
Submitted to LSFA 2012 / EPTCS style

Formalizing the Confluence of Orthogonal Rewriting Systems

1Ana Cristina Rocha Oliveira and 1,2Mauricio Ayala-Rincón
Grupo de Teoria da Computação, Departamentos de 1Matemática e 2Computação

Universidade de Brası́lia
Brası́lia D.F., Brazil

Email: a.c.r.oliveira@mat.unb.br, ayala@unb.br

Orthogonality is a discipline of programming that in a syntactic manner guarantees determinism of
functional specifications. Essentially, orthogonality avoids, on the one side, the inherent ambiguity
of non determinism, prohibiting the existence of different rules that specify the same function and
that may apply simultaneously (non-ambiguity), and, on the other side, it eliminates the possibil-
ity of occurrence of repetitions of variables in the left-hand side of these rules (left linearity). In
the theory of term rewriting systems (TRSs) determinism is captured by the well-known property
of confluence, that basically states that whenever different computations or simplifications from a
term are possible, the computed answers or the obtained reduced terms should coincide. Although
the proof is technically elaborated, confluence is well-known to be a consequence of orthogonality.
Thus, orthogonality is an important mathematical discipline intrinsic to the specification of recursive
functions that is naturally applied in functional programming and specification. Starting from a for-
malization of the theory of TRSs in the proof assistant PVS, this work describes how confluence of
orthogonal TRSs is being formalized in this proof assistant. Substantial progress has been done in
this research, obtaining until now complete formalizations for some similar, but restricted properties,
such as a complete formalization for the property of confluence of non-ambiguous and (left and right)
linear TRSs.

1 Introduction

Termination and confluence of term rewriting systems (TRSs) are well-known undecidable properties
that are related with termination of computer programs and determinism of their outputs. Under the
hypothesis of termination, confluence is guaranteed by the critical pair criterion of Knuth-Bendix(-Huet)
( [8] + [7]), which establishes that whenever all critical pairs of a given terminating rewriting system are
joinable, the system is confluent. This criterion was fully formalized in the proof assistant PVS in [6]
over the PVS theory trs [5], that is available in the NASA LaRC PVS library [12]. Without termination,
confluence analysis results more complex, but several programming disciplines, from which one could
remark orthogonality, guarantee confluence without the necessity of termination.

In the context of the theory of recursive functions and functional programming as in the one of TRSs,
the programming discipline of orthogonality follows two restrictions:

• left-linearity • non-ambiguity

The former restriction, allows only definitions or rules in which each variable may appear only once
on the left-hand side (lhs, for short) of each rule; the latter restriction, avoids the inclusions of definitions
or rules that could simultaneously apply.

A few examples are given to illustrate these notions and the necessity of both restrictions, left-
linearity and non-ambiguity, in order to guarantee confluence. Below, it is presented a simple example
of an orthogonal TRS for the factorial function.



2 On Formalizing Confluence of Orthogonal Systems

(R1) f actorial(n+1) → (n+1)× f actorial(n)
(R2) f actorial(0) → 1

Indeed, the rules do not overlap and the variable n occurs only once on the lhs of the rule R1 and none
on the lhs of the rule R2. Intuitively, it is clear that this specification allows deterministic computations
of the factorial of each possible natural number given as input.

The TRS below does not own the same properties. In fact, it is neither left linear nor ambiguous.

(Q1) (a+b)2 → a2 +2ab+b2

(Q2) a+a → 2a
This TRS is ambiguous, because its rules overlap giving the divergence illustrated below.

(a+a)2

Q1

wwoooooooooooo
Q2

''OOOOOOOOOOO

a2 +2aa+a2 (2a)2

Namely, one cannot join the terms of this divergence, (a2 +2aa+a2) and (2a)2. Also, note that Q2
is a non left-linear rule, besides the fact that Q1 and Q2 overlap.

The TRS presented below does not own the same properties. In fact, it is left linear, but ambiguous.

(Q) f ( f (x)) → g(x)

This TRS is ambiguous because its unique rule overlaps with itself giving the divergence illustrated
below.

f ( f ( f (a)))
Q

wwooooooooooo
Q

''OOOOOOOOOOO

g( f (a)) f (g(a))

Namely, one cannot join the terms of this divergence, g( f (a)) and f (g(a)) because they are irre-
ducible.

However, non-ambiguity is not sufficient to guarantee confluence. See the TRS in the next example.

(S1) f (x,x) → c
(S2) f (x,g(x)) → b
(S3) a → g(a)

It can be checked that this TRS is non-ambiguous, but the variable x appears twice in the lhs of the
rules (S1) and (S2). Now, observe the divergence below.

f (a,a)
S1

{{wwwwwwwwww S3

&&NNNNNNNNNN

c f (a,g(a))

S2

��
b



A.C.R. Oliveira & M. Ayala-Rincón 3

Once more we have two different irreducible terms.
In this work we report a formalization of the property of confluence of orthogonal systems in the

proof assistant PVS. The formalization uses the PVS theory trs, but several additional notions such
as the one of parallel rewriting were included in order to follow the standard proof approach of this
property that is based on the proof of the diamond property for the parallel reduction associated to any
orthogonal TRS. In the current state of this formalization, several technical details that are related with
properties of terms and subterms involved in one-step of parallel reduction are axiomatized. Additionally,
the PVS theory includes a complete formalization of the confluence of non-ambiguous and linear TRS.
For the benefit of the reviewing process, the whole theory, in its current status, is available in the page
www.mat.unb.br/∼ayala/publications.html.

