
Mathematical Structures in Computer (2019), 1–00
doi:10.1017/xxxxx

FORMALISATIONS OF NOMINAL C-MATCHING THROUGH UNIFICATION WITH
PROTECTED VARIABLES

Formalising Nominal C-Matching Through Unification
With Protected Variables

Mauricio Ayala-Rincón1,3 Maribel Fernández2 Washington de Carvalho-Segundo3

Gabriel Ferreira Silva3 Daniele Nantes-Sobrinho1

Departments of Mathematics1 and Computer Science3, University of Brası́lia (UnB), Brazil
ayala@unb.br wtonribeiro@gmail.com gabrielfsilva1995@gmail.com dnantes@unb.br

2Department of Informatics, King’s College London, U.K.
maribel.fernandez@kcl.ac.uk

(Received xx xxx xxx; revised xx xxx xxx; accepted xx xxx xxx)

Abstract
This work adapts a formalisation in Coq of a nominal C-unification algorithm specified by a set of non-
deterministic rules, to include “protected variables” that cannot be instantiated during the unification
process. By introducing protected variables, we are able to reuse the C-unification algorithm to solve
nominal C-matching (as well as equality check) problems. From the algorithmic point of view, this exten-
sion is sufficient to obtain a C-matching algorithm; however, the resulting algorithm cannot be formally
checked by simple reuse of the original formalisation. This paper describes the additional effort necessary
in order to adapt the specification of the algorithm and reuse previous formalisations. We also extend
a functional recursive nominal C-unification algorithm specified in PVS to include a set of protected
variables, effectively adapting this algorithm to the tasks of nominal C-matching and nominal equality
check. Experiments comparing executable code extracted from this recursive implementation and a Python
manual implementation of the same algorithm are also presented.

Keywords: Nominal Unification; Nominal Matching; Commutative Theory; C-Unification; Formal Methods; Coq; PVS;

1. Introduction
Nominal unification [Urban et al. (2004); Urban (2010)] is the problem of solving equations
between nominal terms, that is, terms that include binding operators, in which solutions should be
defined modulo α-equivalence. Nominal matching is a restriction of nominal unification, in which
only one side of the equation can be instantiated. This paper presents a formalisation in Coq of
a set of rules for nominal matching and a formalisation in PVS of a recursive nominal matching
algorithm, where terms may include commutative operators. This problem is known as nominal
C-matching.

In nominal syntax [Pitts (2013)], terms include function symbols, abstractions, and two kinds
of variables: atoms and unknowns (or simply variables). Atoms are used to represent object-level
variables whereas unknowns behave like first-order variables, except that they can have “sus-
pended atom permutations” which act when the variable is instantiated by a term. Atoms can be
abstracted over terms, the nominal term [a]s represents the abstraction of a in s and α-equivalence
is axiomatised by means of a freshness relation a#t (read: a is fresh in t) and name-swappings
(a b), which implement renamings. For example, the first-order logic formula ∀a.a≥ 0 can be
written as a nominal term ∀([a]geq(a, 0)), using function symbols ∀ and geq and an abstracted
c© Cambridge University Press 2019

https://doi.org/10.1017/xxxxx
mailto:ayala@unb.br
mailto:wtonribeiro@gmail.com
mailto:gabrielfsilva1995@gmail.com
mailto:dnantes@unb.br
mailto:maribel.fernandez@kcl.ac.uk

2 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

atom a. Notice that ∀([a]geq(a, X))≈?
α ∀([b]geq(Y, 0)) is a nominal unification problem whose

solution should be such that a does not occur free in Y .
Nominal unification is decidable and efficient nominal unification algorithms are available

[Levy and Villaret (2010); Calvès (2010); Calvès and Fernández (2011)], that compute solutions
consisting of freshness contexts (containing freshness constraints of the form a#X) and substitu-
tions. Nominal unification modulo commutativity (C) consists of nominal unification problems in
which the signature of terms contains commutative function symbols. This algebraic property has
to be taken into account during the unification process.

Ayala-Rincón et al. (2018a) proposed a nominal C-unification algorithm based on a set of sim-
plification rules. The simplification process generates, for each solvable nominal C-unification
problem, a finite set of fixed point equations of the form π · X ≈?

α X , where π is a permutation
and X is a variable, together with a set of freshness constraints and a substitution. In contrast, the
output of the standard nominal unification algorithm consists only of substitutions and freshness
constraints. Fixed point equations can be easily eliminated in the standard unification algorithm
(they are replaced by freshness constraints), but this is not the case in the presence of com-
mutative symbols. For instance, the fixed point equation (a b) · X ≈?

α,C X has infinite solutions
X/a + b, X/(a + b) + (a + b), . . . (see Ayala-Rincón et al. (2017) for a procedure to generate
solutions of fixed point equations). A formalisation in Coq of the simplification rules, includ-
ing correctness and completeness proofs, was later adapted to solve C-matching problems (see
Ayala-Rincón et al. (2019)).

