Unification modulo equational theories in languages with binding operators

Maribel Fernández

King's College London

University of Brasilia May 2024

Maribel Fernández Nominal Unification modulo equational axioms

イロト イヨト イヨト

3

Thanks

•

Mauricio Ayala-Rincón

Ali Khan Caires Santos

Christophe Calvès

Washington Carvalho-Segundo

James Cheney

.

.

.

•

Jamie Gabbay

Temur Kutsia

José Meseguer

Daniele Nantes-Sobrinho

Andy Pitts

.

.

Ana Rocha-Oliveira

Daniella Santaguida

Gabriel Silva

Deivid Vale

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

æ.,

- Languages with binders: α -equivalence
- Nominal logic
- \bullet Nominal terms: unification and matching modulo α
- Equational axioms: AC operators
- Nominal rewriting (modulo α and other axioms)

イロト イボト イヨト イヨト

= nar

References

- **(** A. Pitts. *Nominal Logic*. Information and Computation 183, 2003.
- C. Urban, A. Pitts, M.J. Gabbay. Nominal Unification. Theoretical Computer Science 323, 2004.
- **1** M. Fernández, M.J. Gabbay. *Nominal Rewriting*. Information and Computation 205, 2007.
- C. Calvès, M. Fernández. Matching and Alpha-Equivalence Check for Nominal Terms. J. Computer and System Sciences, 2010.
- M. Ayala-Rincón, W. de Carvalho-Segundo, M. Fernández, D. Nantes-Sobrinho, A. Rocha Oliveira. A Formalisation of Nominal Alpha-Equivalence with A, C and AC Function Symbols. Theoretical Computer Science, 2019.
- M. Ayala-Rincón, M. Fernández, T. Kutsia, D. Nantes-Sobrinho, G. Silva. Nominal AC-Matching. CICM 2023.

Binding operators: Examples (informally)

• Operational semantics:

let a = N in $M \longrightarrow (fun a.M)N$

• β and η -reductions in the λ -calculus:

 $(\lambda x.M)N \rightarrow M[x/N]$ $(\lambda x.Mx) \rightarrow M \quad (x \notin fv(M))$

• π -calculus:

 $P \mid \nu a.Q \rightarrow \nu a.(P \mid Q) \qquad (a \notin \mathsf{fv}(P))$

• Logic equivalences:

 $P \text{ and } (\forall x.Q) \Leftrightarrow \forall x(P \text{ and } Q) \quad (x \notin fv(P))$

Terms are defined modulo renaming of bound variables, i.e., α -equivalence.

Example: In $\forall x.P$ the variable x can be renamed (avoiding name capture)

 $\forall x.P =_{\alpha} \forall y.P\{x \mapsto y\}$

How can we formally specify and reason with binding operators? There are several alternatives.

encode α -equivalence:

- Example: λ -calculus using De Bruijn's indices with "lift" and "shift" operators to encode non-capturing substitution
- We need to 'implement' α -equivalence from scratch (-)
- Simple (first-order) (+)
- Efficient matching and unification algorithms (+)
- No metavariables (-)

 $\lambda\text{-}{\rm calculus}$ meta-language, built-in $\alpha\text{-}{\rm equivalence}$

λ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Examples:

Combinatory Reduction Systems [Klop 80]
 β-rule:

 $\textit{app}(\textit{lam}([a]Z(a)), Z') \rightarrow Z(Z')$

• Higher-Order Abstract Syntax [Pfenning, Elliott 88]

let
$$a = N$$
 in $M(a) \longrightarrow (fun \ a \rightarrow M(a))N$

- The syntax includes binders (+)
- Implicit α -equivalence (+)
- We targeted α but now we have to deal with β too (-)
- Unification is undecidable in general [Huet 75] (-)
- Interesting fragments are decidable [Miller 90] (+)

= nar

イロン 人間 とくほ とくほ とう

Key ideas:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Names, which can be swapped
- abstraction
- freshness

Based on Nominal Set Theory [Fraenkel, Mostowski 1920-40]

a sorted first-order logic theory:

ъ

Maribel Fernández Nominal Unification modulo equational axioms

Freshness conditions a#t, name swapping $(a \ b) \cdot t$, abstraction [a]t

- Terms with binders
- Built-in α -equivalence
- Simple notion of substitution (first order)
- Efficient matching and unification algorithms
- Dependencies of terms on names are implicit

イロト イヨト イヨト

= nar

Nominal Syntax [Urban, Pitts, Gabbay 2004]

Variables: M, N, X, Y, ...
Atoms: a, b, ...
Function symbols (term formers): f, g...