2 Basic Notions and Definitions

Standard notation of of the theory of rewriting is used as in [3] or [4]: terms are represented as trees and
positions of a term t as sequences of naturals indexing paths from the root of the tree to the subterms
(sub tree nodes). For a position π of a term t, t|π denotes the subterm at position π and parallel positions
π and π ′ are sequences such that neither π is a prefix of π ′ nor π ′ is a prefix of π ′. Given a TRS R, the
rewriting relation is denoted as →R, and R is omitted when it is clear from the context. Composition
of relations is denoted as ◦. The inverse of→ is denoted by← and syntactic equality by =. Then, the
reflexive and the symmetric closure of the relation→ are given by→∪= and←∪→, respectively. For
brevity, the former is denoted as →= and the latter as ↔. The reflexive transitive and the equivalence
closure of→ are denoted as→∗ and↔∗, respectively. Similarly, ∗← will denote the reflexive transitive
closure of the inverse of →. The relations of local divergence, divergence and juntability are given by
←◦→, ∗←◦→∗ and→∗ ◦ ∗←, respectively.

One says that→ is

• confluent whenever (∗←◦→∗)⊆ (→∗ ◦ ∗←),

• triangle-joinable if (←◦→)⊆ (→◦ =←)∪ (→= ◦ ←), and

• that→ has the diamond property if (←◦→)⊆ (→◦←).

Confluence means that any divergence can be joined; triangle-joinability means that any local diver-
gence can be joined being that the joinability needs only one reduction or none on one of the sides and;
diamond property means that each local divergence can be joined in exaclty one step on each side of the
divergence.

A well-defined set of terms is built from a given signature and a set of enumerable variables. A rule
e = (l,r) is a pair of terms such that the first one cannot be a variable and the variables occurring in the
second one should appear in the first one. A TRS is given as a set of rules. The reduction relation→E

induced by a TRS E is built as follows (see Fig. 1): a term t reduces to t0 (denoted as t→ t0, for short) if
there are a position π from t, a rule e ∈ E and a substitution σ such that:

• t|π = lhs(e)σ , i.e., the subterm of t at position π is the lhs of the rule e instantiated by the
substitution σ ;

• and t0 is obtained from t, by replacing the subterm at position π as t0|π = rhs(e)σ , i.e., the subterm
at position π , that is the σ instance of the lhs of the rule e, lhs(e)σ , is replaced by the σ instance
of the right-hand side (rhs, for short) of the rule, rhs(e)σ .

• the only change done in order to obtain t0 from t, occurs at the position π .



4 On Formalizing Confluence of Orthogonal Systems

All this is summarized by the following notation:

t = t[π ← lhs(e)σ ] →E t[π ← rhs(e)σ ] = t0,

where, in general, u[π← v] denotes the term obtained from u by replacing the subterm at position π of u
by the term v.

t0

rσ

π

lσ

t

π

E

Figure 1: t→ t0 (l = lhs(e) and r = rhs(e))

As previously mentioned, another relation that is used to prove the theorem of confluence of or-
thogonal TRSs is parallel reduction: given terms t1 and t2, one says that t1 reduces in parallel to t2,
denoted as t1 ⇒ t2 (see Fig. 3), whenever there exist finite sequences Π := π1, . . . ,πn; Σ := σ1, . . . ,σn

and Γ := e1, . . . ,en of parallel positions of t1, substitutions and rules, respectively, such that:

• t1|πi = lhs(ei)σi, i.e., the subterm of t1 at position πi is the lhs of the rule ei instantiated by the
substitution σi;

• and t2 is obtained from t1, by replacing all subterms at positions in Π as t2|πi = rhs(ei)σi, i.e., for
all i, the subterm at position πi, that is the σi instance of the lhs of the rule ei, lhs(ei)σi, is replaced
by the σi instance of the rhs of the rule, rhs(ei)σi.

• the only changes done in order to obtain t2 from t1, occur at the positions in Π.

All this is summarized by the following notation:

t1 = t1[π1← l1σ1] . . . [πn← lnσn] ⇒E t1[π1← r1σ1] . . . [πn← rnσn] = t2,

where, li = lhs(ei) and ri = rhs(ei), for 1≤ i≤ n.

3 Specification of Orthogonality in PVS

The previously mentioned complete formalization of the theory of TRSs in PVS, presented in [5] and
called the PVS theory trs, includes all necessary basic notions and proved properties in order to for-
malize elaborated theorems of the theory of rewriting such as the one of confluence of orthogonal sys-
tems. The theory trs includes specifications and formalizations of the algebra of terms, sub terms
and positions, properties of abstract reduction systems, confluence and termination, among others. The
development of a PVS theory called orthogonality is in progress and it deals specifically with orthog-
onality definitions, properties, lemmas and theorems. Among the definitions specified inside the theory
orthogonality one could mention the basic boolean ones listed below.