In this paper, we revise and extend the previous results, by considering an additional parameter
X : a set of protected variables that is given as part of the input problem. These variables will
not be instantiated during the unification process, therefore the domain of solutions will be dis-
joint from this set. If the set of protected variables is empty, the algorithm solves general nominal
C-unification problems; if the set of protected variables consists of the variables occurring in the
right-hand side of equations in the problem given as input, the algorithm outputs a C-matching
solution of this problem, if such solution exists; and if the set of protected variables consists of
all the variables occurring in the input problem, the algorithm becomes a C-equational checker.
Although these conclusions are obvious from the operational point of view, one cannot straight-
forwardly reuse the formalisation of the nominal C-unification specification to verify the derived
nominal C-matching algorithm. In this paper, we show how the formalisation of correctness and
completeness of the nominal C-matching specification was reached.

The simplification rules specify an algorithm which is non-deterministic in nature: several rules
can apply to the same problem, generating a set of derivations (i.e., a derivation tree), where
solutions are at the leaves. To avoid computing the whole derivation tree, in Ayala-Rincón et al.
(2019), a recursive functional nominal C-unification algorithm was specified and verified in PVS.
In contrast with Ayala-Rincón et al. (2018a), where the soundness and completeness of a set of
simplification rules was verified, in Ayala-Rincón et al. (2019) the recursive algorithm itself was
verified to be correct and complete. This allowed us to obtain executable code from the algorithm.
Simpler proofs of termination, soundness and completeness were also obtained, due to the reduc-
tion in the number of parameters of the lexicographic measure, from 4 to 2. Additionally, the
algorithm was manually translated to obtain a Python 3 implementation.

In this paper we also extend the results in Ayala-Rincón et al. (2019): By adding a parameter for
protected variables, the functional algorithm can be used for C-unification (if we pass an empty
set as the parameter for protected variables), C-matching (if we pass the variables occurring in
the right-hand side of equations in the problem as the parameter for protected variables) or C-
equational checking (if we pass all variables in the input problem as the parameter for protected
variables). We discuss interesting points of the specification and formalisation of this extension
and we also perform experiments comparing the Python manual translation of the algorithm with
the code obtained directly from the PVS verified specification.

To summarise, the contributions of this paper are:

Formalisations of Nominal C-Matching Through Unification With Protected Variables 3

• An extension of the nominal C-unification specification proposed by Ayala-Rincón et al.
(2018a) that adds a parameter for protected variables. We show how previous formalisations
can be adapted and reused in order to prove termination, soundness and completeness of the
simplification rules under this extension.
• An algorithm for nominal C-matching that is obtained by defining the set of protected vari-

ables to be the set of variables on the right-hand side of equations in the input problem.
Specifications of nominal C-matching problems and solutions are provided and then the set
of simplification rules is proven to be terminating, sound and complete.
• An extension of the recursive nominal C-unification algorithm proposed in Ayala-Rincón

et al. (2019) that considers protected variables, allowing us to use it for the task of matching
and equality check.
• Experiments comparing the code generated by the PVS verified specification and the Python

manual implementation of the algorithm.

The proofs presented in this paper were formalised in Coq and in PVS and are available, as
well as the Python 3 implementation, at http://nominal.cic.unb.br/.

1.1 Related work
Equational unification and matching have been studied in automated reasoning and deduction
for more than three decades providing interesting (even open) problems and efficient solutions.
For instance, Baader (1986); Baader and Schulz (1996); Baader and Snyder (2001) have investi-
gated several aspects related with general unification with equational theories and combinations
of disjoint equational theories, whereas Fages (1987); Kapur and Narendran (1986, 1987, 1992);
Siekmann (1979, 1989) have studied associative and/or commutative unification, matching and
their complexities.

Nominal equational unification was initially investigated by Ayala-Rincón et al. (2016) and
Schmidt-Schauß et al. (2017), using simplification rules to specify unification procedures. In the
former paper, the relation of nominal narrowing is defined and a lifting result relating nominal
narrowing and unification is proven, whereas in the latter paper a nominal unification approach
for higher order expressions with recursive let is presented.

The nominal C-unification algorithm proposed by Ayala-Rincón et al. (2018a) outputs a triple
consisting of a substitution, a freshness context and a set of fixed point problems, and it was
noticed that the set of fixed point equations could generate infinite solutions. In order to give
explicit solutions for the fixed point problems, in Ayala-Rincón et al. (2017), combinatorial solu-
tions based on permutation cycles and pseudo-cycles were generated, and an exhaustive search
procedure was given. Thus, if solutions are expressed only with freshness contexts and substitu-
tions, nominal C-unification is infinitary, in contrast with standard first-order C-unification which
is finitary.

Recently, a new axiomatisation of the alpha equivalence relation for nominal terms was pre-
sented [Ayala-Rincón et al. (2018b)], which is based on fixed point constraints and allows a finite
representation of solutions of nominal C-unification problems, consisting of a substitution and a
fixed point context.