Maribel Fernández Nominal Unification modulo equational axioms

Nominal Syntax [Urban, Pitts, Gabbay 2004]

- Variables: M, N, X, Y, ...
 Atoms: a, b, ...
 Function symbols (term formers): f, g ...
- Nominal Terms:

$$s,t ::= a \mid \pi \cdot X \mid [a]t \mid f t \mid (t_1,\ldots,t_n)$$

 π is a **permutation**: finite bijection on names, represented as a list of swappings, e.g., $(a \ b)(c \ d)$, *Id* (empty list). $\pi \cdot t$: π acts on *t*, permutes names, suspends on variables.

$$(a \ b) \cdot a = b$$
, $(a \ b) \cdot b = a$, $(a \ b) \cdot c = c$
Id $\cdot X$ written as X.

Nominal Syntax [Urban, Pitts, Gabbay 2004]

- Variables: M, N, X, Y, ...
 Atoms: a, b, ...
 Function symbols (term formers): f, g ...
- Nominal Terms:

$$s,t ::= a \mid \pi \cdot X \mid [a]t \mid f t \mid (t_1,\ldots,t_n)$$

 π is a permutation: finite bijection on names, represented as a list of swappings, e.g., $(a \ b)(c \ d)$, Id (empty list).

 $\pi \cdot t$: π acts on t, permutes names, suspends on variables.

- $(a \ b) \cdot a = b$, $(a \ b) \cdot b = a$, $(a \ b) \cdot c = c$ $Id \cdot X$ written as X.
- Example (ML): var(a), app(t, t'), lam([a]t), let(t, [a]t'), letrec[f]([a]t, t'), subst([a]t, t')
 Syntactic sugar:

 a, (tt'), λa.t, let a = t in t', letrec fa = t in t', t[a ↦ t']

α -equivalence

We use freshness to avoid name capture: a # X means $a \notin fv(X)$ when X is instantiated.

	$ds(\pi,\pi')$:	#X
а $pprox_{lpha}$ а	$\overline{\pi\cdot X}pprox_lpha$ $ au$	$\tau' \cdot X$
$s_1pprox_lpha t_1\cdots$	$s_n pprox_{lpha} t_n$	$spprox_lpha t$
$\overline{(s_1,\ldots,s_n)}\approx_{lpha}$	(t_1,\ldots,t_n)	$\overline{\mathit{fs}pprox_lpha}\mathit{ft}$
$spprox_lpha t$	a#t s≈	$pprox_{lpha}$ (a b) \cdot t
$[a]spprox_lpha \ [a]t$	[a]s pprox	$_{\alpha}$ [b]t

where

$$ds(\pi,\pi')=\{n|\pi(n)\neq\pi'(n)\}$$

• $a \# X, b \# X \vdash (a \ b) \cdot X \approx_{\alpha} X$

α -equivalence

We use freshness to avoid name capture: a # X means $a \notin fv(X)$ when X is instantiated.

	$ds(\pi,$	$\pi')\#$	<
а $pprox_{lpha}$ а	$\overline{\pi \cdot X} \approx$	$z_{\alpha} \pi' \cdot$	X
$s_1pprox_lpha \ t_1\ \cdots\ s_n$	$n \approx_{\alpha} t_n$		$spprox_lpha t$
$(s_1,\ldots,s_n)pprox_lpha$ (t_1,\ldots,t_n	n)	fs $pprox_{lpha}$ ft
$spprox_lpha$ t	a#t	$s pprox_{lpha}$	$(a b) \cdot t$
$[a]s\approx_{\alpha}[a]t$	[a]	$spprox_{lpha}$ [b]t

where

$$ds(\pi,\pi')=\{n|\pi(n)\neq\pi'(n)\}$$

- $a \# X, b \# X \vdash (a \ b) \cdot X \approx_{\alpha} X$
- $b \# X \vdash \lambda[a] X \approx_{\alpha} \lambda[b](a \ b) \cdot X$

イロト 人間 トイヨト イヨト

= nar

Also defined by induction:

		π^{-1}	$^{L}(a)\#X$	
a#b	a#[a]s	$a\#\pi\cdot X$		
$a\#s_1 \cdots$	a#s _n	a#s	a#s	
$a\#(s_1,\ldots)$., s _n)	a#fs	a#[b]s	

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の � @

Nominal rewriting: rewriting with nominal terms.

Rewrite rules specify:

- equational theories
- algebraic specifications of operators and data structures
- operational semantics of programs
- functions, processes...

Nominal Rewriting Rules:

$$\Delta \vdash l \rightarrow r$$
 $V(r) \cup V(\Delta) \subseteq V(l)$

Example: Prenex Normal Forms

$$\begin{array}{rcl} a\#P & \vdash & P \land \forall [a]Q \rightarrow \forall [a](P \land Q) \\ a\#P & \vdash & (\forall [a]Q) \land P \rightarrow \forall [a](Q \land P) \\ a\#P & \vdash & P \lor \forall [a]Q \rightarrow \forall [a](P \lor Q) \\ a\#P & \vdash & (\forall [a]Q) \lor P \rightarrow \forall [a](Q \lor P) \\ a\#P & \vdash & P \land \exists [a]Q \rightarrow \exists [a](P \land Q) \\ a\#P & \vdash & (\exists [a]Q) \land P \rightarrow \exists [a](Q \land P) \\ a\#P & \vdash & P \lor \exists [a]Q \rightarrow \exists [a](P \lor Q) \\ a\#P & \vdash & (\exists [a]Q) \lor P \rightarrow \exists [a](Q \lor P) \\ a\#P & \vdash & (\exists [a]Q) \lor P \rightarrow \exists [a](Q \lor P) \\ \vdash & \neg (\exists [a]Q) \rightarrow \forall [a] \neg Q \\ \vdash & \neg (\forall [a]Q) \rightarrow \exists [a] \neg Q \end{array}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の � @