A.C.R. Oliveira & M. Ayala-Rincón 5

E

t
1

t
2

l
1σ1

l
2σ

2
liσi

r
1
σ

1

r
2σ2

r
i
σ

i

π
1

π
2

π iπ i

π
2

π
1

. . . . . .

Figure 2: t1 =⇒ t2 (li = lhs(ei) and ri = rhs(ei))

- Ambiguous?(E): bool = EXISTS (t1, t2) : CP?(E)(t1,t2)

- linear?(t): bool = FORALL (x | member(x,Vars(t))) : Card[position](Pos_var(t,x)) = 1

- Right_Linear?(E): bool = FORALL (e1 | member(e1, E)) : linear?(rhs(e1))

- Left_Linear?(E): bool = FORALL (e1 | member(e1, E)) : linear?(lhs(e1))

- Linear?(E): bool = Left_Linear?(E) AND Right_Linear?(E)

- Orthogonal?(E): bool = Left_Linear?(E) AND NOT Ambiguous?(E)

In these definitions E is a set of rewriting rules (equations).

• Ambiguity (Ambigous?) of a TRS is defined as the existence of critical pairs t1 and t2 (CP?(E)(t1,t2))
produced by the rewriting rules in E.

• A term t is said to be linear (linear?), whenever each variable x that occurs in t, Var(t), occurs
only in a position of t. member(a, A) denotes that a belongs to the set A.

• A TRS E is said to be right or left linear (resp., Right Linear? or Left Linear?), whenever all
right- or left-hand sides of the rules in E are linear, respectively.

• A TRS E is linear (Linear?), whenever it is left and right linear.

• A TRS E is orthogonal, whenever it is left linear and non ambiguous.

More elaborated auxiliary definitions are specified as:

- local_joinability_triangle?(R) : bool = FORALL(t, t1, t2) : R(t, t1) & R(t, t2) =>

EXISTS s : (RC(R)(t1, s) & R(t2, s)) OR (R(t1, s) & RC(R)(t2, s))

- replaceTerm(s: term, t: term, (p: positions?(s))): RECURSIVE term =

IF length(p) = 0 THEN t

ELSE LET st = args(s), i = first(p), q = rest(p),

rst = replace(replaceTerm(st(i-1), t, q), st,i-1)

IN app(f(s), rst)

ENDIF MEASURE length(p)

- reduction?(E)(s,t): bool = EXISTS ( (e | member(e, E)), sigma, (p: positions?(s))):

subtermOF(s, p) = ext(sigma)(lhs(e)) & t = replaceTerm(s, ext(sigma)(rhs(e)), p)



6 On Formalizing Confluence of Orthogonal Systems

- replace_par_pos(s, (fsp : SPP(s)), fse | fse‘length = fsp‘length, fss | fss‘length = fsp‘length)

RECURSIVE term =

IF length(fsp) = 0 THEN s

ELSE replace_par_pos(replaceTerm(s, ext(fss(0))(rhs(fse(0))), fsp(0)), rest(fsp), rest(fse), rest(fss))

ENDIF MEASURE length(fsp)

- parallel_reduction?(E)(s,t): bool =

EXISTS (fsp: SPP(s), fse | (FORALL (i : below[fse‘length]) : member(fse‘seq(i), E)), fss) :

fsp‘length = fse‘length AND fsp‘length = fss‘length

AND (FORALL (i : below[fsp‘length]) : subtermOF(s, fsp(i)) = ext(fss(i))(lhs(fse(i))))

AND t = replace_par_pos(s, fsp, fse, fss)

• If a TRS has the property local joinability triangle?(R), then every one-step divergence
can be joined in one step, on one hand, and in one or zero steps, on the other hand, i.e., it is
triangle-joinable. RC(R) is the reflexive closure of the rewriting relation R.

• To change the subterm of s at position p by the term t, we can use the function replaceTerm(s,

t, p).

• reduction?(E) is the rewriting relation based on the TRS E. It draws a necessary rule e, sub-
stitution sigma and position p from s to reduce s to t since t is exactly replaceTerm(s,

ext(sigma)(rhs(e)), p). Analitically, it is unnecessary to discriminate between a substitution
σ , that is a map from variables into terms, and its homeomorphic extension, that is, its extension
to a function from terms to terms. But computationally, the construction is necessary and here it is
done by the operator ext.

• The changes done by ⇒ are specified through the replace par pos recursive function, whose
parameters are: s, a term; fsp, a finite sequence of positions of s; fss, a sequence of substitutions
and fse, a sequence of rewrite rules, such that length(fsp) = length(fss) = length(fse).

• parallel reduction? is the relation ⇒ itself, assuming the existence of the necessary finite
sequences fsp, fss and fse, for the term s, as in the previous item, and that the term t is exactly
the result of replace par pos applied to these parameters.

The main lemmas and theorems specified about orthogonality are presented below. All presented
lemmas were formalized.

The lemma Linear and Non ambiguous implies confluent is a weaker version of the lemma
of confluence of Orthogonal TRSs that is the last one.

