# Formalisation of nominal equational reasoning in $\mathsf{PVS}^\dagger$

nominal anti-unification (the library nasa/pvslib/nominal)

Mauricio Ayala-Rincón

Mathematics and Computer Science Departments



 $^\dagger$  Research supported by the Brazilian agencies CAPES, CNPq, and FAPDF

Hausdorff Trimester Program Prospects of Formal Mathematics Hausdorff Institute for Mathematics, Bonn, August 5th, 2024

## Joint Work With



Maria Júlia Dias Lima



Thaynara Arielly de Lima



Mariano Miguel Moscato



Temur Kutsia

## Outline

- 1. Motivation
- 2. Formal verification
- 3. Anti-unification modulo
- 4. A sound Algorithm for  $(\mathfrak{a})(A)(C)(\mathfrak{a}A)(\mathfrak{a}C)$ -theories
- 5. Future Work

## Unification Vs Anti-unification



## Anti-Unification



# Anti-Unification



## Anti-Unification



# History

- A Introduced by Gordon Plotkin [Plo70] and John Reynolds [Rey70]
- First-order: syntactic [Baa91]; C, A, and AC [AEEM14]; idempotent [CK20b], unital [CK20c], semirings [Cer20], absorption [ARCBK24]
- Higher-Order: patterns [BKLV17], top maximal and shallow generalizations variants [CK20a], equational patterns [CK19], modulo [CK20a]
- **Q** See david Cerna and Temur Kutsia survey [CK23].

Applications of anti-unification include:

- searching a large hypothesis space in inductive logic programming (ILP) for logic-based machine learning [CDEM22];
- preventing bugs and misconfigurations in software [MBK<sup>+</sup>20];
- State of the state
- searching recursion schemes for efficient parallel compilation [BBH18].

# Formal verification - Syntactical case

• terms  $t ::= x | \langle \rangle | \langle t, t \rangle | f t$ 

• Labelled equations  $E = \{s_i \triangleq t_i \mid i \leq n\}$ 

Configurations:  $\langle E_U; E_S; \sigma \rangle$ 



Configuration constraints

- All labels in  $E_U \cup E_S$  are different,
- no redundant equations appear in  $E_S$ , and
- no label in  $E_U \cup E_S$  belongs to  $dom(\sigma)$ .

## Inference Rules

$$(\text{Decompose Function}) \frac{\langle \{f \ s \stackrel{\Delta}{=} f \ t\} \cup E, S, \sigma \rangle}{\langle \{s \stackrel{\Delta}{=} t\} \cup E, S, \{x \mapsto f \ y\} \circ \sigma \rangle}$$

$$(\text{Decompose Pair}) \frac{\langle \{\langle s, u \rangle \stackrel{\Delta}{=} \langle t, v \rangle \} \cup E, S, \sigma \rangle}{\langle \{s \stackrel{\Delta}{=} t, u \stackrel{\Delta}{=} v \} \cup E, S, \{x \mapsto \langle y, z \rangle \} \circ \sigma \rangle}$$

$$(\text{Solve-Red}) \frac{\langle \{s \stackrel{\Delta}{=} t\} \cup E, S, \sigma \rangle}{\langle E, S, \{x \mapsto x'\} \circ \sigma \rangle} \text{ if } s \stackrel{\Delta}{=} t \in S$$

$$(\text{Solve-No-Red}) \frac{\langle \{s \stackrel{\Delta}{=} t\} \cup E, S, \sigma \rangle}{\langle E, \{s \stackrel{\Delta}{=} t\} \cup S, \sigma \rangle} \text{ if there is no } s \stackrel{\Delta}{=} t \in S$$

$$\langle \{s \stackrel{\Delta}{=} s\} \cup E, S, \sigma \rangle$$

(Syntactic)  $\frac{\langle C, x, y \rangle = \langle C, y \rangle}{\langle E, S, \{x \mapsto s\} \circ \sigma \rangle}$  if neither decomposable nor solvable

## Inference Rules

## Example



## Anti-unification modulo

- Interest on the formalization of anti-unification for theories with Commutative, Associative and Absorption-symbols: C-, A-, and a-symbols.
- Related α-symbols are a pair of a function and a constant symbol holding the axioms f(ε<sub>f</sub>, x) = ε<sub>f</sub> = f(x, ε<sub>f</sub>).

Anti-unification in  $(\mathfrak{a})(A)(C)(\mathfrak{a}A)(\mathfrak{a}C)$ -theories

#### Example

Consider the terms:



An a-generalization and aA-generalization will be illustrated.

Anti-unification in  $(\mathfrak{a})(A)(C)(\mathfrak{a}A)(\mathfrak{a}C)$ -theories

By expanding  $\varepsilon_f$  in  $g(\varepsilon_f, a)$ , one obtains:



Notice that g(f(f(a, a), f(a, x)), y) is an a-generalization.