Nominal Rewriting

Rewriting relation generated by $R = \nabla \vdash I \rightarrow r$: $\Delta \vdash s \xrightarrow{R} t$

s rewrites with R to t in the context Δ when:

•
$$s \equiv C[s']$$
 such that θ solves $(\nabla \vdash I) \ge (\Delta \vdash s')$
• $\Delta \vdash C[r\theta] \approx_{\alpha} t.$

Example

Beta-reduction in the Lambda-calculus:

Rewriting steps: $(\lambda[c]c)Z
ightarrow c[c \mapsto Z]
ightarrow Z$

Computing with Nominal Terms - Unification/Matching

To implement rewriting (functional/logic programming) we need a matching/unification algorithm. Recall:

- There are efficient algorithms (linear time) for first-order terms
- Here we need more powerful algorithms: α -equivalence
- Higher-order unification is undecidable

Computing with Nominal Terms - Unification/Matching

To implement rewriting (functional/logic programming) we need a matching/unification algorithm. Recall:

- There are efficient algorithms (linear time) for first-order terms
- Here we need more powerful algorithms: α -equivalence
- Higher-order unification is undecidable

Nominal terms have good computational properties:

- Nominal unification is decidable and unitary
- Efficient algorithms: α -equivalence, matching, unification

Checking α -equivalence

The α -equivalence derivation rules become simplification rules

$$\begin{array}{rcl} a\#b, Pr \implies Pr \\ a\#fs, Pr \implies a\#s, Pr \\ a\#fs, Pr \implies a\#s, Pr \\ a\#(s_1, \ldots, s_n), Pr \implies a\#s_1, \ldots, a\#s_n, Pr \\ a\#[b]s, Pr \implies a\#s, Pr \\ a\#[a]s, Pr \implies Pr \\ a\#\pi \cdot X, Pr \implies \pi^{-1} \cdot a\#X, Pr \quad \pi \neq Id \\ a \approx_{\alpha} a, Pr \implies Pr \\ (l_1, \ldots, l_n) \approx_{\alpha} (s_1, \ldots, s_n), Pr \implies l_1 \approx_{\alpha} s_1, \ldots, l_n \approx_{\alpha} s_n, Pr \\ fl \approx_{\alpha} fs, Pr \implies l \approx_{\alpha} s, Pr \\ [a]l \approx_{\alpha} [a]s, Pr \implies l \approx_{\alpha} s, Pr \\ [b]l \approx_{\alpha} [a]s, Pr \implies (a b) \cdot l \approx_{\alpha} s, a\#l, Pr \\ \pi \cdot X \approx_{\alpha} \pi' \cdot X, Pr \implies ds(\pi, \pi')\#X, Pr \end{array}$$

Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: $I_{?} \approx_{?} t$ has solution (Δ, θ) if

 $\Delta \vdash I\theta \approx_{\alpha} t\theta$

Nominal Matching: $I_{?} \approx t$ has solution (Δ, θ) if

 $\Delta \vdash I\theta \approx_{\alpha} t$

(t ground or variables disjoint from I)

Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: $I_{?} \approx_{?} t$ has solution (Δ, θ) if

 $\Delta \vdash I\theta \approx_{\alpha} t\theta$

Nominal Matching: $I_{?} \approx t$ has solution (Δ, θ) if

 $\Delta \vdash I\theta \approx_{\alpha} t$

(t ground or variables disjoint from I)

• Examples:

 $\lambda([a]X) = \lambda([b]b) ??$ $\lambda([a]X) = \lambda([b]X) ??$

Solving Equations [Urban, Pitts, Gabbay 2003]

• Nominal Unification: $I_{?} \approx_{?} t$ has solution (Δ, θ) if

 $\Delta \vdash I\theta \approx_{\alpha} t\theta$

Nominal Matching: $I_{?} \approx t$ has solution (Δ, θ) if

 $\Delta \vdash I\theta \approx_{\alpha} t$

(t ground or variables disjoint from I)

- Examples: $\lambda([a]X) = \lambda([b]b)$?? $\lambda([a]X) = \lambda([b]X)$??
- Solutions: $(\emptyset, [X \mapsto a])$ and $(\{a \# X, b \# X\}, Id)$ resp.