In addition to the Coq formalisation of nominal C-unification in Ayala-Rincón et al. (2018a),
there are formalisations of standard (syntactic) nominal unification in Isabelle [Urban (2010)] and
PVS [Ayala-Rincón et al. (2016)]. Regarding formalisations in the (non nominal) standard syntax,
Contejean [Contejean (2004)] formalised AC-matching in Coq.

http://nominal.cic.unb.br/

4 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

1.2 Organisation
Section 2 presents basic concepts and notations. Section 3 presents the extension of simplification
rules for nominal C-unification with protected variables, and discusses how the formalisations
of termination, soundness and completeness were adapted. Section 4 introduces the nominal
C-matching algorithm and discusses the formalisation of its termination, soundness and complete-
ness properties. Section 5 discusses the functional recursive algorithm for nominal C-unification
and the adaptations done to handle a set of protected variables. Section 6 details the experi-
ments comparing the code generated by PVS and the Python implementation. Finally, Section
7 concludes the paper and discusses future work.

2. Background
Consider countable disjoint sets of variables X := {X ,Y, Z, · · · } and atoms A := {a, b, c, · · · }.
A permutation π is a bijection on A with a finite domain, where the domain (i.e., the support)
of π is the set dom(π) := {a∈A | π · a 6= a}. We will assume, as in Ayala-Rincón et al. (2019),
countable sets of function symbols with different equational properties such as associativity, com-
mutativity, idempotence, etc. Function symbols have superscripts that indicate their equational
properties; thus, f C

k will denote the kth function symbol that is commutative and f /0
j the jth function

symbol without any equational property.

Definition 1 (Nominal grammar). Nominal terms are generated by the following grammar.

s, t := 〈〉 | ā | [a]t | 〈s, t〉 | f E
k t | π.X

〈〉 denotes the unit (that is the empty tuple), ā denotes an atom term, [a]t denotes an abstraction
of the atom a over the term t, 〈s, t〉 denotes a pair, f E

k t the application of f E
k to t and π.X denotes

a moderated variable or suspension. Suspensions of the form id.X will be represented just by X .

The inverse of π is denoted by π−1. Permutations can be represented by lists of swappings,
which are pairs of different atoms (a b); hence a permutation π is a finite list of the form (a1 b1) ::
. . . :: (an bn) :: nil, where the empty list nil corresponds to the identity permutation; concatenation
is denoted by ⊕ and, when no confusion may arise, :: and nil are omitted. We follow Gabbay’s
permutative convention: atoms differ on their names, so for atoms a and b the expression a 6= b is
redundant.

Definition 2 (Permutation action). The action of a permutation π on a term t, denoted as π · t, is
recursively defined as:

π · 〈〉 := 〈〉 π · 〈u, v〉 := 〈π · u, π · v〉 π · f E
k t := f E

k (π · t)

π · a := π · a π · ([a]t) := [π · a](π · t) π · (π ′ . X) := (π ′ ⊕ π) . X

Remark 3. Notice that according to the definition of the action of a permutation over atoms,
the composition of permutations π and π ′, usually denoted as π ◦ π ′, corresponds to the append
π ′ ⊕ π . Also notice that π ′ ⊕ π · t = π · (π ′ · t).

Definition 4 (Difference set). The difference set between two permutations π and π ′ is the set of
atoms where the action of π and π ′ differs: ds(π, π ′) := {a∈A | π · a 6= π ′ · a}.

Formalisations of Nominal C-Matching Through Unification With Protected Variables 5

The set of variables occurring in a term t will be denoted as var(t). This notation extends to a
set S of terms in the natural way: var(S) =

⋃
t∈S var(t).

A substitution σ is a mapping from variables to terms such that X 6= Xσ only for a finite set
of variables. This set is called the domain of σ and is denoted by dom(σ). For X ∈ dom(σ), Xσ

is called the image of X by σ . Define the image of σ as im(σ) = {Xσ | X ∈ dom(σ)}. The set
of variables occurring in the image of σ is then var(im(σ)). A substitution σ with dom(σ) :=
{X0, · · · , Xn} can be represented as a set of binds in the form {X0/t0, · · · , Xn/tn}, where for
0≤ i≤ n, Xiσ = ti.

Definition 5 (Substitution action). The action of a substitution σ on a term t, denoted tσ , is
defined recursively as follows:

〈〉σ := 〈〉 aσ := a (f E
k t)σ := f E

k tσ

〈s, t〉σ := 〈sσ , tσ〉 ([a]t)σ := [a]tσ (π.X)σ := π · Xσ

Example 6. For term t = 〈(a b).X , f (e)〉 and substitution σ = {X/[a]a}, we obtain that tσ =
〈[b]b, f (e)〉 ≈α 〈[a]a, f (e)〉, for some unary function symbol f in the signature.

The following result can be proved by induction on the structure of terms.

Lemma 7 (Substitutions and permutations commute). (π · t)σ = π · (tσ)

The inference rules defining freshness and α-equivalence are given in Figures 1 and 2. The
symbols ∇ and ∆ are used to denote freshness contexts that are sets of constraints of the form
a#X , meaning that the atom a is fresh in X . The domain of a freshness context dom(∆) is the
set of atoms appearing in it; ∆|X denotes the restriction of ∆ to the freshness constraints on X :
{a#X | a#X ∈ ∆}. The rules in Figure 1 are used to check if an atom a is fresh in a nominal term t
under a freshness context ∇, also denoted as ∇ ` a#t.

