Unification modulo equational theories in languages with binding operators

Maribel Fernández
King's College London
University of Brasilia
May 2024

Ali Khan Caires Santos
-

Christophe Calvès
-

Washington Carvalho-Segundo

James Cheney
-
Jesús Domínguez

Elliot Fairweather
-
Jamie Gabbay
-
Temur Kutsia
-

José Meseguer
\bullet

Daniele Nantes-Sobrinho
-
Andy Pitts
-
Ana Rocha-Oliveira
-
Daniella Santaguida
-

Gabriel Silva
-

Deivid Vale

- Languages with binders: α-equivalence
- Nominal logic
- Nominal terms: unification and matching modulo α
- Equational axioms: AC operators
- Nominal rewriting (modulo α and other axioms)

References

(1) A. Pitts. Nominal Logic. Information and Computation 183, 2003.
(2) C. Urban, A. Pitts, M.J. Gabbay. Nominal Unification. Theoretical Computer Science 323, 2004.
(3) M. Fernández, M.J. Gabbay. Nominal Rewriting. Information and Computation 205, 2007.
(9) C. Calvès, M. Fernández. Matching and Alpha-Equivalence Check for Nominal Terms. J. Computer and System Sciences, 2010.
(6) M. Ayala-Rincón, W. de Carvalho-Segundo, M. Fernández, D. Nantes-Sobrinho, A. Rocha Oliveira. A Formalisation of Nominal Alpha-Equivalence with A, C and AC Function Symbols. Theoretical Computer Science, 2019.
(0) M. Ayala-Rincón, M. Fernández, T. Kutsia, D. Nantes-Sobrinho, G. Silva. Nominal AC-Matching. CICM 2023.

Binding operators: Examples (informally)

- Operational semantics:

$$
\text { let } a=N \text { in } M \longrightarrow(\text { fun } a . M) N
$$

- β and η-reductions in the λ-calculus:

$$
\begin{array}{ll}
(\lambda x \cdot M) N & \rightarrow M[x / N] \\
(\lambda x \cdot M x) & \rightarrow M
\end{array}(x \notin \mathrm{fv}(M)) .
$$

- π-calculus:

$$
P \mid \nu \mathrm{a} . Q \rightarrow \nu \mathrm{a} .(P \mid Q) \quad(a \notin \mathrm{fv}(P))
$$

- Logic equivalences:

$$
P \text { and }(\forall x \cdot Q) \Leftrightarrow \forall x(P \text { and } Q) \quad(x \notin \mathrm{fv}(P))
$$

Terms are defined modulo renaming of bound variables, i.e., α-equivalence.
Example:
In $\forall x . P$ the variable x can be renamed (avoiding name capture)

$$
\forall x . P={ }_{\alpha} \forall y . P\{x \mapsto y\}
$$

How can we formally specify and reason with binding operators?
There are several alternatives.

First-order frameworks

encode α-equivalence:

- Example: λ-calculus using De Bruijn's indices with "lift" and "shift" operators to encode non-capturing substitution
- We need to 'implement' α-equivalence from scratch (-)
- Simple (first-order) (+)
- Efficient matching and unification algorithms (+)
- No metavariables (-)

λ-calculus meta-language, built-in α-equivalence

Examples:

- Combinatory Reduction Systems [Klop 80] β-rule:

$$
\operatorname{app}\left(\operatorname{lam}([a] Z(a)), Z^{\prime}\right) \rightarrow Z\left(Z^{\prime}\right)
$$

- Higher-Order Abstract Syntax [Pfenning, Elliott 88]

$$
\text { let } a=N \text { in } M(a) \longrightarrow(\text { fun } a \rightarrow M(a)) N
$$

- The syntax includes binders $(+)$
- Implicit α-equivalence (+)
- We targeted α but now we have to deal with β too (-)
- Unification is undecidable in general [Huet 75] (-)
- Interesting fragments are decidable [Miller 90] (+)

Key ideas:

- Names, which can be swapped
- abstraction
- freshness

Based on Nominal Set Theory [Fraenkel, Mostowski 1920-40]

a sorted first-order logic theory:

$$
\begin{align*}
& \text { (a a) } x=x \tag{S1}\\
& \left(a a^{\prime}\right)\left(a a^{\prime}\right) x=x \tag{S2}\\
& \left(a a^{\prime}\right) a=a^{\prime} \tag{S3}\\
& \left(a a^{\prime}\right)\left(b b^{\prime}\right) x=\left(\left(a a^{\prime}\right) b\left(a a^{\prime}\right) b^{\prime}\right)\left(a a^{\prime}\right) x \tag{E1}\\
& b \# x \Rightarrow\left(a a^{\prime}\right) b \#\left(a a^{\prime}\right) x \tag{E2}\\
& \left(a a^{\prime}\right) f(\vec{x})=f\left(\left(a a^{\prime}\right) \vec{x}\right) \tag{E3}\\
& p(\vec{x}) \Rightarrow p\left(\left(a a^{\prime}\right) \vec{x}\right) \tag{E4}\\
& \left(\begin{array}{ll}
b & b^{\prime}
\end{array}\right)[a] x=\left[\left(\begin{array}{ll}
b & \left.b^{\prime}\right) a
\end{array}\right]\left(b b^{\prime}\right) x\right. \tag{E5}\\
& a \# x \wedge a^{\prime} \# x \Rightarrow\left(a a^{\prime}\right) x=x \\
& a \# a^{\prime} \Longleftrightarrow a \neq a^{\prime} \tag{F2}\\
& \forall a: n s, a^{\prime}: n s^{\prime} . a \# a^{\prime} \quad\left(n s \neq n s^{\prime}\right) \tag{F3}\\
& \forall \vec{x} . \exists a . a \# \vec{x} \tag{F4}\\
& {[a] x=\left[a^{\prime}\right] x^{\prime} \Longleftrightarrow\left(a=a^{\prime} \wedge x=x^{\prime}\right) \vee\left(a \# x^{\prime} \wedge\left(a a^{\prime}\right) x=x\right)} \tag{A1}\\
& \forall x:[n s] s . \exists a: n s, y: s . x=[a] y \tag{A2}\\
& \text { (F1) }
\end{align*}
$$