- Nominal matching is decidable [Urban, Pitts, Gabbay 2003] A solvable problem Pr has a unique most general solution: (Γ, θ) such that $\Gamma \vdash Pr\theta$.
- Complexity:

Alpha-equivalence check: linear if right-hand sides of constraints are ground. Otherwise, log-linear.

Matching: linear in the ground case, quadratic in the non-ground case

Case	Alpha-equivalence	Matching
Ground	linear	linear
Non-ground and linear	log-linear	log-linear
Non-ground and non-linear	log-linear	quadratic

Remark:

The representation using higher-order abstract syntax does saturate the variables (they have to be applied to the set of atoms they can capture). Conjecture: the algorithms are linear wrt HOAS also in the non-ground case.

For more details on the implementation see [4], see [6] for formalisations in Coq and PVS

・ロット (雪) () () () ()

= nar

Equivariance:

Rules defined modulo permutative renamings of atoms.

Beta-reduction in the Lambda-calculus:

$$\begin{array}{ccccccc} Beta & (\lambda[a]X)Y & \to & X[a\mapsto Y] \\ \sigma_{a} & a[a\mapsto Y] & \to & Y \\ \sigma_{app} & (XX')[a\mapsto Y] & \to & X[a\mapsto Y]X'[a\mapsto Y] \\ \sigma_{\epsilon} & a\#Y \vdash & Y[a\mapsto X] & \to & Y \\ \sigma_{\lambda} & b\#Y \vdash & (\lambda[b]X)[a\mapsto Y] & \to & \lambda[b](X[a\mapsto Y]) \end{array}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

≡ nar

Nominal Matching vs. Equivariant Matching

• Nominal matching is efficient.

- Nominal matching is efficient.
- Equivariant nominal matching is exponential... BUT

- Nominal matching is efficient.
- Equivariant nominal matching is exponential... BUT
- if rules are CLOSED then nominal matching is sufficient. Intuitively, closed means no free atoms. The rules in the examples above are closed.

イロト イポト イヨト イヨト

3

Programming and Verification

"Nominal" Programming Languages:

- Fresh-ML, C α ML, Nominal Haskell, ...
- α -Prolog, α -Kanren, ...

Verification: Nominal packages for Isabelle, Agda, Coq, PVS, ...

Rely on nominal matching and unification

イロト 人間 トイヨト イヨト

= na0

Programming and Verification

"Nominal" Programming Languages:

- Fresh-ML, C α ML, Nominal Haskell, ...
- α -Prolog, α -Kanren, ...

Verification: Nominal packages for Isabelle, Agda, Coq, PVS, ...

Rely on nominal matching and unification

Rewriting-based programming anguages and verification frameworks? \implies "Modulo"... axioms

Data Types: Set, Multi-set, List...

A, C, U axioms involving constructors

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで
Data Types: Set, Multi-set, List...

A, C, U axioms involving constructors

Operators obey axioms:

- OR, AND
- || and + in the π -calculus

 \Rightarrow rewriting modulo axioms, E-unification...

イロト イヨト イヨト

= na0

Given two terms *s* and *t* and an equational theory E. **Question:** is there a substitution σ such that $s\sigma =_F t\sigma$?

Undecidable in general

Decidable subcases: C, AC, ACU, ...

(日) (四) (日) (日) (日)

3

Given two terms *s* and *t* and an equational theory E. **Question:** is there a substitution σ such that $s\sigma =_F t\sigma$?

Undecidable in general

```
Decidable subcases: C, AC, ACU, ...
```

Question: Unification modulo α + E?

(日) (四) (日) (日) (日)

= nar

Given two terms *s* and *t* and an equational theory E. **Question:** is there a substitution σ such that $s\sigma =_F t\sigma$?

Undecidable in general

```
Decidable subcases: C, AC, ACU, ...
```

Question: Unification modulo α + E? Nominal Narrowing - enumerates solutions [FSCD 2016]

イロト イヨト イヨト

= nar

Given two terms *s* and *t* and an equational theory E. **Question:** is there a substitution σ such that $s\sigma =_F t\sigma$?

Undecidable in general

```
Decidable subcases: C, AC, ACU, ...
```

Question: Unification modulo α + E? Nominal Narrowing - enumerates solutions [FSCD 2016] Question: Nominal C- unification, Nominal AC- Unification ??

