN)
X set of variables
T (Σ) set of Σ-terms over X

x ∈ X

x ∈ T (Σ)

f ∈ Σ of arity n M1, . . . ,Mn ∈ T (Σ)

f (M1, . . . ,Mn) ∈ T (Σ)

Var(M) denotes the variables in M

M is closed if Var(M) = ∅
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Terms - Example

Signature

0 (arity 0) s (arity 1)
a (arity 2) m (arity 2)

Terms

s(0) a(s(0), 0) a(m(x , y), 0)
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Terms as Trees

The term tree of a(m(x , y), 0)

a

~~
~~

~~
~~

??
??

??
??

m

��
��

��
��

??
??

??
?? 0

x y
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Positions

IN? set of positions, where a position is a sequence of natural
numbers i1 i2 . . . in (Note: we use ε for the empty sequence)

Example: ε, 13, 249 (Note: We only use sequences of single digit
numbers to avoid ambiguities)

pos(M): Positions of the term tree of M

a
1

~~
~~

~~
~~ 2

??
??

??
??

m
1

��
��

��
�� 2

??
??

??
?? 0

x y

M = a(m(x , y), 0)
pos(M) = {ε, 1, 2, 11, 12}
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Positions - Concatenation

Concatenation of positions

ε · q = q

(i p) · q = i (p · q)

Prefix preorder

p � q (“p is a prefix of q”) iff ∃r ∈ IN? p · r = q

ε � p, for all p
1 � 122
21 � 213
21 ‖ 22 (disjoint positions)
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Subterms at a position

M |p: Subterm of M at position p ∈ pos(M)

M |ε= M

Mi |q= N i ∈ {1..n}

f (M1, . . . ,Mn) |i q= N

a(m(x , y), 0) |1= m(x , y) a(m(x , y), 0) |1 2= y
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1 Abstract Reduction Systems

2 First-Order Rewriting
Terms
Unification
Rewrite Systems
Confluence

3 Lambda Calculus
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Substitution

A substitution is a map σ : T (Σ) → T (Σ) which satisfies

σ(f (M1, . . . ,Mn)) = f (σ(M1), . . . , σ(Mn))

We usually write Mσ instead of σ(M)

σ = {x1/M1, . . . , xn/Mn} determines a unique substitution (the
expected one)

If M = f (x , g(y)) and σ = {x/g(a), y/f (x , x)}, then

Mσ = f (g(a), g(f (x , x)))
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Unification

Terms M,N are said to be unifiable iff there exists a substitution σ
(unifier) s.t. Mσ = Nσ

1 x is always unifiable with any M (provided that x /∈ Var(M))

2 f (x , g(x , a)) is unifiable with f (f (a), y) with unifier
σ = {x/f (a), y/g(f (a), a)}

3 f (x , g(x , a)) and f (f (a), g(b, a)) are not unifiable

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 31 / 73



Preorder on Substitutions

Composition of substitutions σ, τ , written σ ◦ τ ,

Mσ◦τ = (Mτ )σ

Subsumption (σ is more general than τ)

σ ≤ τ iff ∃υ s.t. υ ◦ σ = τ

Note: ≤ is a preorder on substitutions (upto renaming)
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Most General Unifier

Thm

If M,N are unifiable, then there exists a most general unifier (MGU) of
M,N. Furthermore, this MGU is unique upto renaming.
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Unification Algorithm (Martelli-Montanari)

E finite set of matching equations

{f (M1, . . . ,Mn)
.
= f (N1, . . . ,Nn)} ∪ E =⇒ {M1

.
= N1, . . . ,Mn

.
= Nn} ∪ E

{f (M1, . . . ,Mn)
.
= g(N1, . . . ,Nm)} ∪ E =⇒ fail

{x .
= x} ∪ E =⇒ E

{f (M1, . . . ,Mn)
.
= x} ∪ E =⇒ {x .

= f (M1, . . . ,Mn)} ∪ E
{x .