- Linear_and_Non_ambiguous_implies_triangle: LEMMA

FORALL (E) : Linear?(E) AND NOT Ambiguous?(E) IMPLIES local_joinability_triangle?(reduction?(E))

- One_side_diamond_implies_conflent: LEMMA

local_joinability_triangle?(R) IMPLIES confluent?(R)

- Linear_and_Non_ambiguous_implies_confluent: LEMMA

FORALL (E) : ((Linear?(E) AND NOT Ambiguous?(E) ) IMPLIES confluent?(reduction?(E)))

- parallel_reduction: LEMMA

(reduction?(E)(t1, t2) => parallel_reduction?(E)(t1, t2))

& (parallel_reduction?(E)(t1, t2) => RTC(reduction?(E))(t1, t2))

- parallel_reduction_is_DP: LEMMA

Orthogonal?(E) => diamond_property?(parallel_reduction?(E))



A.C.R. Oliveira & M. Ayala-Rincón 7

- Orthogonal_implies_confluent: LEMMA

FORALL (E : Orthogonal) : LET RRE = reduction?(E) IN confluent?(RRE)

RTC(R) specifies the reflexive transitive closure of rewriting relation R.
The lemma Linear and Non ambiguous implies confluent is proved in a standard manner be-

ing much simpler than the last one on confluence of orthogonal systems. In fact, since, in addition
to orthogonality restrictions, variables cannot appear repeatedly in the right-hand side of the rules this
proof does not need elaborated manipulation of reductions and instantiations in order to build the term
of parallel joinability for divergence terms.

By the specification of these lemmas, one can observe that Orthogonal implies confluent, that
is the main lemma, depends on the formalization of parallel reduction and parallel reduction

is DP . The latter lemma is relatively simple and the former is the crucial one.
In order to classify overlaps in a parallel divergence from a term in which, on the one side, a parallel

rewriting is applied at positions Π1 and, on the other side, at positions Π2, positions involved in a parallel
divergence are classified through the following specified recursive relations:

sub_pos((fsp : PP), p : position): RECURSIVE finseq[position] =

IF length(fsp) = 0 THEN empty_seq[position]

ELSIF p <= fsp(0) AND p /= fsp(0)

THEN add_first(fsp(0), sub_pos(rest(fsp), p))

ELSE sub_pos(rest(fsp), p)

ENDIF

MEASURE length(fsp)

Pos_Over((fsp1 : PP), (fsp2 : PP)): RECURSIVE finseq[position] =

(IF length(fsp1) = 0

THEN empty_seq[position]

ELSE (IF ( length(sub_pos(fsp2, fsp1(0))) > 0

OR PP?(add_first(fsp1(0), fsp2)))

THEN add_first(fsp1(0), Pos_Over(rest(fsp1), fsp2))

ELSE Pos_Over(rest(fsp1), fsp2)

ENDIF)

ENDIF)

MEASURE length(fsp1)

sub pos(Π,π) builds the subsequence of positions of the sequence of parallel positions Π that are
strictly below the position π; that is, π ′ ∈Π such that π is a prefix of π ′, as usual denoted as π < π ′.

Pos Over(Π1,Π2) builds the subsequence of positions from Π1 that are parallel to all positions in
Π2 or that have positions in the sequence Π2 below them. In this specification, PP? is a predicate for the
type PP of sequences of parallel positions.

As will be explained, these functions are crucial in order to build the term of one-step parallel join-
ability, necessary in the proof of lemma parallel reduction is DP.

4 Confluence of Orthogonal TRSs

Here, an analytic proof of the main theorem is presented. The notational conventions, colors and figures
that are used in this proof are followed in order to guide the explanation of the formalization presented
in the next section.

Theorem 4.1 (Orthogonal implies confluent) An orthogonal TRS is confluent.



8 On Formalizing Confluence of Orthogonal Systems

This theorem is proved according to the following sketch:

• firstly, constructing the relation of parallel reduction ⇒ associated with the rewriting relation→,
as it was defined.

• Afterwards, it is proved that
→⊆⇒⊆→∗

from which one concludes that ⇒∗=→∗. The lemma parallel reduction, whose specification
was presented at the end of the previous section, corresponds to the latter inclusion.

• Finally, it is proved that for orthogonal systems, ⇒ has the diamond property, which corresponds
to the lemma parallel reduction is DP presented in the previous section. So one obtains
confluence of→:

t
1

t
2

s

u

t
1

t
2Confluence

s

u

*

**

*

Diamond Property

Figure 3: Diamond property of parallel rewriting implies confluence

Theorem 4.2 (Orthogonality implies diamond property) Let R be um TRS orthogonal. Then, the re-
lation ⇒ has the diamond property.

Proof. Let s, t1, t2 ∈ T (Σ,V ) such that t1 ⇔ s ⇒ t2. Then, there are two sequences Π1 and Π2 of parallel
positions of s where reductions associated with the parallel reductions t1 ⇔ s and s ⇒ t2 happen. Let ε1
and Γ1 denote respectively the sequences of rules and substitutions associated with the parallel reduction
t1 ⇔ s and ε2 and Γ2 the sequences of rules and substitutions associated with the parallel reduction s⇒ t2.
The situation is sketched in Fig. 4. Subterms at positions Π1 and Π2 are respectively represented as red
and blue triangles, except for subterms at positions in the intersection that are represented as purple
triangles. As illustrated in the figure, some subterms at poisitions Π1 are inside subterms at positions Π2
and vice versa. This is what makes elaborated the necessary analysis in order to obtain the proof.