= nar

イロト イボト イヨト イヨト

Unification modulo α + C

Unification modulo lpha and unification modulo C are finitary, but \dots

Maribel Fernández Nominal Unification modulo equational axioms

Unification modulo α + C

Unification modulo lpha and unification modulo C are finitary, but \dots

Solutions:

 $X \mapsto p(a) \text{ OR } p(b), \quad X \mapsto (p(a) \text{ OR } p(b)) \text{ OR } (p(a) \text{ OR } p(b)), \dots$ Not finitary [LOPSTR 2017, 2019]

Binders as well as A, C and AC operators

- $\alpha + \{C, A, AC\}$: Decidable Equivalence, formalised in PVS [6]
- Nominal C-Matching Algorithm (Finitary)
- Nominal C-Unification Procedure:
 - Simplification phase:

Build a derivation tree (branching for C symbols)

2 Enumerate solutions for fixed point constraints $X \approx_{\alpha, C} \pi \cdot X$

Binders as well as A, C and AC operators

- $\alpha + \{C, A, AC\}$: Decidable Equivalence, formalised in PVS [6]
- Nominal C-Matching Algorithm (Finitary)
- Nominal C-Unification Procedure:
 - Simplification phase:

Build a derivation tree (branching for C symbols)

2 Enumerate solutions for fixed point constraints $X \approx_{\alpha, C} \pi \cdot X$

Nominal C-unification is NOT finitary, if we represent solutions using substitutions/freshness:

 $X \approx_{\alpha, C} (a \ b) \cdot X$ has infinite most general solutions

Binders as well as A, C and AC operators

- $\alpha + \{C, A, AC\}$: Decidable Equivalence, formalised in PVS [6]
- Nominal C-Matching Algorithm (Finitary)
- Nominal C-Unification Procedure:
 - Simplification phase:

Build a derivation tree (branching for C symbols)

2 Enumerate solutions for fixed point constraints $X \approx_{\alpha, C} \pi \cdot X$

Nominal C-unification is NOT finitary, if we represent solutions using substitutions/freshness:

 $X \approx_{\alpha, C} (a \ b) \cdot X$ has infinite most general solutions

Alternative representation: fixed-point constraints instead of freshness constraints: $\pi \downarrow x \Leftrightarrow \pi \cdot x = x$

Using fixed-point constraints nominal C-unification is finitary.

A D > A B > A B > A B > B - 900

Nominal AC-Matching - Formalised in PVS [CICM 2023]

Nominal AC-Unification - work in progress

Applications: Nominal extensions of prog. languages and verification tools:

Maude: first-order rewrite-based language [Meseguer 90] K: first-order verification framework to specify and implement programming languages [Rosu 2017].

K: successful first-order verification framework to specify and implement programming languages [Rosu 2017].

Maude: popular first-order rewrite-based language [Meseguer 90]

But binders are not a primitive notion.

K: successful first-order verification framework to specify and implement programming languages [Rosu 2017].

Maude: popular first-order rewrite-based language [Meseguer 90]

But binders are not a primitive notion.

Aim:

Combine Matching Logic (K's foundation) and Rewriting Logic (Maude's foundation) with Nominal Logic to specify and reason about binding.

Signature $\boldsymbol{\Sigma} = (S, \mathcal{V}ar, \boldsymbol{\Sigma})$

Patterns:

$$\phi_{\tau} ::= \mathsf{x} \colon \tau \mid \phi_{\tau} \land \psi_{\tau} \mid \neg \phi_{\tau} \mid \exists \mathsf{x} \colon \tau' . \phi_{\tau} \mid \sigma(\phi_{\tau_1}, \ldots, \phi_{\tau_n})$$

where $x \in \mathcal{V}ar_{\tau}$ and $\sigma \in \Sigma_{\tau_1,...,\tau_n;\tau}$.

Disjunction, implication, \forall , true and false defined as abbreviations: e.g. $\top_{\tau} \equiv \exists x \colon \tau.x \colon \tau \text{ and } \perp_{\tau} \equiv \neg \top_{\tau}.$

Valuation $\rho: \mathcal{V}ar \to M$ respecting sorts. Extension to patterns: $\overline{\rho}(x) = \{\rho(x)\}$ for all $x \in \mathcal{V}ar$, $\overline{\rho}(\phi_1 \land \phi_2) = \overline{\rho}(\phi_1) \cap \overline{\rho}(\phi_2)$, $\overline{\rho}(\neg \phi_{\tau}) = M_{\tau} - \overline{\rho}(\phi_{\tau})$, $\overline{\rho}(\exists x: \tau'.\phi_{\tau}) = \bigcup_{a \in M_{\tau'}} \overline{\rho[a/x]}(\phi_{\tau})$, $\overline{\rho}(\sigma(\phi_{\tau_1}, \dots, \phi_{\tau_n}) = \overline{\sigma_M}(\overline{\rho}(\phi_{\tau_1}), \dots, \overline{\rho}(\phi_{\tau_n}))$, for $\sigma \in \Sigma_{\tau_1,\dots,\tau_n;\tau}$, where $\overline{\sigma_M}(V_1,\dots,V_n) = \bigcup \{\sigma_M(v_1,\dots,v_n) \mid v_1 \in V_1,\dots,v_n \in V_n\}$.

 ϕ_{τ} valid in $M, M \vDash \phi_{\tau}$, if $\overline{\rho}(\phi_{\tau}) = M_{\tau}$ for all $\rho \colon Var \to M$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Nominal Logic can be embbeded as a Matching Logic Theory: NLML (see [PPDP 2022])
 ⇒ it can be directly implemented in K

But...