= f (M1, . . . ,Mn)} ∪ E =⇒ fail
if x ∈ Var(M1, . . . ,Mn)

{x .
= M} ∪ E =⇒ {x .

= M} ∪ E{x/M}

if x /∈ Var(M) ∧ x ∈ Var(E )

To compute MGU of M and N, begin with {M .
= N} and apply rules

repeatedly

This process is CR and SN

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 34 / 73



1 Abstract Reduction Systems

2 First-Order Rewriting
Terms
Unification
Rewrite Systems
Confluence

3 Lambda Calculus
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Example

a(x , 0) → x
a(x , s(y)) → s(a(x , y))
m(x , 0) → 0
m(x , s(y)) → a(m(x , y), x)
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Reduction Rule

A reduction rule for a signature Σ is a pair 〈l , r〉 of terms in T (Σ) such
that

1 the left-hand side l is not a variable

2 every variable occurring in the right-hand side r occurs in l as well

We often write l → r

We sometimes give rules a name and write ρ : l → r

We say ρ is left-linear if l contains at most one occurrence of any
variable
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Context

Context: Term over Σ ∪ {�}. Special symbol � denotes a hole.
If C is a context containing exactly n holes, then C [M1, . . . ,Mn] denotes
the term resulting from replacing the holes of C from left to right with
M1, . . . ,Mn

Unless stated, we restrict to contexts with exactly one occurence of �

The p in C [M]p indicates C |p= �

1 a(m(s(�), x), 0)

2 a(0,�)

3 �
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Redex

A ρ-redex is an instance lσ of the left-hand side of rule ρ : l → r in a term
M (source)

We use letters r , s for redexes

A redex is determined by

1 Pair of terms (source,target)

2 Rule name

3 Position

4 Substitution

In some cases, not all items are necessary

Redexes that have the same source are called coinitial
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Redex - Example

ρ : f (x) → x

Consider the term f (f (y)); it has two ρ-redexes

Source f (f (y)) f (f (y))
Target f (y) f (y)
Rule ρ ρ
Position ε 1
Subst {x/f (y)} {x/y}
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Redex Patterns

The pattern of a rule ρ : l → r is l ε where xε = � for all variables x . The
pattern of a ρ-redex is the pattern of ρ.
Let P be the pattern of a ρ-redex s. Then

1 s = lσ = P[xσ
1 , . . . , xσ

n ] (note multiple holes) and

2 xσ
1 , . . . , xσ

n are the arguments of s

Pattern of
a(x , s(y)) → s(a(x , y))

a

��
��

��
�

<<
<<

<<
<

� s

�
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Nested, Disjoint, Overlapping

Two coinitial redexes s and r are said to be

1 Disjoint: if their positions are disjoint

2 Nested (say s nests r): if r occurs in an argument of s

3 Overlapping: if their patterns share at least one symbol occurrence

Consider the TRS

f (g(x)) → x
g(a) → y

overlapping nested
f(g(g(a))) f(g(g(a)))

We say f(g(g(a))) nests g(a)
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Reduction Step

A reduction step according to the rule ρ : l → r consists of contracting a
redex within an arbitrary context

C [lσ] →ρ C [rσ]

Occasionally we write C [lσ] →s C [rσ] (or even s) for this reduction
step, where s is the ρ-redex lσ in C [lσ]

If s1, . . . , sn are composable redexes we write s1; . . . ; sn for the
resulting derivation

We sometimes give derivations names d : s1; . . . ; sn

We write |d | for the number of steps in d
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Example

ρ : a(x , 0) → x
a(x , s(y)) → s(a(x , y))
m(x , 0) → 0
m(x , s(y)) → a(m(x , y), x)

Reduction step (C = s(�), σ = {x/s(s(0))})

s(a(s(s(0)), s(0))) →ρ s(s(a(s(s(0)), 0)))
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Term Rewrite System

A Term Rewrite System is a pair R = 〈Σ,R〉 of a signature Σ and a set of
reduction rules R for Σ
The one-step reduction relation of R is defined as the union

→=
⋃
{→s |M →s N, s a ρ-redex in M, ρ ∈ R}

Note:

〈T (Σ),→〉 is an ARS

Thus all concepts of ARS are applicable to TRS
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1 Abstract Reduction Systems

2 First-Order Rewriting
Terms
Unification
Rewrite Systems
Confluence

3 Lambda Calculus
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Confluence - Reminder

Confluence (CR)

a

������
��

��
��

�� ��?
??