The rules in Figure 2 are used to check if two nominal terms s and t are α-equivalent under
some freshness context ∇, written as ∇ ` s≈α t. These rules use the inference system for freshness
constraints: specifically freshness constraints are used in rule (≈α [ab]).

Remark 8. dom(π)#X and ds(π, π ′)#X denote, respectively, the sets {a#X | a∈ dom(π)} and
{a#X | a∈ ds(π, π ′)}. Notice that dom(π) = ds(π, id).

(#〈〉)
∇ ` a # 〈〉 (# atom)

∇ ` a # b
∇ ` a # t

(# app)
∇ ` a # f E

k t
(# a[a])

∇ ` a # [a]t

∇ ` a # t
(# a[b])

∇ ` a # [b]t
(π−1 · a#X)∈∇

(# var)
∇ ` a # π.X

∇ ` a # s ∇ ` a # t
(# pair)

∇ ` a # 〈s, t〉
Figure 1. Rules for the freshness relation.

Key properties of the nominal freshness and α-equivalence relations have been extensively
explored in previous works [Ayala-Rincón et al. (2019); Ayala-Rincón et al. (2016); Urban (2010);
Urban et al. (2004)]. Among them we have freshness preservation: if ∇ ` a # s and ∇ ` s≈α t,

6 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

(≈α 〈〉)
∇ ` 〈〉 ≈α 〈〉

(≈α atom)
∇ ` a≈α a

∇ ` s≈α t
(≈α app)

∇ ` f E
k s≈α f E

k t

∇ ` s≈α t
(≈α [aa])

∇ ` [a]s≈α [a]t
∇ ` s≈α (a b) · t ∇ ` a # t

(≈α [ab])
∇ ` [a]s≈α [b]t

ds(π, π
′)#X ⊆∇

(≈α var)
∇ ` π.X ≈α π

′.X

∇ ` s0 ≈α t0 ∇ ` s1 ≈α t1
(≈α pair)

∇ ` 〈s0, t0〉 ≈α 〈s1, t1〉
Figure 2. Rules for the relation α-equivalence relation.

then ∇ ` a # t; equivariance: for all permutations π , if ∇ ` s≈α t then ∇ ` π · s≈α π · t; and
equivalence: ∇ ` ≈α is an equivalence relation.

3. A nominal C-unification algorithm with protected variables
In Ayala-Rincón et al. (2018a) we proposed a nominal C-unification algorithm which used a set
of transformation rules to deal with equations (Figure 4) and another set of rules to deal with
freshness constraints and contexts (Figure 3). These rules act over triples of the form 〈∇, σ , P〉,
where σ is a substitution. In this work, we will deal with nominal C-equational problems including
another parameter that is a set X of protected variables. This parameter indicates which variables
are forbidden to be instantiated. The quadruple that will be associated with a C-equational problem
of the form 〈∇,X , P〉 is 〈∇,X , id, P〉. Calligraphic uppercase letters (e.g., P,Q,R, etc) will
denote quadruples.

Definition 9 (Unification and matching problem). An unification problem is a triple 〈∇,X , P〉,
where ∇ is a freshness context, X a set of protected variables, and P is a finite set of equations
and freshness constraints of the form s≈? t and a#?s, respectively, s and t are terms and a is an
atom. Nominal terms in the equations preserve the syntactic restriction that commutative symbols
are only applied to pairs. A matching problem consists only of a pair 〈∇, P〉.

Definition 10 (Solution for a C-unification problem with preserved variables). A solution for a
quadruple P = 〈∆,X , δ , P〉 is a pair 〈∇, σ〉, where the domain of σ has no variables in X , and
the following conditions are satisfied:

(1) ∇ ` ∆σ ;
(2) if a#?t ∈ P then ∇ ` a # tσ ;
(3) if s≈? t ∈ P then ∇ ` sσ ≈{α,C} tσ ;
(4) there exists λ such that ∇ ` δλ ≈ σ .

A solution for a C-equational problem with preserved variables 〈∆,X , P〉 is a solution for the
associated quadruple 〈∆,X , id, P〉. The solution set for a problem or quadruple P is denoted by
UC(P).

We will denote the set of variables occurring in the set P of a problem P or quadruple P =
〈∇,X , σ , P〉 as var(P) or var(P), respectively.

Formalisations of Nominal C-Matching Through Unification With Protected Variables 7

When X equals /0, the notions of C-unification problem with preserved variables, and its solu-
tions coincide with the corresponding notions for C-unification as given in Ayala-Rincón et al.
(2018a). For simplicity, C-unification problems and solutions with preserved variables will be
called just C-unification problems and solutions.

(#?〈〉)
〈∇,X , σ , P] {a#?〈〉}〉

〈∇,X , σ , P〉
(#?ab̄)

〈∇,X , σ , P] {a#?b̄}〉

〈∇,X , σ , P〉
(#?app)

〈∇,X , σ , P] {a#? f t}〉

〈∇,X , σ , P∪ {a#?t}〉

(〈#〉pair)
〈∇,X , σ , P] {a#?〈s, t〉}〉

〈∇,X , σ , P∪ {a#?s, a#?t}〉
(#?a[a])

〈∇,X , σ , P] {a#?[a]t}〉

〈∇,X , σ , P〉

(#?a[b])
〈∇,X , σ , P] {a#?[b]t}〉

〈∇,X , σ , P∪ {a#?t}〉
(#?var)

〈∇,X , σ , P] {a#?π.X}〉

〈{(π−1 · a)#X} ∪∇,X , σ , P〉

Figure 3. Reduction rules for freshness problems.