- ground names, which are useful in rewriting, logic programming and program verification, are not available in NLML
- not clear how to incorporate the *N*-quantifier in a first-class way, which is needed to simplify reasoning with freshness constraints.
- NML: Matching Logic with Built-in Names and
 Λ

Matching Logic with Built-in Names and И

NML signature $\boldsymbol{\Sigma} = (S, \mathcal{V}ar, Name, \boldsymbol{\Sigma})$ consists of

- a non-empty set S of sorts $\tau, \tau_1, \tau_2, \ldots$, split into a set NS of name sorts $\alpha, \alpha_1, \alpha_2, \ldots$, a set DS of data sorts $\delta, \delta_1, \delta_2, \ldots$ including a sort *Pred*, and a set AS of abstraction sorts $[\alpha]\tau$
- an S-indexed family $Var = \{Var_{\tau} \mid \tau \in S\}$ of countable sets of variables $x: \tau, y: \tau, \ldots$,
- an *NS*-indexed family $Name = \{Name_{\alpha} \mid \alpha \in NS\}$ of countable sets of names a: α , b: α ,... and
- an $(S^* \times S)$ -indexed family Σ of sets of many-sorted symbols σ , written $\Sigma_{\tau_1,...,\tau_n;\tau}$.

NML Syntax

Patterns:

$$\phi_{\tau} ::= x : \tau \mid \mathsf{a} : \alpha \mid \phi_{\tau} \land \psi_{\tau} \mid \neg \phi_{\tau} \mid \exists x : \tau'.\phi_{\tau} \\ \mid \sigma(\phi_{\tau_1}, \dots, \phi_{\tau_n}) \mid \mathsf{Va} : \alpha.\phi_{\tau}$$

where $x \in \mathcal{V}ar_{\tau}$, $a \in Name_{\alpha}$, and both \exists and I are binders (i.e., we work modulo α -equivalence).

 Σ includes the following families of sort-indexed symbols (subscripts omitted):

$$\begin{array}{lll} (--) \cdot - & : & \alpha \times \alpha \times \tau \to \tau & \text{swapping (function)} \\ [-] - & : & \alpha \times \tau \to [\alpha] \tau & \text{abstraction (function)} \\ - @ - & : & [\alpha] \tau \times \alpha \to \tau & \text{concretion (partial function)} \\ \textit{fresh}_{\tau,\alpha} & \in & \Sigma_{\tau;\alpha} & \text{freshness (multivalued operation)} \\ - \#_{\alpha,\tau} - & : & \alpha \times \tau \to \textit{Pred} & \text{freshness relation} \\ -^{\dagger} & : & \Sigma_{\textit{Pred};\tau} & \text{coercion operator, often left implicit.} \end{array}$$

イロト イヨト イヨト

= nar

Given $\boldsymbol{\Sigma} = (S, \mathcal{V}ar, Name, \boldsymbol{\Sigma})$

let \mathbb{A} be $\bigcup_{\alpha \in NS} \mathbb{A}_{\alpha}$ where each \mathbb{A}_{α} is an infinite countable set of atoms and the \mathbb{A}_{α} are pairwise disjoint,

let G be a product of permutation groups $\prod_i Sym(\mathbb{A}_i)$

An NML model $M = (\{M_{\tau}\}_{\tau \in S}, \{\sigma_M\}_{\sigma \in \Sigma})$ consists of

- a non-empty nominal *G*-set M_{τ} for each $\tau \in S NS$;
- an equivariant interpretation $\sigma_M : M_{\tau_1} \times \cdots \times M_{\tau_n} \to \mathcal{P}_{fin}(M_{\tau})$ for each $\sigma \in \Sigma_{\tau_1,...,\tau_n;\tau}$.

NML Model

A model is *standard* if the interpretation of:

- **(**) each name sort α is \mathbb{A}_{α}
- the sort Pred is a singleton set {*}, where * is equivariant: {*} is a nominal set whose powerset is isomorphic to Bool
- each abstraction sort $[\alpha]\tau$ is $[M_{\alpha}]M_{\tau}$
- the swapping symbol $(--) \cdot -: \alpha \times \alpha \times \tau \to \tau$ is the swapping function on M_{τ}
- So the abstraction symbol is the quotienting function mapping ⟨a, x⟩ to its alpha-equivalence class, i.e. (a, x) → (a, x)/_{≡_α}
- the concretion symbol is the (partial) concretion function
 (X, a) → {y | (a, y) ∈ X}
- the freshness operation $fresh_{\tau,\alpha}$ is the function $x \mapsto \{a \mid a \notin supp(x)\}$
- On the freshness relation #_{α,s} is the freshness predicate on A_α × M_τ, i.e., it holds for the tuples {(a, x) | a ∉ supp(x)}.