Freshness conditions $a \# t$, name swapping $(a b) \cdot t$, abstraction [a]t

- Terms with binders
- Built-in α-equivalence
- Simple notion of substitution (first order)
- Efficient matching and unification algorithms
- Dependencies of terms on names are implicit
- Variables: M, N, X, Y, \ldots

Atoms: a, b, \ldots
Function symbols (term formers): $f, g \ldots$

- Variables: M, N, X, Y, \ldots

Atoms: a, b, \ldots
Function symbols (term formers): $f, g \ldots$

- Nominal Terms:

$$
s, t::=a|\pi \cdot X|[a] t|f t|\left(t_{1}, \ldots, t_{n}\right)
$$

π is a permutation: finite bijection on names, represented as a list of swappings, e.g., (a b)(c d), Id (empty list).
$\pi \cdot t: \pi$ acts on t, permutes names, suspends on variables.
$(a b) \cdot a=b,(a b) \cdot b=a,(a b) \cdot c=c$
$l d \cdot X$ written as X.

- Variables: M, N, X, Y, \ldots

Atoms: a, b, \ldots
Function symbols (term formers): $f, g \ldots$

- Nominal Terms:

$$
s, t::=a|\pi \cdot X|[a] t|f t|\left(t_{1}, \ldots, t_{n}\right)
$$

π is a permutation: finite bijection on names, represented as a list of swappings, e.g., (a b)(c d), Id (empty list).
$\pi \cdot t: \pi$ acts on t, permutes names, suspends on variables.
$(a b) \cdot a=b,(a b) \cdot b=a,(a b) \cdot c=c$
$l d \cdot X$ written as X.

- Example (ML): $\operatorname{var}(a), \operatorname{app}\left(t, t^{\prime}\right), \operatorname{lam}([a] t), \operatorname{let}\left(t,[a] t^{\prime}\right), \operatorname{letrec}[f]\left([a] t, t^{\prime}\right)$, subst([a]t, $\left.t^{\prime}\right)$
Syntactic sugar:
a, $\left(t t^{\prime}\right)$, λ a.t, let $a=t$ in t^{\prime}, letrec $f a=t$ in $t^{\prime}, t\left[a \mapsto t^{\prime}\right]$

α-equivalence

We use freshness to avoid name capture: $a \# X$ means $a \notin \operatorname{fv}(X)$ when X is instantiated.

$$
\begin{gathered}
\overline{a \approx_{\alpha} a} \quad \frac{d s\left(\pi, \pi^{\prime}\right) \# X}{\pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X} \\
\frac{s_{1} \approx_{\alpha} t_{1} \cdots s_{n} \approx_{\alpha} t_{n}}{\left(s_{1}, \ldots, s_{n}\right) \approx_{\alpha}\left(t_{1}, \ldots, t_{n}\right)} \frac{s \approx_{\alpha} t}{f s \approx_{\alpha} f t} \\
\frac{s \approx_{\alpha} t}{[a] s \approx_{\alpha}[a] t} \quad \frac{a \# t \quad s \approx_{\alpha}(a b) \cdot t}{[a] s \approx_{\alpha}[b] t}
\end{gathered}
$$

where

$$
d s\left(\pi, \pi^{\prime}\right)=\left\{n \mid \pi(n) \neq \pi^{\prime}(n)\right\}
$$

- $a \# X, b \# X \vdash(a b) \cdot X \approx_{\alpha} X$

α-equivalence

We use freshness to avoid name capture: $a \# X$ means $a \notin \operatorname{fv}(X)$ when X is instantiated.

$$
\begin{gathered}
\overline{a \approx_{\alpha} a} \quad \frac{d s\left(\pi, \pi^{\prime}\right) \# X}{\pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X} \\
\frac{s_{1} \approx_{\alpha} t_{1} \cdots s_{n} \approx_{\alpha} t_{n}}{\left(s_{1}, \ldots, s_{n}\right) \approx_{\alpha}\left(t_{1}, \ldots, t_{n}\right)} \frac{s \approx_{\alpha} t}{f s \approx_{\alpha} f t} \\
\frac{s \approx_{\alpha} t}{[a] s \approx_{\alpha}[a] t} \quad \frac{a \# t \quad s \approx_{\alpha}(a b) \cdot t}{[a] s \approx_{\alpha}[b] t}
\end{gathered}
$$

where

$$
d s\left(\pi, \pi^{\prime}\right)=\left\{n \mid \pi(n) \neq \pi^{\prime}(n)\right\}
$$

- $a \# X, b \# X \vdash(a b) \cdot X \approx_{\alpha} X$
- $b \# X \vdash \lambda[a] X \approx_{\alpha} \lambda[b](a b) \cdot X$

Also defined by induction:

$$
\begin{gathered}
\overline{a \# b} \quad \overline{a \#[a] s} \quad \frac{\pi^{-1}(a) \# X}{a \# \pi \cdot X} \\
\frac{a \# s_{1} \cdots a \# s_{n}}{a \#\left(s_{1}, \ldots, s_{n}\right)} \quad \frac{a \# s}{a \# f s} \quad \frac{a \# s}{a \#[b] s}
\end{gathered}
$$

Nominal rewriting: rewriting with nominal terms.
Rewrite rules specify:

- equational theories
- algebraic specifications of operators and data structures
- operational semantics of programs
- functions, processes...