Anti-unification in  $(\mathfrak{a})(A)(C)(\mathfrak{a}A)(\mathfrak{a}C)$ -theories

Considering the same terms modulo  $\mathfrak{a}A$ , and by *expanding*  $\varepsilon_f$  in  $g(\varepsilon_f, a)$ , one has:



g(f(x, y), y) is an  $\mathfrak{a}$ -generalization but not an  $\mathfrak{a}$ -generalization.

## Anti-unification types for

| Theory                                     | Anti-unification type | References     |
|--------------------------------------------|-----------------------|----------------|
| Syntactic                                  | 1                     | [Plo70, Rey70] |
| А                                          | $\omega$              | [AEEM14]       |
| С                                          | ω                     | [AEEM14]       |
| Unital <sup>†</sup> $(U)^1 / (U)^{\geq 2}$ | $\omega/nullary$      | [CK20c]        |
| a                                          | $\infty$              | [ARCBK24]      |

(†)Unital:  $\{f(i_f, x) = f(x, i_f) = x\}$ 

## Termination and Soundness

## Termination

Syntactic anti-unification is terminating.

#### Soundness

For any valid configuration, syntactic anti-unification computes a least general generalizer.

#### Completeness

Any generalizer of a given input configuration is equal to or more general than the generalizer computed by syntactic anti-unification.

# Conclusions and Future Work

## Conclusions

- Although anti-unification has become of increasing interest, the verification of anti-unification algorithms has not been explored.
- The development of procedures to solve anti-unification modulo theories is crucial.
- Only recently, anti-unification modulo a-, C-, and (aC)symbols have been addressed. Procedures combining such properties have been shown to be challenging from theoretical and practical perspectives.

## Danke shön

Danke shön!

## References I

- María Alpuente, Santiago Escobar, Javier Espert, and José Meseguer, *A modular* order-sorted equational generalization algorithm, Information and Computation **235** (2014), 98–136.
- Mauricio Ayala-Rincón, David M. Cerna, Andrés Felipe Gonzáez Barragán, and Temur Kutsia, *Equational anti-unification over absorption theories*, Automated Reasoning - 12th International Joint Conference, IJCAR 2024, Nancy, France, Proceedings, Lecture Notes in Computer Science, vol. 14740, Springer, 2024, pp. 317–337.
  - Franz Baader, Unification, weak unification, upper bound, lower bound, and generalization problems, Rewriting Techniques and Applications, 4th International Conference, RTA-91, Como, Italy, April 10-12, 1991, Proceedings, Lecture Notes in Computer Science, vol. 488, Springer, 1991, pp. 86–97.
- Adam D. Barwell, Christopher Brown, and Kevin Hammond, Finding parallel functional pearls: Automatic parallel recursion scheme detection in haskell functions via anti-unification, Future Gener. Comput. Syst. 79 (2018), 669–686.
  - Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret, *Higher-order pattern anti-unification in linear time*, J. Autom. Reason. **58** (2017), no. 2, 293–310.

## References II

Andrew Cropper, Sebastijan Dumancic, Richard Evans, and Stephen H. Muggleton, *Inductive logic programming at 30*, Mach. Learn. **111** (2022), no. 1, 147–172.



David M. Cerna, Anti-unification and the theory of semirings, Theo. Com. Sci. 848 (2020), 133–139.

David M. Cerna and Temur Kutsia, A generic framework for higher-order generalizations, 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany (Herman Geuvers, ed.), LIPIcs, vol. 131, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, pp. 10:1–10:19.

\_\_\_\_\_, Higher-order pattern generalization modulo equational theories, Math. Struct. Comput. Sci. **30** (2020), no. 6, 627–663.

Idempotent anti-unification, ACM Trans. Comput. Log. 21 (2020), no. 2, 10:1–10:32.

\_\_\_\_\_, Unital anti-unification: type algorithms, 5th International Conference on Formal Structures for Computation and Deduction, FSCD **167** (2020), no. 6, 26:1–26:20.

## References III

\_\_\_\_\_, *Anti-unification and generalization: A survey*, Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, ijcai.org, 2023, pp. 6563–6573.

Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal, Chandra Maddila, B. Ashok, Sumit Asthana, Christian Bird, and Aditya Kumar, *Rex: Preventing bugs and misconfiguration in large services using correlated change analysis*, 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2020, pp. 435–448.

Gordon D. Plotkin, *A note on inductive generalization*, Machine Intelligence 5 **5** (1970), 153–163.

John C. Reynolds, *Transformational system and the algebric structure of atomic formulas*, Machine Intelligence 5 **5** (1970), 135–151.

Wim Vanhoof and Gonzague Yernaux, *Generalization-driven semantic clone detection in CLP*, 29th Int. Symposium on Logic-Based Program Synthesis and Transformation, LOPSTR, LNCS, vol. 12042, 2019, pp. 228–242.