(≈? refl)
〈∇,X , σ , P] {s≈? s}〉

〈∇,X , σ , P〉
(≈? pair)

〈∇,X , σ , P] {〈s1, t1〉 ≈? 〈s2, t2〉}〉

〈∇,X , σ , P∪ {s1 ≈? s2, t1 ≈? t2}〉

(≈? inv)
〈∇,X , σ , P] {π.X ≈? π

′.X}〉
, if π ′ 6= id

〈∇,X , σ , P∪ {π ⊕ (π ′)−1.X ≈? X}〉
(≈? app)

〈∇,X , σ , P] { f E
k s≈? f E

k t}〉
, if E 6=C

〈∇,X , σ , P∪ {s≈? t}〉

(≈? C)
〈∇,X , σ , P] { f C

k s≈? f C
k t}〉

,

where s = 〈s0, s1〉 and t = 〈t0, t1〉
v = 〈ti, ti+1〉, i = 0, 1

〈∇,X , σ , P∪ {s≈? v}〉

(≈? [aa])
〈∇,X , σ , P] {[a]s≈? [a]t}〉

〈∇,X , σ , P∪ {s≈? t}〉
(≈? [ab])

〈∇,X , σ , P] {[a]s≈? [b]t}〉

〈∇,X , σ , P∪ {s≈? (a b) t, a#?t}〉

(≈? inst)

〈∇,X , σ , P] {π.X ≈? t} or {t ≈? π.X}〉 let σ
′ := σ{X/π

−1 · t}
, if X /∈ var(t)∪X〈

∇,X , σ ′, P{X/π−1 · t} ∪
⋃

Y∈dom(σ ′),
a#Y∈∇

{a#?Y σ ′}
〉

Figure 4. Reduction rules for equational problems.

These inference rules transform a nominal unification problem into a finite set of unification
problems consisting only of fixed point equations, i.e., equations of the form π.X ≈? X , together
with a substitution and a freshness context. P is called a fixed point problem if it is a set of fixed
point equations. We will denote by P≈, P# and Pfp≈ the sets of equations, freshness problems and
fixed point equations in the set P of a unification problem 〈∇,X , P〉.

Also, we use rules described in Figure 5, called unification steps, which give a strategy for
application of rules specified as presented in Figures 4 and 3.

8 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

Differently from Ayala-Rincón et al. (2018a), rule (≈? inst), checks whether the variable X is
a protected variable, before applying the instantiation.

The set X has no effect on the rules for freshness and is not altered by any rule. Rules in Figure
4 will be applied without restrictions by use of rule (υ≈), but freshness constraints are reduced
only when all equations were reduced and the problem consists of fixed point equations. This fact
is expressed by the condition P≈ = Pf p≈ in rule (υ#).

(υ≈)
P⇒≈Q

P⇒υ Q
(υ#)

P⇒# Q
, P≈ = Pf p≈P⇒υ Q

Figure 5. Unification step.

Derivation with rules of Figure 4 is denoted by ⇒≈; thus, 〈∇,X , σ , P〉⇒≈ 〈∇,X , σ ′, P′〉
means that the second quadruple is obtained from the first one by application of one rule. We will
use the standard rewriting nomenclature, e.g., we will say that P is a normal form or irreducible
by ⇒≈, denoted by ⇒≈-nf, whenever there is no Q such that P⇒≈Q; ⇒∗≈ and ⇒+

≈ denote
respectively derivations in zero or more and one or more applications of the rules in Figure 4.
Derivation with rules of Figure 3 is denoted by⇒#.

The theorem below summarises the termination and correctness results regarding the algorithm
proposed.

Theorem 11 (Properties of⇒≈,⇒# and⇒υ).

(1) (Decidability of⇒≈,⇒# and⇒υ) Given a quadruple P , it is possible to decide whether
P is a normal form w.r.t. ⇒≈ (resp. ⇒#) or there exists Q such that P⇒≈Q (resp.
P⇒# Q).

(2) (Termination of⇒≈,⇒# and⇒υ) The relations⇒≈,⇒# and⇒υ are terminating.
(3) (Completeness of⇒#) If P⇒# Q, then 〈∇, σ〉 ∈UC(P) if and only if 〈∇, σ〉 ∈UC(Q).

Proof. The proofs are obtained by adjusting proofs in Ayala-Rincón et al. (2018a) taking into
account the set of variables X .

Remark 12. We will call Q a leaf if it is a normal form w.r.t.⇒υ .

For completeness, we will restrict ourselves to idempotent solutions, in order to obtain such
property, we will restrict the applications of rules to valid quadruples.

Definition 13 (Valid quadruple). P = 〈∇,X , σ , P〉 is valid if im(σ)∩ dom(σ) = /0 and
dom(σ)∩ var(P) = /0.