Nominal Rewriting Rules:

$$
\Delta \vdash I \rightarrow r \quad V(r) \cup V(\Delta) \subseteq V(I)
$$

Example: Prenex Normal Forms

$$
\begin{array}{rll}
a \# P & \vdash & P \wedge \forall[a] Q \rightarrow \forall[a](P \wedge Q) \\
a \# P & \vdash & (\forall[a] Q) \wedge P \rightarrow \forall[a](Q \wedge P) \\
a \# P & \vdash & P \vee \forall[a] Q \rightarrow \forall[a](P \vee Q) \\
a \# P & \vdash & (\forall[a] Q) \vee P \rightarrow \forall[a](Q \vee P) \\
a \# P & \vdash & P \wedge \exists[a] Q \rightarrow \exists[a](P \wedge Q) \\
a \# P & \vdash & (\exists[a] Q) \wedge P \rightarrow \exists[a](Q \wedge P) \\
a \# P & \vdash & P \vee \exists[a] Q \rightarrow \exists[a](P \vee Q) \\
a \# P & \vdash & (\exists[a] Q) \vee P \rightarrow \exists[a](Q \vee P) \\
& \vdash & \neg(\exists[a] Q) \rightarrow \forall[a] \neg Q \\
& \vdash & \neg(\forall[a] Q) \rightarrow \exists[a] \neg Q
\end{array}
$$

Rewriting relation generated by $R=\nabla \vdash I \rightarrow r: \Delta \vdash s \xrightarrow{R} t$
s rewrites with R to t in the context Δ when:
(1) $s \equiv C\left[s^{\prime}\right]$ such that θ solves $(\nabla \vdash I) ? \approx\left(\Delta \vdash s^{\prime}\right)$
(2) $\Delta \vdash C[r \theta] \approx_{\alpha} t$.

Example

Beta-reduction in the Lambda-calculus:

$$
\begin{array}{clll}
\text { Beta } & (\lambda[a] X) Y & \rightarrow X[a \mapsto Y] \\
\sigma_{a} & & {[a \mapsto Y]} & \rightarrow Y \\
\sigma_{\text {app }} & & \left(X X^{\prime}\right)[a \mapsto Y] & \rightarrow X[a \mapsto Y] X^{\prime}[a \mapsto Y] \\
\sigma_{\epsilon} & a \# Y \vdash & Y[a \mapsto X] & \rightarrow Y \\
\sigma_{\lambda} & b \# Y \vdash & (\lambda[b] X)[a \mapsto Y] & \rightarrow X[b](X[a \mapsto Y])
\end{array}
$$

Rewriting steps: $(\lambda[c] c) Z \rightarrow c[c \mapsto Z] \rightarrow Z$

To implement rewriting (functional/logic programming) we need a matching/unification algorithm.
Recall:

- There are efficient algorithms (linear time) for first-order terms
- Here we need more powerful algorithms: α-equivalence
- Higher-order unification is undecidable

To implement rewriting (functional/logic programming) we need a matching/unification algorithm.
Recall:

- There are efficient algorithms (linear time) for first-order terms
- Here we need more powerful algorithms: α-equivalence
- Higher-order unification is undecidable

Nominal terms have good computational properties:

- Nominal unification is decidable and unitary
- Efficient algorithms: α-equivalence, matching, unification

The α-equivalence derivation rules become simplification rules

$$
\begin{aligned}
a \# b, \operatorname{Pr} & \Longrightarrow \operatorname{Pr} \\
a \# f s, \operatorname{Pr} & \Longrightarrow a \# s, \operatorname{Pr} \\
a \#\left(s_{1}, \ldots, s_{n}\right), \operatorname{Pr} & \Longrightarrow a \# s_{1}, \ldots, a \# s_{n}, \operatorname{Pr} \\
a \#[b] s, \operatorname{Pr} & \Longrightarrow a \# s, \operatorname{Pr} \\
a \#[a] s, \operatorname{Pr} & \Longrightarrow \operatorname{Pr} \\
a \# \pi \cdot X, \operatorname{Pr} & \Longrightarrow \pi^{-1} \cdot a \# X, \operatorname{Pr} \quad \pi \neq I d \\
a \approx_{\alpha} a, \operatorname{Pr} & \Longrightarrow \operatorname{Pr} \\
\left(I_{1}, \ldots, I_{n}\right) \approx_{\alpha}\left(s_{1}, \ldots, s_{n}\right), \operatorname{Pr} & \Longrightarrow I_{1} \approx_{\alpha} s_{1}, \ldots, I_{n} \approx_{\alpha} s_{n}, \operatorname{Pr} \\
f l \approx_{\alpha} f s, \operatorname{Pr} & \Longrightarrow I \approx_{\alpha} s, \operatorname{Pr} \\
{[a] I \approx_{\alpha}[a] s, \operatorname{Pr} } & \Longrightarrow I \approx_{\alpha} s, \operatorname{Pr} \\
{[b] I \approx_{\alpha}[a] s, \operatorname{Pr} } & \Longrightarrow(a b) \cdot I \approx_{\alpha} s, a \# I, \operatorname{Pr} \\
\pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X, \operatorname{Pr} & \Longrightarrow d s\left(\pi, \pi^{\prime}\right) \# X, \operatorname{Pr}
\end{aligned}
$$

- Nominal Unification: I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

Nominal Matching: I ? $\approx t$ has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t
$$

(t ground or variables disjoint from $/$)

- Nominal Unification: I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

Nominal Matching: I ? $\approx t$ has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t
$$

(t ground or variables disjoint from I)

- Examples:

$$
\lambda([a] X)=\lambda([b] b) ? ?
$$

$$
\lambda([a] X)=\lambda([b] X) ? ?
$$

- Nominal Unification: I ? \approx ? t has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t \theta
$$

Nominal Matching: I ? $\approx t$ has solution (Δ, θ) if

$$
\Delta \vdash I \theta \approx_{\alpha} t
$$

(t ground or variables disjoint from I)

- Examples:
$\lambda([a] X)=\lambda([b] b) ? ?$
$\lambda([a] X)=\lambda([b] X) ? ?$
- Solutions: $(\emptyset,[X \mapsto a])$ and $(\{a \# X, b \# X\}, I d)$ resp.
- Nominal matching is decidable [Urban, Pitts, Gabbay 2003] A solvable problem Pr has a unique most general solution: (Γ, θ) such that $\Gamma \vdash \operatorname{Pr} \theta$.
- Complexity:

Alpha-equivalence check: linear if right-hand sides of constraints are ground. Otherwise, log-linear.