NML Pattern Semantics

Given valuation ρ whose domain includes the free variables and free names of ϕ :

$$\overline{\rho}(x:\tau) = \{\rho(x)\}$$

$$\overline{\rho}(a:\alpha) = \{\rho(a)\}$$

$$\overline{\rho}(\sigma(\phi_1,\ldots,\phi_n)) = \overline{\sigma_M}(\overline{\rho}(\phi_1),\ldots,\overline{\rho}(\phi_n))$$

$$\overline{\rho}(\phi_1 \wedge \phi_2) = \overline{\rho}(\phi_1) \cap \overline{\rho}(\phi_2)$$

$$\overline{\rho}(\neg \phi) = M_{\tau} - \overline{\rho}(\phi)$$

$$\overline{\rho}(\exists x:\tau.\phi) = \bigcup_{a \in M_{\tau}} \overline{\rho[a/x]}(\phi)$$

$$\overline{\rho}(\mathsf{Ma}:\alpha.\phi) = \bigcup_{a \in \mathbb{A}_{\alpha} - supp(\rho)} \{v \in \overline{\rho[a/a]}(\phi) \mid a \notin supp(v)\}$$

In the interpretation of the II pattern, ρ is extended by assigning to a any fresh element a of \mathbb{A}_{α}

ヘロア ヘロア ヘビア ヘビア

≡ nar

Consider three possible rules representing eta-equivalence for the lambda-calculus

Only the third one is correct.

・ロット (雪) (日) (日)

= na0

To reason about the typed lambda-calculus we use sorts Exp (expressions), Ty (types), and Var (variables, a name-sort) interpreted as nominal sets M_{Var} , M_{Exp} , and M_{Ty} satisfying the following equations:

$$M_{Exp} = M_{Var} + (M_{Exp} \times M_{Exp}) + [M_{Var}]M_{Exp}$$

$$M_{Ty} = 1 + M_{Ty} \times M_{Ty} + \cdots$$

We assume at least one constant type (e.g. *int* or *unit*) and a binary constructor $fn: Ty \times Ty \rightarrow Ty$ for function types

 $M_{E\times p}$ is the set of lambda-terms quotiented by alpha-equivalence. We fix M_{Λ} as the standard model obtained taking $M_{E\times p}$ and M_{T_Y} as defined above.

In NML we can axiomatize substitution equationally (no side condition)

$$subst(var(a), a, z) = z$$

$$subst(var(a), \neg a, z) = var(a)$$

$$subst(app(x_1, x_2), y, z) = app(subst(x_1, y, z), subst(x_2, y, z))$$

$$subst(lam(x), y, z) = lam(Va.[a]subst(x@a, y, z))$$

Induction principle using I/ avoiding freshness constraints

$$(\forall x: Var.P(var(x))) \Rightarrow (\forall t_1 : Exp, t_2 : Exp.P(t_1) \land P(t_2) \Rightarrow P(app(t_1, t_2))) \Rightarrow (\forall t : [Var]Exp.Va : Var.P(t@a) \Rightarrow P(lam(t)) \Rightarrow \forall t : Exp.P(t)$$

Substitution Lemma (with just one freshness condition, formalizing the usual side-condition in textbooks)

$$a \# z' \Rightarrow subst(subst(x, a, z), b, z') =$$

subst(subst(x, b, z'), a, subst(z, b, z')

A rewrite theory is a tuple

$$\mathcal{R} = (\Sigma, E, \phi, R)$$

where

- (Σ, E) is an equational theory with order-sorted signature Σ consisting of sorts (S, <) and function symbols F, and Σ -equations E,
- *R* is a set of (possibly conditional) rewrite rules,
- $\phi: \Sigma \to \mathbb{N}^*$ is a so-called *frozenness map* indicating, for each function symbol $f \in \Sigma$, its *frozen* argument positions, where rewriting with rules R is forbidden.

イロン 不得 とくほと イヨン

= nan

Two requirements: (i) countably infinite supply of names (ii) an equality predicate

Specification in Maude:

NAME (conditional) equational theory with *initiality constraints* on subtheories 1

theory NAME protects NAT, BOOL sort Name functions: $i: Name \rightarrow Nat$, $j: Nat \rightarrow Name$, $_.=._: Name Name \rightarrow Bool$ vars a, b: Name, n: Natequations: a.=.a = true, $a.=.b = true \Rightarrow a = b$, j(i(a)) = a, i(j(n)) = nendtheory

Definition

A Binder Signature is a pair of an order-sorted signature $\Sigma = ((S, <), F)$ and a function β with domain F. $\beta(f)$ gives binding information: which argument positions bind which other argument positions in f.

For example, the *in* operator in the π -calculus binds any occurrence of the name given as second argument within the third argument, so that $\beta(in) = (2,3)$. Similarly, in the λ -calculus $\beta(\lambda_{--}) = (1,2)$. For non-binding operators like *out* in the π -calculus we have $\beta(out) = \epsilon$.

The signature is *parametric* on one or more copies of the *NAME* parameter theory: $Name_1, \ldots, Name_k$ are the corresponding parameter sorts in those copies of *NAME*.