As for Theorem 11 , the formalisations of Lemmas 14, 15, 16, and Theorems 18 and 20 are quite
similar to the proofs of corresponding lemmas in Ayala-Rincón et al. (2018a). For this reason, they
are omitted.

Lemma 14 (Preservation of valid quadruples).

(1) If P⇒# Q or P⇒≈Q, and P is valid then Q is also valid.
(2) If P⇒υ Q and P is valid then Q is also valid.

Lemma 15 (Preservation of solutions). Let P be a valid quadruple.

Formalisations of Nominal C-Matching Through Unification With Protected Variables 9

(1) If P⇒≈Q and 〈∇, σ〉 ∈UC(Q), then 〈∇, σ〉 ∈UC(P).
(2) If P⇒υ Q and 〈∇, σ〉 ∈UC(Q), then 〈∇, σ〉 ∈UC(P).

Lemma 16 (Completeness of⇒≈ and⇒υ). Let P be a valid quadruple.

(1) If P is not a normal form w.r.t. ⇒≈, then 〈∇, σ〉 ∈UC(P) if and only if there exists Q
such that P⇒≈Q and 〈∇, σ〉 ∈UC(Q).

(2) If P is not a leaf, then 〈∇, σ〉 ∈UC(P) if and only if there exists Q such that P⇒υ Q
and 〈∇, σ〉 ∈UC(Q).

(i) (ii)

P = h;� ;� id� f[a]fh[b](X � Y)� Zi �� [b]fh[a](a �X)� Zigi

h;� ;� id� fX � Y �� b � (ab) 	X�Z �� (ab) 	 Z� a��fh[a](a �X)� Zigi

h;� ;� id�

�

X �� b� Y �� (a b) 	X�
Z �� (a b) 	 Z� a��fh[a](a �X)� Zi

�

i h;� ;� id�

�

X �� (a b) 	X�Y �� b�
Z �� (a b) 	 Z� a��fh[a](a �X)� Zi

�

i

(�� C) (�� C)

(� �) *

hfa�Zg� ;� fX=b� Y=(a b) 	Xg� f(a b) 	 Z �� Zgi hfa�Zg� ;� fY=bg� f(a b) 	X �� X� (a b) 	 Z �� Zgi

(� �) *

(��) *

*

(��) *

(� �)

Figure 6. Derivation tree for nominal C-unification.

Example 17 (Nominal C-unification with X equals to the empty set). This example exhibits the
execution of the nominal C-unification algorithm for the initial problem

P = 〈 /0, /0, id, {[a] f 〈[b](X ∗Y), Z〉 ≈ [b] f 〈[a](a ∗ X), Z〉}〉,
where the set of protected variables (X) is empty; thus, there exists no restriction over the
variables of the problem. Notice that the application of rule (≈? C) generates two branches
that are represented by items (i) and (ii) in the example. The algorithm generates the
leaves 〈{a#Z}, /0, {X/b,Y/(a b).X}, {(a b).Z ≈? Z}〉, and 〈{a#Z}, /0, {Y/b}, {(a b).X ≈?
X , (a b).Z ≈? Z}〉. By Theorem 18, the union of the solutions of these two leaves is equal to
the set of solutions of the initial problem P . As shown in Ayala-Rincón et al. (2017), the com-
plete set of solutions of 〈{a#Z}, /0, {X/b,Y/(a b).X}, {(a b).Z ≈? Z}〉 is unitary whereas the
complete set of solutions of 〈{a#Z}, /0, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z}〉 is infinite. Figure
6 illustrates the C-unification derivation tree for P .

P = 〈 /0, /0, id, {[a] f 〈[b](X ∗Y), Z〉 ≈ [b] f 〈[a](a ∗ X), Z〉}〉
⇒(≈?[ab]) 〈 /0, /0, id, { f 〈[b](X ∗Y), Z〉 ≈? f 〈[b](b ∗ (a b).X), (a b).Z〉, a#? f 〈[a](a ∗ X), Z〉}〉

10 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

⇒(≈?app) 〈 /0, /0, id, {〈[b](X ∗Y), Z〉 ≈? 〈[b](b ∗ (a b).X), (a b).Z〉, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?pair) 〈 /0, /0, id, {[b](X ∗Y)≈? [b](b ∗ (a b).X), Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?[aa]) 〈 /0, /0, id, {X ∗Y ≈? (b ∗ (a b).X), Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

(1)
⇒(≈?C) 〈 /0, /0, id, {X ≈? b, Y ≈? (a b).X , Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inst) 〈 /0, /0, {X/b}, {Y ≈? (a b).X , Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inst) 〈 /0, /0, {X/b, Y/(a b).X}, {Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inv) 〈 /0, /0, {X/b, Y/(a b).X}, {(a b).Z ≈? Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(#?app) 〈 /0, /0, {X/b, Y/(a b).X}, {(a b).Z ≈? Z, a#?〈[a](a ∗ X), Z〉}〉