Matching: linear in the ground case, quadratic in the non-ground case

Case	Alpha-equivalence	Matching
Ground	linear	linear
Non-ground and linear	log-linear	log-linear
Non-ground and non-linear	log-linear	quadratic

Remark:
The representation using higher-order abstract syntax does saturate the variables (they have to be applied to the set of atoms they can capture).
Conjecture: the algorithms are linear wrt HOAS also in the non-ground case.
For more details on the implementation see [4], see [6] for formalisations in Coq and PVS

Equivariance:

Rules defined modulo permutative renamings of atoms.
Beta-reduction in the Lambda-calculus:

$$
\begin{array}{clll}
\text { Beta } & & (\lambda[a] X) Y & \rightarrow X[a \mapsto Y] \\
\sigma_{a} & & a[a \mapsto Y] & \rightarrow Y \\
\sigma_{\text {app }} & & \left(X X^{\prime}\right)[a \mapsto Y] & \rightarrow X[a \mapsto Y] X^{\prime}[a \mapsto \\
\sigma_{\epsilon} & a \# Y \vdash & Y[a \mapsto X] & \rightarrow Y \\
\sigma_{\lambda} & b \# Y \vdash & (\lambda[b] X)[a \mapsto Y] & \rightarrow X[b](X[a \mapsto Y])
\end{array}
$$

- Nominal matching is efficient.
- Nominal matching is efficient.
- Equivariant nominal matching is exponential... BUT
- Nominal matching is efficient.
- Equivariant nominal matching is exponential... BUT
- if rules are CLOSED then nominal matching is sufficient.

Intuitively, closed means no free atoms.
The rules in the examples above are closed.
"Nominal" Programming Languages:

- Fresh-ML, C α ML, Nominal Haskell, ...
- α-Prolog, α-Kanren, ...

Verification: Nominal packages for Isabelle, Agda, Coq, PVS, ...

Rely on nominal matching and unification
"Nominal" Programming Languages:

- Fresh-ML, C α ML, Nominal Haskell, ...
- α-Prolog, α-Kanren, ...

Verification: Nominal packages for Isabelle, Agda, Coq, PVS, ...
Rely on nominal matching and unification

Rewriting-based programming anguages and verification frameworks?
—"Modulo" ... axioms

Data Types: Set, Multi-set, List...
A, C, U axioms involving constructors

Data Types: Set, Multi-set, List...
A, C, U axioms involving constructors
Operators obey axioms:

- OR, AND
- \|| and + in the π-calculus
\Rightarrow rewriting modulo axioms, E-unification...

First Order E-Unification problem:
Given two terms s and t and an equational theory E .
Question: is there a substitution σ such that $s \sigma=E_{E} t \sigma$?
Undecidable in general
Decidable subcases: C, AC, ACU, ...

First Order E-Unification problem:
Given two terms s and t and an equational theory E .
Question: is there a substitution σ such that $s \sigma=E t \sigma$?
Undecidable in general
Decidable subcases: $\mathrm{C}, \mathrm{AC}, \mathrm{ACU}, \ldots$
Question:
Unification modulo $\alpha+\mathrm{E}$?

First Order E-Unification problem:
Given two terms s and t and an equational theory E .
Question: is there a substitution σ such that $s \sigma=E t \sigma$?
Undecidable in general
Decidable subcases: $\mathrm{C}, \mathrm{AC}, \mathrm{ACU}, \ldots$
Question:
Unification modulo $\alpha+\mathrm{E}$?
Nominal Narrowing - enumerates solutions [FSCD 2016]

First Order E-Unification problem:
Given two terms s and t and an equational theory E .
Question: is there a substitution σ such that $s \sigma=E_{E} t \sigma$?
Undecidable in general
Decidable subcases: $\mathrm{C}, \mathrm{AC}, \mathrm{ACU}, \ldots$
Question:
Unification modulo $\alpha+\mathrm{E}$?
Nominal Narrowing - enumerates solutions [FSCD 2016]
Question:
Nominal C- unification, Nominal AC- Unification ??

Unification modulo α and unification modulo C are finitary, but ...

Unification modulo α and unification modulo C are finitary, but...

$$
\begin{gathered}
q(a) \operatorname{OR} p(X) \approx_{\alpha, C} p((a b) \cdot X) \text { OR } q(a) \\
\Downarrow \\
q(a) \approx_{\alpha} q(a), p((a b) \cdot X) \approx_{\alpha, C} p(X) \\
\Downarrow \\
p((a b) \cdot X) \approx_{\alpha, C} p(X) \\
\Downarrow \\
(a b) \cdot X \approx_{\alpha, C} X
\end{gathered}
$$

Solutions:
$X \mapsto p(a) \operatorname{OR} p(b), \quad X \mapsto(p(a) \operatorname{OR} p(b)) \operatorname{OR}(p(a) \operatorname{OR} p(b)), \ldots$
Not finitary
[LOPSTR 2017, 2019]