Three kinds of binding relationships: (i) binding a *single* name; (ii) binding a *tuple* of names; and (iii) binding a *non-empty* (*Ne*) *list* of names. $Name_i < m.Tuple_i < NeList_i < List_i$

Any calculus \mathscr{C} with binders has an associated *structural congruence*

 $E_{\mathscr{C}} = E_{\mathscr{C}}^{\alpha} \cup E_{\mathscr{C}}^{cs} \cup E_{\mathscr{C}}^{aux}$

where the equations

 $E^{\alpha}_{\mathscr{C}}$ define a calculus-generic α -equivalence relation,

 $E_{\mathscr{C}}^{cs}$ are *calculus-specific* equivalences,

 $E_{\mathscr{C}}^{aux}$ are other calculus-generic equations defining *auxiliary functions*, e.g., name swapping, a freshness predicate, renaming or substitution operations

Not all calculi need all these auxiliary equations. For example, in the π -calculus renaming (as opposed to substitution) equations are needed.

Examples

Swapping:

$$(a b) \cdot f(t_1,\ldots,t_n) = f((a b) \cdot t_1,\ldots,(a b) \cdot t_n)$$

Freshness:

 $_{-}$ # _: Name; $B \rightarrow Bool$ indicates whether a in Name; is fresh in a term of sort B. There are three cases: the term in the second argument is a name b in Name; is rooted by a binding operator (wlg assume $f : List_1 \bar{B}_1 \dots List_k \bar{B}_k \bar{B}_{k+1} \rightarrow C$, where for $1 \leq i \leq k$, each List; is a name-list sort, which binds all sorts in the next sequence of sorts \bar{B}_i , and that all neither bound nor binding sorts are exactly those in the sort list \bar{B}_{k+1}) or by a non-binding operator g (including constants g such as names in Name; with $i \neq j$):

$$a \# b = not(a = . b)$$

$$a \# f(L_1, \overline{t_1}, ..., L_k, \overline{t_k}, \overline{u}) = (a \in L_1 \lor a \# \overline{t_1}) \land ...$$

$$\land (a \in L_k \lor a \# \overline{t_k}) \land a \# \overline{u}$$

$$a \# g(\overline{u}) = a \# \overline{u}$$

Dynamics

Specified by a rewrite relation $\rightarrow_{R/E_{\mathscr{C}}}^{\phi}$ on $\Sigma_{\mathscr{C}}$ -terms: rewriting *modulo* the equations $E_{\mathscr{C}}$, forbidding reductions at certain *frozen* positions.

Definition

$$u \rightarrow_{R/E_{\mathscr{C}}}^{\phi} v$$
 iff there exist u', v' such that:
(i) $u =_{E_{\mathscr{C}}} u'$ and $v =_{E_{\mathscr{C}}} v'$, and
(ii) $u' \rightarrow_{R}^{\phi} v'$, where the relation \rightarrow_{R}^{ϕ} restricts the standard *term-rewriting* relation \rightarrow_{R}
by forbidding rewriting with R at frozen positions (i.e., if f is a function symbol at
position p and $i \in \phi(f)$ then rewriting is forbidden at any position piq)

Example, in the π -calculus the react rule cannot apply inside a prefix *in*, so $\phi(in) = \{1, 2, 3\}$. For executability: Matching modulo $E_{\mathscr{C}}$ is required (cf nominal AC matching). For verification tasks: Unification modulo $E_{\mathscr{C}}$ is required

(a)

э.

Summary:

- Nominal Rewriting Systems [PPDP 2004]: first-order rewriting modulo α, based on Nominal Logic
- Closed NRS ⇔ higher-order rewriting systems Capture-avoiding atom substitution easy to define.
- Nominal matching is linear, equivariant matching is linear with closed rules
- Nominal unification is quadratic (unknown lower bound) [LOPSTR 2010]
- Hindley-Milner style types: principal types, α -equivalence preserves types. Sufficient conditions for Subject Reduction.
- Applications: functional and logic programming languages, theorem provers, model checkers

FreshML, AlphaProlog, AlphaCheck, Nominal package in Isabelle-HOL, ...

・ロット (雪) (キョット・ヨット

3

- Extensions: Nominal E-Unification, Nominal Narrowing, Nominal C-Unification [LOPSTR 2017,2019]
- Being first-order, nominal logic is a natural candidate for supporting binding in
 - Matching Logic (K) see [PPDP 2022]
 - Rewriting Logic (Maude) uses E-unification (A, C, AC,...)

Nominal Datatype Package for Haskell (Jamie Gabbay): https://github.com/bellissimogiorno/nominal

Nominal Project, University of Brasilia: http://nominal.cic.unb.br

alpha-Prolog (James Cheney, Christian Urban): https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/

Nominal Isabelle (Christian Urban)

・ロット (雪) ・ (日) ・ (日) ・

= na0

Maribel Fernández Nominal Unification modulo equational axioms

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の � @