A first consequence of non-ambiguity is that purple subterms are reduced in both parallel reductions
in the same manner. Thus they are trivially joined. Another consequence of non-ambiguity is that all red
subterms occurring inside a blue subterm, occur either at or below a variable position of the left-side of
the blue rule being applied in the parallel reduction s ⇒ t2 and vice versa. In other words, if π1∈Π1 and
π2∈Π2, are positions such that π1 inside π2, that is, there exists π such that π1 = π2π , then, for the rule
l→ r and substitution σ associated with position π2 in the sequences ε2 and Γ2, respectively, there exist
π ′ and π ′′ such that π ′π ′′ = π and l|π ′ is a variable, said x. One observes that xσ |π ′′ is the red subtem of s
at position π1. Notice that when π ′′ is the root position, the subterm occurs exactly at a variable position
of the left-hand side of the rule. Also, notice that otherwise, when the red subterm is supposed to occur
at a non variable position, this contradicts the assumption of being non-ambiguous. To emphasize this,
in figure 4 all red subterms below blue subterms and vice versa were included inside a black pentagon.

Figure 5 illustrates the parallel divergence. On the one side, red triangles are reduced into painted
red triangles; on the other side, blue triangles are reduced into painted blue triangles. Since in orthogonal



A.C.R. Oliveira & M. Ayala-Rincón 9

s

Figure 4: Subterms at positions Π1 and Π2

systems right linearity is not obligatory, rewriting rules can repeat variables to the right. This is illustrated
in the figure as follows: in the term t1, the subterm illustrated by the red triangle to the right reduces
through a rule that repeats twice the variable in whose instantiation a blue subterm occurs; in the term t2
the subterm represented by the blue triangle to the left reduces through a rule that repeats twice a variable
in whose instantiation two red subterms occur.

To prove the diamond property, a term u should be built that is reached in one parallel step both from
t1 and t2 as illustrated in the figure 6.

In the sequel, the parallel rewriting t1 ⇒E u will be justified. Understanding how this is possible for
t1, one will understand how this symmetrically happens for t2 ⇒E u as well. Basically, three cases should
be considered.

1. As previously observed, for purple subterms, that are those at positions π ∈ Π1 ∩Π2, the rules
applied to the left and to the right are the same; that is, for π ∈ Π1 ∩Π2, t1|π ← s|π → t2|π and
t1|π = t2|π . This coincidence is represented in the figures 6 and 7 as a painted purpled triangle.

2. For blue subterms inside red subterms as illustrated by the largest red triangle in figure 7, suppose
the position of the subterm and the associated rule and substitution are π ∈ Π1,g→ d,andσ , re-
spectively. Let Ππ = {π1, . . .πk} ⊆Π2 be the subset of all positions of Π2 below π . For 1≤ j≤ k,
let l j→ r j and σ j denote the rule and substitution associated with position π j. Then, according
to a previous observation, for all 1 ≤ j ≤ k, there exist π ′j and π ′′j such that ππ ′jπ

′′
j = π j, being π ′j

a variable position of the left-hand side of the rule g→ d. Let σ ′ the substitution obtained from
σ modifying all variables according to substitutions σ j, then, the divergence at position π , that is
t1|π ⇔ s|π ⇒ t2|π (see transformation of the biggest red triangle in figure 6) can be joined in one
step of parallel reduction as t1|π = dσ ⇒ dσ ′← gσ ′ = t2|π . The construction of the substitution
σ ′ is one of the most elaborated steps in the formalization of this theorem. Namely, suppose x is
a variable occurring in the left-hand side of the rule g→ d only at position π ′ (left-linearity guar-
antees unicity of π ′); if π ′ 6= π ′j, for all 1 ≤ j ≤ k, then xσ ′ := xσ . Otherwise, let { j1, . . . jm} be
the set of indices such that π ′ = π ′jl , for 1≤ l ≤ m and 1≤ jl ≤ k. Since Ππ are parallel positions,
{π ′′j1 , . . .π

′′
jm} are parallel positions of xσ . By applying the rules l jl → r jl with substitutions σ jl , for

1 ≤ l ≤ m, one reduces in parallel xσ ⇒ xσ [π ′′j1 ← r j1σ j1 ] . . . [π
′′
jm ← r jmσ jm ]. Thus, in this case,

xσ ′ is defined as xσ [π ′′j1 ← r j1σ j1 ] . . . [π
′′
jm ← r jmσ jm ].

3. For red subterms inside blue subterms the construction is symmetric to the one of the previous



10 On Formalizing Confluence of Orthogonal Systems

E E

s

t t
1

2

Figure 5: One-step parallel divergence

item, as illustrated by the biggest blue triangle in figure 7. Suppose the position of this subterm
and the associated rule and substitution are π ∈Π2, l→ r,andσ , respectively. Then a substitution
σ ′ can be built as before, such that the divergence at position π , that is t1|π ⇔ s|π ⇒ t2|π (see
transformation of the biggest blue triangle in figure 6) can be joined in one step of parallel reduction
as t1|π = lσ ′→ rσ ′⇔ rσ = t2|π .