- $\alpha+\{C, A, A C\}$: Decidable Equivalence, formalised in PVS [6]
- Nominal C-Matching Algorithm (Finitary)
- Nominal C-Unification Procedure:
(1) Simplification phase:

Build a derivation tree (branching for C symbols)
(2) Enumerate solutions for fixed point constraints $X \approx_{\alpha, C} \pi \cdot X$

- $\alpha+\{C, A, A C\}$: Decidable Equivalence, formalised in PVS [6]
- Nominal C-Matching Algorithm (Finitary)
- Nominal C-Unification Procedure:
(1) Simplification phase:

Build a derivation tree (branching for C symbols)
(2) Enumerate solutions for fixed point constraints $X \approx_{\alpha, C} \pi \cdot X$

Nominal C-unification is NOT finitary, if we represent solutions using substitutions/freshness:
$X \approx_{\alpha, C}(a b) \cdot X$ has infinite most general solutions

- $\alpha+\{C, A, A C\}$: Decidable Equivalence, formalised in PVS [6]
- Nominal C-Matching Algorithm (Finitary)
- Nominal C-Unification Procedure:
(1) Simplification phase:

Build a derivation tree (branching for C symbols)
(2) Enumerate solutions for fixed point constraints $X \approx_{\alpha, C} \pi \cdot X$

Nominal C-unification is NOT finitary, if we represent solutions using substitutions/freshness:
$X \approx_{\alpha, C}(a b) \cdot X$ has infinite most general solutions
Alternative representation: fixed-point constraints instead of freshness constraints: $\pi \curlywedge x \Leftrightarrow \pi \cdot x=x$

Using fixed-point constraints nominal C-unification is finitary.

Nominal AC-Matching - Formalised in PVS [CICM 2023]
Nominal AC-Unification - work in progress
Applications:
Nominal extensions of prog. languages and verification tools:
Maude: first-order rewrite-based language [Meseguer 90]
K: first-order verification framework to specify and implement programming languages [Rosu 2017].

K: successful first-order verification framework to specify and implement programming languages [Rosu 2017].

Maude: popular first-order rewrite-based language [Meseguer 90]
But binders are not a primitive notion.

K: successful first-order verification framework to specify and implement programming languages [Rosu 2017].

Maude: popular first-order rewrite-based language [Meseguer 90]
But binders are not a primitive notion.

Aim:

Combine Matching Logic (K's foundation) and Rewriting Logic (Maude's foundation) with Nominal Logic to specify and reason about binding.

Signature $\boldsymbol{\Sigma}=(S, \mathcal{V}$ ar, $\boldsymbol{\Sigma})$
Patterns:

$$
\phi_{\tau}::=x: \tau\left|\phi_{\tau} \wedge \psi_{\tau}\right| \neg \phi_{\tau}\left|\exists x: \tau^{\prime} . \phi_{\tau}\right| \sigma\left(\phi_{\tau_{1}}, \ldots, \phi_{\tau_{n}}\right)
$$

where $x \in \mathcal{V}^{\text {ar }} \tau_{\tau}$ and $\sigma \in \Sigma_{\tau_{1}, \ldots, \tau_{n} ; \tau}$.
Disjunction, implication, \forall, true and false defined as abbreviations: e.g. $\mathrm{T}_{\tau} \equiv \exists x: \tau . x: \tau$ and $\perp_{\tau} \equiv \neg \top_{\tau}$.

Valuation $\rho: \mathcal{V}$ ar $\rightarrow M$ respecting sorts.
Extension to patterns:
$\bar{\rho}(x)=\{\rho(x)\}$ for all $x \in \mathcal{V a r}, \bar{\rho}\left(\phi_{1} \wedge \phi_{2}\right)=\bar{\rho}\left(\phi_{1}\right) \cap \bar{\rho}\left(\phi_{2}\right), \bar{\rho}\left(\neg \phi_{\tau}\right)=M_{\tau}-\bar{\rho}\left(\phi_{\tau}\right)$, $\bar{\rho}\left(\exists x: \tau^{\prime} . \phi_{\tau}\right)=\bigcup_{a \in M_{\tau^{\prime}}} \rho[a / x]\left(\phi_{\tau}\right), \bar{\rho}\left(\sigma\left(\phi_{\tau_{1}}, \ldots, \phi_{\tau_{n}}\right)=\overline{\sigma_{M}}\left(\bar{\rho}\left(\phi_{\tau_{1}}\right), \ldots, \bar{\rho}\left(\phi_{\tau_{n}}\right)\right)\right.$, for $\sigma \in \Sigma_{\tau_{1}, \ldots, \tau_{n} ; \tau}$, where $\overline{\sigma_{M}}\left(V_{1}, \ldots, V_{n}\right)=\bigcup\left\{\sigma_{M}\left(v_{1}, \ldots, v_{n}\right) \mid v_{1} \in V_{1}, \ldots, v_{n} \in V_{n}\right\}$.
ϕ_{τ} valid in $M, M \vDash \phi_{\tau}$, if $\bar{\rho}\left(\phi_{\tau}\right)=M_{\tau}$ for all $\rho: \operatorname{Var} \rightarrow M$.
(1) Nominal Logic can be embbeded as a Matching Logic Theory: NLML (see [PPDP 2022])
\Rightarrow it can be directly implemented in K
But...