??
??

?

b

�� ��

c

����
d

∀ a, b, c s.t. a � b and a � c , ∃d s.t. b � d and c � d
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Techniques for Proving Confluence

Abstract: Formulated for Abstract Reduction Systems

Concrete: Formulated for Term Rewrite Systems
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Techniques for Proving Confluence

Abstract: Confluence by

I Strong confluence
I Equivalence
I ...

Concrete: Confluence by

I Critical pairs
I Orthogonality
I ...
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Strong Confluence [Huet1980]

•

��~~
~~

~~
~

��@
@@

@@
@@

•

�� ��

•

=��
•

f (x , x) → g(x)
f (x , y) → g(y)
g(x) → f (x , a)

Beware of asymmetry!
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Equivalence

〈A,→A〉,〈B,→B〉 ARS

1 →A⊆→B⊆�A and

2 →B strongly confluent

Then →A is confluent

Proof
1 (1) implies �A=�B

2 (2) implies →B confluent

3 Result follows from (1),(2)
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Equivalence

Let R be the TRS

f (x) → g(x , x)
g(x , y) → f (y)

Define ⇒ as

x ⇒ x

M ⇒ M ′

f (M) ⇒ f (M ′)

M ⇒ M ′ N ⇒ N ′

g(M,N) ⇒ g(M ′,N ′)

1 Show →R⊆⇒⊆�R

2 Show ⇒ is strongly
confluent

3 Conclude R is confluent
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Techniques for Proving Confluence

Abstract: Confluence by

I Strong confluence
I Equivalence
I ...

Concrete: Confluence by

I Critical pairs
I Orthogonality
I ...
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Critical Pairs

Overlap between two left-hand sides of rewrite rules

l → r and g → d variable disjoint rewrite rules. A critical pair between
them is a pair 〈lσ[dσ]p, rσ〉 where

1 p ∈ pos(l) and l |p is not a variable

2 σ is a MGU of l |p and g

Note:

lσ = lσ[gσ]p

xxqqqqqqqqqq

%%JJJJJJJJJJJ

lσ[dσ]p rσ
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Example

Rewrite system

¬(true) → false
¬(false) → true
¬(¬(x)) → x
and(true, x) → x
and(false, x) → false

Critical pairs (are there others?)

¬(¬(true))

zzuuuuuuuuu

""EE
EE

EE
EE

E

¬(false) true

¬(¬(false))

zzuuuuuuuuu

##FF
FF

FF
FF

F

¬(true) false
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Example

Rewrite system

x ⊕ (y ⊕ z) → (x ⊕ y)⊕ z

Critical pairs

x ⊕ (y ⊕ (z ⊕ w))

uukkkkkkkkkkkkkkk

))TTTTTTTTTTTTTTT

x ⊕ ((y ⊕ z)⊕ w) (x ⊕ y)⊕ (z ⊕ w)
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WCR by Critical Pairs

Thm

R is WCR iff every critical pair is joinable

Proof

⇒) Trivial
⇐) Take an arbitrary peak M

s0

����
��

�� s1

��6
66

66
6

P0 P1

and consider all possible cases

in which this arises
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s0 and s1 are disjoint - Direct
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s0 and s1 are nested - Direct

The bottom-right arrow may have to perform multiple steps if the rewrite
rules are not left-linear
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s0 and s1 overlap - Use hypothesis
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Decidable Case of Confluence

Thm

Let R be finite and SN. Then confluence is decidable.