5 Formalization of Confluence of Non Ambiguous and Linear TRSs

Computational formalizations do not admit mistakes and, in particular, those specifications based on
rewriting rules as well as on recursive functional definitions can profit from a formalization of conflu-
ence of orthogonality. Several works report efforts on specification of different computational objects
(software and hardware) through term rewriting systems (e.g., [1, 2, 9, 10]) . Consequently, it is relevant
to have robust and as complete as possible libraries for the theory of abstract reduction and term rewriting
system in different proof assistants.

As mentioned in the previous section, the adopted proof strategy is to construct the joinability term
for the Theorem 4.2 (that is lemma parallel reduction is DP , in the formalization, term u in Fig.
6) for the parallel divergence. For doing this, it’s necessary to prove that there are positions, rules and
substitutions sequences that satisfy the requirements.

Following the approach given in the analytic proof of Theorem 4.2, one of the divergence terms is
chosen and one built the sequences. Consider for instance the term t1 of the divergence in Fig. 7 (see
also the cases in the three items in the proof of this theorem). One has to rewrite the blue subterms to get
the joinability term u.



A.C.R. Oliveira & M. Ayala-Rincón 11

E
E

E
E

s

t t

u

1
2

Figure 6: Diamond property of parallel rewriting

t
1s

E E

u

Figure 7: One-step parallel rewriting from t1 into u



12 On Formalizing Confluence of Orthogonal Systems

As in the analytical proof, one has to consider the cases that will be presented in the next subsections.
The colors convention applied in the explanation of this theorem is used.

5.1 Rewriting blue suberms above red painted ones

Remember that Pos Over(Π2,Π1) builds the subsequence of positions from Π2 that are parallel to all
positions in Π1 or that have positions in the sequence Π1 below them. For π ∈ Π2, sub pos(Π1,π)
builds the subsequence Ππ of positions in Π1 below π .

In order to construct the subsequence of either rules or substitutions associated with a subsequence
of positions Π′ of Π, from Γ and Σ, respectively (see the definition of parallel reduction), the function
choose seq was specified. Using this function one can build the subsequences of rules and substitutions
associated with the positions Ππ , for instance, calling choose seq(Ππ ,Π1,Γ1) or choose seq(Ππ ,Π1,Σ1),
respectively. choose seq is a polymorphic function that can be used for several tasks. In particular, in
the construction of the substitution σ ′, it can be used in order to choose the sequence of terms, instantia-
tions of rhs of rules, that should be changed in order to obtain xσ ′, for a variable x occurring at position
ππ ′; namely, this is done calling choose seq(sub pos(Π1,ππ ′), Π1,{d1σ1, . . . ,dnσn}), where the
sequence of terms {d1σ1, . . . ,dnσn} is straightforwardly built from the sequences of rules and substitu-
tions associated with Π1, i.e., Γ1 = {g1→ d1, . . . ,gn→ dn} and Σ1 = {σ1, . . . ,σn}.

choose_seq(seq:PP, seq1:PP, (seq2 | seq1‘length=seq2‘length)):

RECURSIVE finseq[T] =

IF length(seq1)=0 THEN empty_seq

ELSIF mem_seq(seq1(0),seq)

THEN add_first(seq2(0),choose_seq(seq,rest(seq1),rest(seq2)))

ELSE choose_seq(seq,rest(seq1),rest(seq2))

ENDIF

MEASURE(length(seq1))

The construction of the substitution σ ′, explained in Theorem 4.2, requires the specification of two
recursive functions SIGMA and SIGMAP.

SIGMA(sigma, x, fst, (fsp:SPP(sigma(x))|length(fsp)=length(fst)))(y:(V)):

term = IF length(fst)=0 OR y/=x

THEN sigma(y)

ELSE replace_terms(sigma(x),fst,fsp)

ENDIF

SIGMA has as arguments the original substitution σ , a comparison variable x and the associated
subsequences of substituting terms and positions relative to the necessary update of xσ . In the notation
applied in the proof of Theorem 4.2, SIGMA(σ ,x,{d j1σ j1 , . . . ,d jmσ jm},{π ′′j1 , . . . ,π

′′
jm}) applied to x will

give xσ ′, that is xσ [π ′′j1 ← d j1σ j1 ] . . . [π
′′
jm ← r jmσ jm ].

The construction of the whole substitution σ ′, is done through the function SIGMAP below, that ade-
quately calls the function SIGMA. SIGMAP(σ ,{x1, . . . ,xq},{ππ ′1, . . . ,ππ ′q},{d1σ1, . . . ,dnσn},{π1, . . . ,πn}),
where {x1, . . . ,xq} and {ππ ′1, . . . ,ππ ′q} are the sequence of variables at lhs of the rule l→ r that should
change, assuming lσ occurs at position π , and the associated sequence of positions of these variables
in the whole term t1, respectively. For a variable y ∈ {x1, . . . ,xq}, say y = xr, SIGMAP calls the function
SIGMA giving as input the sequence of terms to be substituted and their associated positions in yσ . This is
done through application of the functions choose seq and complement pos. The former one, is called



A.C.R. Oliveira & M. Ayala-Rincón 13

as choose seq({ππ ′rπ
′′
r, j1 , . . . ,ππ ′rπ

′′
r, jmr
},{π1, . . . ,πn},{d1σ1, . . . ,dnσn}), which gives the sequence of

substituting terms. The latter one is called as complement pos(ππ ′r,{π1, . . . ,πn}), which gives as result
the associated positions inside lσ , that is {π ′′r, j1 , . . . ,π

′′
r, jmr
}.