- ground names, which are useful in rewriting, logic programming and program verification, are not available in NLML
- not clear how to incorporate the $И$-quantifier in a first-class way, which is needed to simplify reasoning with freshness constraints.
(2) NML: Matching Logic with Built-in Names and $И$

Matching Logic with Built-in Names and $И$

NML signature $\boldsymbol{\Sigma}=(S, \mathcal{V} a r, N a m e, \Sigma)$ consists of

- a non-empty set S of sorts $\tau, \tau_{1}, \tau_{2} \ldots$, split into a set $N S$ of name sorts $\alpha, \alpha_{1}, \alpha_{2}, \ldots$, a set $D S$ of data sorts $\delta, \delta_{1}, \delta_{2}, \ldots$ including a sort Pred, and a set AS of abstraction sorts $[\alpha] \tau$
- an S-indexed family $\mathcal{V} a r=\left\{\mathcal{V a r} r_{\tau} \mid \tau \in S\right\}$ of countable sets of variables $x: \tau, y: \tau, \ldots$,
- an $N S$-indexed family Name $=\left\{N_{a m e} \mid \alpha \in N S\right\}$ of countable sets of names a : $\alpha, \mathrm{b}: \alpha, \ldots$ and
- an $\left(S^{*} \times S\right)$-indexed family Σ of sets of many-sorted symbols σ, written $\Sigma_{\tau_{1}, \ldots, \tau_{n} ; \tau}$.

Patterns:

$$
\begin{aligned}
\phi_{\tau}::= & x: \tau|\mathrm{a}: \alpha| \phi_{\tau} \wedge \psi_{\tau}\left|\neg \phi_{\tau}\right| \exists x: \tau^{\prime} . \phi_{\tau} \\
& \left|\sigma\left(\phi_{\tau_{1}}, \ldots, \phi_{\tau_{n}}\right)\right| \text { Иа }: \alpha . \phi_{\tau}
\end{aligned}
$$

where $x \in \mathcal{V}^{2} r_{\tau}, a \in \operatorname{Name}_{\alpha}$, and both \exists and $И$ are binders (i.e., we work modulo α-equivalence).
Σ includes the following families of sort-indexed symbols (subscripts omitted):

$$
\begin{array}{rlll}
(--) \cdot- & : & \alpha \times \alpha \times \tau \rightarrow \tau & \text { swapping (function) } \\
{[-]-} & : & \alpha \times \tau \rightarrow[\alpha] \tau & \text { abstraction (function) } \\
-@- & : & {[\alpha] \tau \times \alpha \rightharpoonup \tau} & \text { concretion (partial function) } \\
\text { fresh }_{\tau, \alpha} & \in & \Sigma_{\tau ; \alpha} & \text { freshness (multivalued operation) } \\
-\#_{\alpha, \tau}- & : & \alpha \times \tau \rightharpoonup \text { Pred } & \text { freshness relation } \\
-\dagger & : & \Sigma_{\text {Pred } ; \tau} & \text { coercion operator, often left implicit. }
\end{array}
$$

Given $\boldsymbol{\Sigma}=(S, \mathcal{V} a r$, Name, $\Sigma)$
let \mathbb{A} be $\bigcup_{\alpha \in N S} \mathbb{A}_{\alpha}$ where each \mathbb{A}_{α} is an infinite countable set of atoms and the \mathbb{A}_{α} are pairwise disjoint,
let G be a product of permutation groups $\prod_{i} \operatorname{Sym}\left(\mathbb{A}_{i}\right)$

An NML model $M=\left(\left\{M_{\tau}\right\}_{\tau \in S},\left\{\sigma_{M}\right\}_{\sigma \in \Sigma}\right)$ consists of

- a non-empty nominal G-set M_{τ} for each $\tau \in S-N S$;
- an equivariant interpretation $\sigma_{M}: M_{\tau_{1}} \times \cdots \times M_{\tau_{n}} \rightarrow \mathcal{P}_{\text {fin }}\left(M_{\tau}\right)$ for each $\sigma \in \Sigma_{\tau_{1}, \ldots, \tau_{n} ; \tau}$.

A model is standard if the interpretation of:
(1) each name sort α is \mathbb{A}_{α}
(2) the sort Pred is a singleton set $\{*\}$, where $*$ is equivariant: $\{*\}$ is a nominal set whose powerset is isomorphic to Bool
(3) each abstraction sort $[\alpha] \tau$ is $\left[M_{\alpha}\right] M_{\tau}$
(9) the swapping symbol $(--) \cdot-: \alpha \times \alpha \times \tau \rightarrow \tau$ is the swapping function on M_{τ}
(3) the abstraction symbol is the quotienting function mapping $\langle a, x\rangle$ to its alpha-equivalence class, i.e. $(a, x) \mapsto(a, x) / \equiv_{\alpha}$
(0) the concretion symbol is the (partial) concretion function $(X, a) \mapsto\{y \mid(a, y) \in X\}$
(1) the freshness operation fresh $_{\tau, \alpha}$ is the function $x \mapsto\{a \mid a \notin \operatorname{supp}(x)\}$
(8) the freshness relation $\#_{\alpha, s}$ is the freshness predicate on $\mathbb{A}_{\alpha} \times M_{\tau}$, i.e., it holds for the tuples $\{(a, x) \mid a \notin \operatorname{supp}(x)\}$.

Given valuation ρ whose domain includes the free variables and free names of ϕ :

$$
\begin{aligned}
\bar{\rho}(x: \tau) & =\{\rho(x)\} \\
\bar{\rho}(\mathrm{a}: \alpha) & =\{\rho(\mathrm{a})\} \\
\bar{\rho}\left(\sigma\left(\phi_{1}, \ldots, \phi_{n}\right)\right) & =\overline{\sigma_{M}}\left(\bar{\rho}\left(\phi_{1}\right), \ldots, \bar{\rho}\left(\phi_{n}\right)\right) \\
\bar{\rho}\left(\phi_{1} \wedge \phi_{2}\right) & =\bar{\rho}\left(\phi_{1}\right) \cap \bar{\rho}\left(\phi_{2}\right) \\
\bar{\rho}(\neg \phi) & =M_{\tau}-\bar{\rho}(\phi) \\
\bar{\rho}(\exists x: \tau \cdot \phi) & =\bigcup_{a \in M_{\tau}} \overline{\rho[a / x]}(\phi) \\
\bar{\rho}(\text { Иa: } \alpha . \phi) & =\bigcup_{a \in \mathbb{A}_{\alpha}-\operatorname{supp}(\rho)}\{v \in \overline{\rho[a / a]}(\phi) \mid a \notin \operatorname{supp}(v)\}
\end{aligned}
$$