⇒(#?pair) 〈 /0, /0, {X/b, Y/(a b).X}, {(a b).Z ≈? Z, a#?[a](a ∗ X), a#?Z}〉

⇒(#?a[a]) 〈 /0, /0, {X/b, Y/(a b).X}, {(a b).Z ≈? Z, a#?Z}〉

⇒(#?var) 〈{a#Z}, /0, {X/b,Y/(a b).X}, {(a b).Z ≈? Z}〉
(2)
⇒(≈?C) 〈 /0, /0, id, {X ≈? (a b).X , Y ≈? b, Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inv) 〈 /0, /0, id, {(a b).X ≈? X , Y ≈? b, Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inst) 〈 /0, /0, {Y/b}, {(a b).X ≈? X , Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inv) 〈 /0, /0, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(#?app) 〈 /0, /0, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z, a#?〈[a](a ∗ X), Z〉}〉

⇒(#?pair) 〈 /0, /0, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z, a#?[a](a ∗ X), a#?Z}〉

⇒(#?a[a]) 〈 /0, /0, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z, a#?Z}〉

⇒(#?var) 〈{a#Z}, /0, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z}〉

Theorem 18 (Correctness of⇒∗υ). Let P be a valid quadruple.

(1) (Soundness of⇒∗υ) If P⇒∗υ Q, Q is a leaf and 〈∇, σ〉 ∈UC(Q) then 〈∇, σ〉 ∈UC(P).
(2) (Completeness of⇒∗υ) 〈∇, σ〉 ∈UC(P) if and only if there exists a leaf Q such that P⇒∗υ

Q and 〈∇, σ〉 ∈UC(Q).

Definition 19 (Proper problem). A quadruple P = 〈∆,X , δ , P〉 is called a proper problem if
every commutative function symbol in P has a pair as argument.

Theorem 20 (Characterisation of successful leaves). Let Q = 〈∆,X , δ , Q〉 be a leaf. If Q is a
proper problem and there exists 〈∇, σ〉 ∈UC(Q) with dom(σ)∩X = /0, then Q is a fixed point
problem.

4. Nominal C-matching
In this section we restrict our attention to nominal matching problems: a nominal unification
problem whose solutions should be applied only to the left-hand side of the nominal equations.

Formalisations of Nominal C-Matching Through Unification With Protected Variables 11

We specify a nominal C-matching algorithm that consists of applications of the matching step
rules presented in Figure 7. These rules basically apply the rules in Figures 3, 4 and 5, but now
the set X of protected variables plays an important role and should be defined as the variables
occurring in the right-hand sides of the set of equational constraints P in the input problem.

Definition 21 (Protected variables and C-matching problems). The set of protected variables for
a matching problem 〈∇, P〉 (see Definition 9) is the set of right-hand side variables of the equa-
tional constraints in P, denoted by Rvar(P), i.e., Rvar(P) = {X | s≈? t ∈ P and X ∈ var(t)}. The
quadruple associated with the C-matching problem 〈∇, P〉 is given by 〈∇, Rvar(P), id, P〉.

(µυ)
P⇒υ Q

P⇒µ Q
(µfp)

〈∇,X , σ , P] {π.X ≈? X}〉
, P = Pf p≈〈∇∪ dom(π)#X , X , σ , P〉

Figure 7. Matching step.

When solving a problem according to the rules in Figure 7 using the protected variables given
in Definition 21, the domain of a substitution that is a solution will be disjoint from the set of
right-hand side variables of the problem.

Derivation with rules of Figure 7 is denoted by⇒µ .

Definition 22 (Solution for a C-matching problem). A C-matching solution for a quadruple P
of the form 〈∆, Rvar(P), δ , P〉 is a pair 〈∇, σ〉, where dom(σ)∩ Rvar(P) = /0, and the following
conditions are satisfied:

(1) ∇ ` ∆σ ;
(2) ∇ ` a # tσ , if a#?t ∈ P;
(3) ∇ ` sσ ≈{α,C} t, if s≈? t ∈ P;
(4) there is a substitution λ such that ∇ ` δλ≈σ .

A C-matching solution for the problem 〈∆, P〉 is a solution for 〈∆, Rvar(P), id, P〉, its
associated C-matching problem. The solution set for a matching problem P is denoted by
MC(P).

Remark 23. We will call a quadruple Q a matching leaf if Q is a normal form w.r.t.⇒µ .

4.1 Auxiliary properties of nominal C-matching
We now present the main auxiliary lemmas related with nominal C-unification notions included
in the formalisation.

Lemma 24 (UC and MC equivalence). Let P = 〈∆,X , δ , P〉 be a quadruple. Then, 〈∇, σ〉 ∈
UC(P) if and only if 〈∇, σ〉 ∈MC(P).

Proof. The formalisation follows straightforwardly from the definitions of UC(P) and MC(P).

Lemma 25 (Preservation of Rvar by⇒µ). Let P = 〈∆,X , δ , P〉 and Q = 〈∆′,X , δ ′, Q〉 such
that P⇒µ Q. Then Rvar(Q)⊆ Rvar(P).

12 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

Proof. The formalisation follows by case analysis on the⇒µ reduction.

Corollary 26 (Intersection emptiness preservation with right-hand side variables by⇒µ). Let P
and Q be two quadruples, 〈∆,X , δ , P〉 and 〈∆′,X , δ ′, Q〉, respectively, and Y be an arbitrary
set of variables. If Rvar(P)∩Y = /0 and P⇒µ Q, then Rvar(Q)∩Y = /0.