SIGMAP(sigma,fsv,(fsp1:PP|fsp1‘length=fsv‘length),

fst,(fsp2:PP|fsp2‘length=fst‘length))(y:(V)):

RECURSIVE term=

IF length(fsv)=0 THEN sigma(y)

ELSIF y=fsv‘seq(0) & SP?(sigma(fsv‘seq(0)))(complement_pos(fsp1‘seq(0),fsp2))

THEN SIGMA(sigma,fsv‘seq(0),choose_seq(sub_pos(fsp2,fsp1‘seq(0)),fsp2,fst),

complement_pos(fsp1‘seq(0),fsp2))(y)

ELSE SIGMAP(sigma,rest(fsv),rest(fsp1),fst,fsp2)(y)

ENDIF

MEASURE(length(fsv))

A few number of lemmas were formalized in order to prove soundness of this definition. Namely,
the fact that it is in fact a substitution is axiomatized. Among these lemmas, as a matter of illustration, it
is necessary to prove that the subsequences of terms and positions given as third and second parameters
of the call of SIGMA have the same length. This is stated as the following lemma easily formalized by
induction on the length of the finite sequences.

complement_pos_preserv_sub_pos_length1: LEMMA

PP?(fsp) IMPLIES

complement_pos(p, fsp)‘length = sub_pos(fsp, p)‘length

5.2 Rewriting blue subterms inside red painted ones

This is the case in which an instance of gσ occurring at position π ∈Π1 reduces into dσ (see the big red
triangle in Figs. 6 and 7). In this case, one has to show that dσ ⇒ dσ ′.

Among the necessary functions to specify this parallel reduction, one has compo pos var listed
below that specifies the construction of the sequence of all positions inside dσ that should be rewritten in
order to obtain dσ ′. The call compo pos var(g,d,{x1, . . . ,xq},π,Π2), where π ∈ Π1 is the position in
which gσ occurs in t1, builds the finite sequence of positions in dσ that should be rewritten, that is, the
blue triangles inside pentagons in the big red painted triangle in figure 7. Recursively, for each variable
x j ∈ {x1, . . . ,xq}, the following is done:

• Initially, choose(Pos var(g,x j)) builds the position π ′j in which x j appears in g and through
complement pos(π,Π2) one builds the sequence of positions {π ′jπ ′′j1 , . . . ,π

′
jπ
′′
jk} of gσ according

to the notation in the proof of Theorem 4.2.

• Afterwards, applying complement pos to the previous results one obtains the sequence of posi-
tions {π ′′j1 , . . . ,π

′′
jk}. Also, set2seq(Pos var(d,x j)) computes the sequence of positions in which

x j occurs in d, denoted as {γ1, . . .γr}.
• Finally, compo pos multi({γ1, . . .γr},{π ′′j1 , . . . ,π

′′
jk}) builds the necessary sequence of all posi-

tions in d that should be modified, that is {γ1π ′′j1 , . . . ,γ1π ′′jk , . . . ,γrπ
′′
j1 , . . . ,γrπ

′′
jk} and compo pos

concatenates the prefix π to this sequence.



14 On Formalizing Confluence of Orthogonal Systems

compo_pos_var(g,d,fsv,p,(fsp:PP)): RECURSIVE finseq[position] =

IF length(fsv)=0 THEN empty_seq

ELSIF nonempty?(Pos_var(g,fsv‘seq(0)))

THEN compo_pos(p,compo_pos_multi(set2seq(Pos_var(d,fsv‘seq(0))),

complement_pos(choose(Pos_var(g,fsv‘seq(0))),

complement_pos(p,fsp))))

o compo_pos_var(g,d,rest(fsv),p,fsp)

ELSE compo_pos_var(g,d,rest(fsv),p,fsp)

ENDIF

MEASURE(length(fsv))

Analogously to the previous function other ones as compo rr var and compo Sub var build the
associated sequences of blue rewrite rules and corresponding blue substitutions used to replace subterms
at positions {γ1π ′′j1 , . . . ,γ1π ′′jk , . . . ,γrπ

′′
j1 , . . . ,γrπ

′′
jk} in order to obtain dσ ′.

As previously mentioned a few technical axiomatizations are included in the whole PVS develop-
ment, that need to be fully formalized in order to have a complete formalization of the theorem of con-
fluence of orthogonal TRSs. Among these axiomatized properties, in relation with Compo pos var, it is
necessary to formalize the fact that the computed sequence {πγ1π ′′j1 , . . . ,πγ1π ′′jk , . . . ,πγrπ

′′
j1 , . . . ,πγrπ

′′
jk}

is a sequence of parallel positions. Preservation of the ordering and consequently of the association of
components in the sequences of positions, substitutions, rules, substituting terms, etc. computed with
functions as choose seq, compo pos var, etc. is a consequence of the conservative recursive way in
that these sequences were built and all the necessary related lemmas were formalized.