In the interpretation of the $И$ pattern, ρ is extended by assigning to a any fresh element a of \mathbb{A}_{α}

Consider three possible rules representing eta-equivalence for the lambda-calculus

$$
\begin{aligned}
x: \operatorname{Exp} & =\operatorname{lam}([\mathrm{a}] \operatorname{app}(x, \operatorname{var}(\mathrm{a}))) \\
x: \operatorname{Exp} & =\operatorname{lam}(\exists \operatorname{a} \cdot[\mathrm{a}] \operatorname{app}(x, \operatorname{var}(a))) \\
x: \operatorname{Exp} & =\operatorname{lam}(\operatorname{Va} \cdot[\mathrm{a}] \operatorname{app}(x, \operatorname{var}(\mathrm{a})))
\end{aligned}
$$

Only the third one is correct.

To reason about the typed lambda-calculus we use sorts Exp (expressions), Ty (types), and Var (variables, a name-sort) interpreted as nominal sets $M_{V a r}, M_{E x p}$, and $M_{T y}$ satisfying the following equations:

$$
\begin{gathered}
M_{E \times p}=M_{V a r}+\left(M_{E x p} \times M_{E \times p}\right)+\left[M_{V a r}\right] M_{E \times p} \\
M_{T y}=1+M_{T y} \times M_{T y}+\cdots
\end{gathered}
$$

We assume at least one constant type (e.g. int or unit) and a binary constructor $f n: T y \times T y \rightarrow$ Ty for function types
$M_{E x p}$ is the set of lambda-terms quotiented by alpha-equivalence.
We fix M_{Λ} as the standard model obtained taking $M_{\text {Exp }}$ and $M_{T_{y}}$ as defined above.

In NML we can axiomatize substitution equationally (no side condition)

$$
\begin{aligned}
\operatorname{subst}(\operatorname{var}(a), a, z) & =z \\
\operatorname{subst}(\operatorname{var}(a), \neg a, z) & =\operatorname{var}(a) \\
\operatorname{subst}\left(\operatorname{app}\left(x_{1}, x_{2}\right), y, z\right) & =\operatorname{app}\left(\operatorname{subst}\left(x_{1}, y, z\right), \operatorname{subst}\left(x_{2}, y, z\right)\right) \\
\operatorname{subst}(\operatorname{lam}(x), y, z) & =\operatorname{lam}(\text { Иа. }[\mathrm{a}] \operatorname{subst}(x @ a, y, z))
\end{aligned}
$$

Induction principle using $И$ avoiding freshness constraints

$$
\begin{aligned}
&(\forall x: \operatorname{Var} \cdot P(\operatorname{var}(x))) \Rightarrow \\
&\left(\forall t_{1}: \operatorname{Exp}, t_{2}: \operatorname{Exp} . P\left(t_{1}\right) \wedge P\left(t_{2}\right) \Rightarrow P\left(\operatorname{app}\left(t_{1}, t_{2}\right)\right)\right) \Rightarrow \\
&(\forall t:[\operatorname{Var}] \operatorname{Exp} . \operatorname{Va}: \operatorname{Var} \cdot P(t @ a) \Rightarrow P(\operatorname{lam}(t)) \Rightarrow \\
& \forall t: \operatorname{Exp} . P(t)
\end{aligned}
$$

Substitution Lemma (with just one freshness condition, formalizing the usual side-condition in textbooks)

$$
\begin{aligned}
\mathrm{a} \# z^{\prime} \Rightarrow & \operatorname{subst}\left(\operatorname{subst}(x, \mathrm{a}, z), \mathrm{b}, z^{\prime}\right)= \\
& \operatorname{subst}\left(\operatorname{subst}\left(x, \mathrm{~b}, z^{\prime}\right), \mathrm{a}, \operatorname{subst}\left(z, \mathrm{~b}, z^{\prime}\right)\right.
\end{aligned}
$$

A rewrite theory is a tuple

$$
\mathcal{R}=(\Sigma, E, \phi, R)
$$

where

- (Σ, E) is an equational theory with order-sorted signature Σ consisting of sorts $(S,<)$ and function symbols F, and Σ-equations E,
- R is a set of (possibly conditional) rewrite rules,
- $\phi: \Sigma \rightarrow \mathbb{N}^{*}$ is a so-called frozenness map indicating, for each function symbol $f \in \Sigma$, its frozen argument positions, where rewriting with rules R is forbidden.

Two requirements: (i) countably infinite supply of names (ii) an equality predicate
Specification in Maude:
NAME (conditional) equational theory with initiality constraints on subtheories ${ }^{1}$
theory NAME protects NAT,BOOL
sort Name
functions: $i: N a m e \rightarrow$ Nat, $\quad j: N a t \rightarrow$ Name, \quad. $=. ._{\text {_ }}:$ Name Name \rightarrow Bool
vars a, b : Name, n : Nat
equations:
$a .=. a=$ true, $\quad a .=. b=$ true $\Rightarrow a=b, \quad j(i(a))=a, \quad i(j(n))=n$

endtheory

[^0] constraint must be isomorphic to the initial T_{0}-algebra $\mathbb{T}_{\Sigma_{0} / E_{0}}$

Definition

A Binder Signature is a pair of an order-sorted signature $\Sigma=((S,<), F)$ and a function β with domain F.
$\beta(f)$ gives binding information: which argument positions bind which other argument positions in f.