Proof
1 Generate all critical pairs
2 For each critical pair 〈u, v〉 reduce u and v to their normal forms u, v

1 if u 6= v for some 〈u, v〉 then fail
2 Otherwise, the system is confluent
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Orthogonal TRS

A TRS is called orthogonal (OTRS) if it is

1 left-linear and

2 without critical pairs

Thm

Orthogonal TRS are confluent

Note that, in contrast to the previous result, we do not require the
TRS to be SN

Proof relies on the fact that coinitial, diverging reduction steps can
always be joined

More on orthogonal TRS later
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1 Abstract Reduction Systems

2 First-Order Rewriting

3 Lambda Calculus
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What is the Lambda Calculus

A model of computation

Concise and expressive

Strong connections to proof theory and category theory

Shown to be equivalent to Turing Machines

Considered a suitable abstract model of programming languages

Lambda calculus
+

Your new programming construct
=

Good testbed

Eduardo Bonelli (LIFIA,CONICET) Rewriting, Explicit Substitutions and Normalisation February, 2006 64 / 73



Informal Introduction

Fundamental construction: abstraction

λx .x + 1

I Similar to f (x) = x + 1 except that it is “anonymous”

Fundamental operation: application of functions to arguments

(λx .x + 1) 2

Both of these combined in their purest form:

I Everything is a function!
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Syntax

λ-terms (T (λ))

M ::= x variable
| M N application
| λx .M abstraction

In an abstraction
I x is the (formal) parameter and M is the body
I λx binds all occurrences of x in M not under another λx
I notion of free and bound variables similar to that of first-order logic
I free variables of M: fv(M)

In an application N is called an argument
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Examples of λ-Terms

λx .x

x

λx .x x (self-application!)

λx .λy .x

(λx .x)(λx .x)

x y

λx .x = λy .y (terms differing only in the name of bound variables are
considered equal; this is called α-equivalence)
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Reduction

β : (λx .M) N → M{x/N}

1 Substitution: M{x/N} denotes the term M where all free occurrences
of x are replaced by N

2 Substitution may need to rename bound variables in order to avoid
variable capture

(λx .y){y/x} = λx .x No! Variable capture
(λx .y){y/x} = λz .x Rename. Ok!

We ignore extensionality in our presentation

η : λx .M x → M if x /∈ fv(M)
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Example

1 I y → x{x/y} = y (where I = λx .x)

2 ∆ (I y) → (I y)(I y) (where ∆ is λx .x x)

3 ∆ (I y) → ∆y → y y

4 (λx .z)(I y) → z

5 ω ω → (x x){x/ω} = ω ω (where ω = λx .x x)

6 (λx .z) (ω ω) → z
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Two Basic Properties

Lemma

β is not WN (hence not SN)

Proof (counterexample)

ω ω → ω ω → ω ω → . . . (where ω = λx .x x)

Thm

β is confluent

Proof

Use confluence by equivalence technique
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De Bruijn Indices (“I don’t really like de Bruijn indices myself” (N. de

Bruijn))

The idea: replace variable names by reference to declaration point

λx .x becomes λ1
λx .λy .x becomes λλ2

Consequence: Renaming not necessary (replaced by index adjustment)

λx .(λy .λz .y) x →β λx .λz .x
becomes

λ(λλ2) 1 →βDB
λ((λ2){1/1}) = λλ2{2/2} = λλ2
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De Bruijn Indices

βDB : (λM) N → M{{1/N}}

M{{1/N}} is substitution on terms with indices

β is isomorphic to βDB

β is easier for study purposes

βDB is easier for implementation
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Lambda Calculus vs First-Order Rewriting

First-Order Rewriting
F natural model of computation
F concise representation of algebraic data types
X functions are not treated as data

Lambda Calculus
F natural model for reasoning about functions
F can encode programs, derivations, specifications
X inefficient representation of algebraic types
X more complex metatheory
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