Currently, the whole development consist of among 1.300 lines of specification and 46.000 lines of
proofs. Indeed, there are 40 definitions, 84 proved lemmas and 8 axioms.

6 Related work and Conclusions

PVS specifications of non trivial notions and formalizations of results of the theory of rewriting were
presented, that are related with the properties of parallel rewriting and orthogonal rewriting systems.
The PVS theory for orthogonal TRSs enriches the PVS theory trs for TRSs introduced in [5] and
available in [12]. The formalization of these properties of orthogonal TRSs are close to the analytical
proofs presented in textbooks as [3] and [4], which provides additional evidence of the appropriateness
of both the higher-order specification language and the proof engine of PVS to deal in a natural way with
specification of rewriting notions and properties and their formalizations. This consequently implies the
good support of PVS to deal with soundness and completeness and integrity constraints of specifications
of computational objects specified through rewriting rules.

In its current status, the theory for orthogonal TRSs includes a complete formalization of confluence
of non-ambiguous and linear TRSs as well as a proof of confluence of orthogonal TRSs which depends
on both the lemma of equivalence of the reflexive-transitive closure of the rewriting and the parallel
reduction relations and of the lemma of diamond property of the parallel reduction relation of orthogonal
TRSs. The latter lemma is formalized axiomatizing some technical properties of parallel positions, rules
and substitutions involved in one-step of parallel reduction. In [11] the criterion of weak orthogonality
was integrated to ensure confluence applying the certification tool CeTA. Instead orthogonality, weak
orthogonality allows for trivial critical pairs. To the best of our knowledge no formalization of the
property of confluence of orthogonal TRSs is available in any proof assistant.



A.C.R. Oliveira & M. Ayala-Rincón 15

References
[1] Arvind & X. Shen (1999): Using Term Rewriting Systems to Design and Verify Processors. IEEE Micro

19(3), pp. 36–46.
[2] M. Ayala-Rincón, C. Llanos, R. P. Jacobi & R. W. Hartenstein (2006): Prototyping Time and Space Efficient

Computations of Algebraic Operations over Dynamically Reconfigurable Systems Modeled by Rewriting-
Logic. ACM Transactions on Design Automation of Electronic Systems 11(2), pp. 251–281.

[3] F. Baader & T. Nipkow (1998): Term Rewriting and All That. Cambridge University Press.
[4] M. Bezem, J.W. Klop & R. de Vrijer, editors (2003): Term Rewriting Systems by TeReSe. Cambridge Tracts

in Theoretical Computer Science 55, Cambridge University Press.
[5] A. L. Galdino & M. Ayala-Rincón (2009): A PVS Theory for Term Rewriting Systems. In: Proceedings of the

Third Workshop on Logical and Semantic Frameworks, with Applications - LSFA 2008, Electronic Notes in
Theoretical Computer Science 247, pp. 67–83.

[6] A. L. Galdino & M. Ayala-Rincón (2010): A Formalization of the Knuth-Bendix(-Huet) Critical Pair Theo-
rem. J. of Automated Reasoning 45(3), pp. 301–325.

[7] G. Huet (1980): Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems.
Journal of the Association for Computing Machinery 27(4), pp. 797–821.

[8] D. E. Knuth & P. B. Bendix (1970): Computational Problems in Abstract Algebra, chapter Simple Words
Problems in Universal Algebras, pp. 263–297. J. Leech, ed. Pergamon Press, Oxford, U. K.

[9] C. Morra, J. Becker, M. Ayala-Rincón & R. W. Hartenstein (2005): FELIX: Using Rewriting-Logic for
Generating Functionally Equivalent Implementations. In: 15th Int. Conference on Field Programmable
Logic and Applications - FPL 2005, IEEE CS, pp. 25–30.

[10] C. Morra, J. Bispo, J.M.P. Cardoso & J. Becker (2008): Combining Rewriting-Logic, Architecture Gen-
eration, and Simulation to Exploit Coarse-Grained Reconfigurable Architectures. In Kenneth L. Pocek &
Duncan A. Buell, editors: FCCM, IEEE Computer Society, pp. 320–321. Available at http://dx.doi.
org/10.1109/FCCM.2008.37.

[11] R. Thiemann (2012): Certification of Confluence Proofs using CeTA. In: First International Workshop on
Confluence(IWC 2012), p. 45.

[12] Theory trs (consulted January 2012): Available in the NASA LaRC PVS library,
http://shemesh.larc.nasa.gov/fm/ftp/larc/ PVS-library/pvslib.html.

http://dx.doi.org/10.1109/FCCM.2008.37
http://dx.doi.org/10.1109/FCCM.2008.37

	Introduction
	Basic Notions and Definitions
	Specification of Orthogonality in PVS
	Confluence of Orthogonal TRSs
	Formalization of Confluence of Non Ambiguous and Linear TRSs
	Rewriting blue suberms above red painted ones
	Rewriting blue subterms inside red painted ones

	Related work and Conclusions