For example, the in operator in the π-calculus binds any occurrence of the name given as second argument within the third argument, so that β (in $)=(2,3)$. Similarly, in the λ-calculus $\beta\left(\lambda_{--}\right)=(1,2)$. For non-binding operators like out in the π-calculus we have β (out) $=\epsilon$.

The signature is parametric on one or more copies of the NAME parameter theory: $N a m e_{1}, \ldots, N a m e ~_{k}$ are the corresponding parameter sorts in those copies of NAME.

Three kinds of binding relationships: (i) binding a single name;
(ii) binding a tuple of names; and
(iii) binding a non-empty (Ne) list of names.

Name $_{i}<m$.Tuple $_{i}<$ NeList $_{i}<$ List $_{i}$

Any calculus \mathscr{C} with binders has an associated structural congruence

$$
E_{\mathscr{C}}=E_{\mathscr{C}}^{\alpha} \cup E_{\mathscr{C}}^{c s} \cup E_{\mathscr{C}}^{a u x}
$$

where the equations
$E_{\mathscr{C}}^{\alpha}$ define a calculus-generic α-equivalence relation, $E_{\mathscr{C}}^{c s}$ are calculus-specific equivalences,
$E_{\mathscr{C}}^{a u x}$ are other calculus-generic equations defining auxiliary functions, e.g,. name swapping, a freshness predicate, renaming or substitution operations

Not all calculi need all these auxiliary equations. For example, in the π-calculus renaming (as opposed to substitution) equations are needed.

Swapping:

$$
(a b) \cdot f\left(t_{1}, \ldots, t_{n}\right)=f\left((a b) \cdot t_{1}, \ldots,(a b) \cdot t_{n}\right)
$$

Freshness:

- \# _ : Name $B \rightarrow$ Bool indicates whether a in $N a m e ~_{i}$ is fresh in a term of sort B. There are three cases: the term in the second argument is a name b in $N a m e$, is rooted by a binding operator (wlg assume $f: \operatorname{List}_{1} \bar{B}_{1} \ldots$ List $_{k} \bar{B}_{k} \bar{B}_{k+1} \rightarrow C$, where for $1 \leq i \leq k$, each List is $_{i}$ a name-list sort, which binds all sorts in the next sequence of sorts \bar{B}_{i}, and that all neither bound nor binding sorts are exactly those in the sort list \bar{B}_{k+1}) or by a non-binding operator g (including constants g such as names in Name_{j} with $i \neq j$):

$$
\begin{array}{ll}
a \# b & =\operatorname{not}(a \cdot=. b) \\
a \# f\left(L_{1}, \bar{t}_{1}, \ldots, L_{k}, \bar{t}_{k}, \bar{u}\right)= & \left(a \in L_{1} \vee a \# \overline{t_{1}}\right) \wedge \ldots \\
& \wedge\left(a \in L_{k} \vee a \# \overline{t_{k}}\right) \wedge a \# \bar{u} \\
a \# g(\bar{u}) & =a \# \bar{u}
\end{array}
$$

Specified by a rewrite relation $\rightarrow_{R / E_{\mathscr{C}}}^{\phi}$ on $\sum_{\mathscr{C}}$-terms: rewriting modulo the equations $E_{\mathscr{C}}$, forbidding reductions at certain frozen positions.

Definition

$u \rightarrow_{R / E_{\mathscr{G}}}^{\phi} v$ iff there exist u^{\prime}, v^{\prime} such that:
(i) $u=E_{\mathscr{C}} u^{\prime}$ and $v=E_{\mathscr{C}} v^{\prime}$, and
(ii) $u^{\prime} \rightarrow_{R}^{\phi} v^{\prime}$, where the relation \rightarrow_{R}^{ϕ} restricts the standard term-rewriting relation \rightarrow_{R} by forbidding rewriting with R at frozen positions (i.e., if f is a function symbol at position p and $i \in \phi(f)$ then rewriting is forbidden at any position piq)

Example, in the π-calculus the react rule cannot apply inside a prefix in, so $\phi($ in $)=\{1,2,3\}$.
For executability: Matching modulo $E_{\mathscr{C}}$ is required (cf nominal AC matching).
For verification tasks: Unification modulo $E_{\mathscr{C}}$ is required

Conclusions

Summary:

- Nominal Rewriting Systems [PPDP 2004]: first-order rewriting modulo α, based on Nominal Logic
- Closed NRS \Leftrightarrow higher-order rewriting systems Capture-avoiding atom substitution easy to define.
- Nominal matching is linear, equivariant matching is linear with closed rules
- Nominal unification is quadratic (unknown lower bound) [LOPSTR 2010]
- Hindley-Milner style types: principal types, α-equivalence preserves types. Sufficient conditions for Subject Reduction.
- Applications: functional and logic programming languages, theorem provers, model checkers
FreshML, AlphaProlog, AlphaCheck, Nominal package in Isabelle-HOL, ...
- Extensions: Nominal E-Unification, Nominal Narrowing, Nominal C-Unification [LOPSTR 2017,2019]
- Being first-order, nominal logic is a natural candidate for supporting binding in
- Matching Logic (K) - see [PPDP 2022]
- Rewriting Logic (Maude) - uses E-unification (A, C, AC,...)

Nominal Datatype Package for Haskell (Jamie Gabbay): https://github.com/bellissimogiorno/nominal

Nominal Project, University of Brasilia: http://nominal.cic.unb.br
alpha-Prolog (James Cheney, Christian Urban):
https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/
Nominal Isabelle (Christian Urban)

Questions?

โิ?

[^0]: ${ }^{1}$ the reduct $\left.\mathbb{A}\right|_{\Sigma_{0}}$ of a $N A M E$-algebra \mathbb{A} to any subtheory $T_{0}=\left(\Sigma_{0}, E_{0}\right)$ of it having an initiality