Proof. This is indeed an easy set theoretically based corollary of Lemma 25.

Corollary 27 (Preservation of valid quadruples by⇒µ). If P⇒µ Q and P is valid then Q is
also valid.

Proof. The formalisation follows from Lemma 14.

Lemma 28 (Decidability of⇒µ). For all quadruple P it is possible to decide whether there exists
Q such that P⇒µ Q. Thus, it is also possible to decide whether P is a leaf.

Proof. The formalisation is obtained by decidability of the relation ⇒υ (item (i) of Theorem
11.)

4.2 Main formalised properties for nominal C-matching
Theorem 29 (Termination of⇒µ). The relation⇒µ is terminating.

Proof. The proof is by case analysis on the derivation rules of the relation ⇒µ , and uses a
lexicographic measure over sets of equation and freshness constraints. The measure is given by

〈
|var(P)|, ∑

s≈?t∈P
|s|+ |t|, |P≈/Pf p≈ |, ∑

a#?s∈P
|s|
〉

Let P = 〈∆,X , δ , P〉 and Q = 〈∇,X , σ , Q〉 such that P⇒µ Q.
For the case of rule (µυ), Theorem 11 item (ii) is applied.
For the case of an application of rule (µfp), one observes that:

(1) |var(Q)| ≤ |var(P)|,
(2) ∑

s≈?t∈Q
|s|+ |t|< ∑

s≈?t∈P
|s|+ |t|,

(3) |Q≈/Q f p≈ |= |P≈/Pf p≈ | and

(4) ∑
a#?s∈Q

|s|= ∑
a#?s∈P

|s|.

Therefore the measure also decreases in this case, which concludes the proof.

Lemma 30 (Preservation of solutions by⇒µ). Let P = 〈∆,X , δ , P〉 be a valid quadruple and
Q = 〈∆′,X , δ ′, Q〉. If Rvar(P)∩ dom(σ) = /0, P⇒µ Q and 〈∇, σ〉 ∈MC(Q), then 〈∇, σ〉 ∈
MC(P).

Proof. The proof is by case analysis on the derivation rules of⇒µ .
According Definition 22, one has Rvar(Q)∩ dom(σ) = /0. From this, the hypothesis Rvar(P)∩

dom(σ) = /0 and using Lemmas 15 (item (i)) and 24 one concludes the case of rule (µυ).

Formalisations of Nominal C-Matching Through Unification With Protected Variables 13

For the case of rule (µfp), one needs to conclude the conditions of Definition 22 for the pair
〈∇, σ〉 w.r.t. P . Condition (iv) is trivially satisfied. The first condition is proved just observ-
ing that every constraint a#X in ∆ is also in ∆∪ dom(π). The second condition is easily proved
from the fact that if a#?s∈ P] {π.X ≈? X} then a#?s∈ P. Then, one applies the hypothesis
〈∇, σ〉 ∈MC(Q) using Definition 22, item (ii), to conclude. The third condition is proved by anal-
ysis of two cases. The first case is when s≈? t ∈ P] {π.X ≈? X} being the equation s≈? t equal
to π.X ≈? X . In this case, one starts proving the statement X ∩ dom(σ) = /0 using the hypothesis
Rvar(P] {π.X ≈? X})∩ dom(σ) = /0. From this, (π.X)σ can be replaced by π.X in the objec-
tive ∇ ` πXσ ≈{α,C} X , remaining to prove that ∇ ` π.X ≈{α,C} X . Then, using the condition
(i) of Definition 22 of hypothesis 〈∇, σ〉 ∈MC(Q) one has that ∇ ` (∆∪ dom(π)#X)σ . Since
X /∈ dom(σ), one concludes that dom(π)#X ⊆∇ and then the objective is proved using the defini-
tion of≈{α,C} for the case of suspensions. The second case is when s≈? t ∈ P. This case is trivial,
and uses hypothesis 〈∇, σ〉 ∈MC(Q) with Definition 22, item (iii).

Theorem 31 (Completeness of⇒µ). Let P = 〈∆,X , δ , P〉 a valid quadruple that is not a match-
ing leaf, if Rvar(P)∩ dom(σ) = /0, then 〈∇, σ〉 ∈MC(P) if and only if there exists Q such that
P⇒µ Q and 〈∇, σ〉 ∈MC(Q).

Proof. Necessity is proved by case analysis on the derivation rules of⇒µ .
Lemma 28 is applied to the premise that P is not a matching leaf to obtain that there exists

Q′ such that P⇒µ Q′. Then for the case of rule (µυ), using Lemmas 16 (item (iii)) and 24 it is
proved the assertion that there exists Q′′ such that P⇒υ Q′′ and 〈∇, σ〉 ∈UC(Q

′). From this,
using again Lemma 24, applying rule (µυ) and using Corollary 26 one concludes.

For the case of rule (µfp), P = 〈∆,X , δ , P′] {π.X ≈? X}〉 with P′ = P′f p≈ . The quadruple
Q = 〈∆∪ dom(π)#X ,X , δ , P〉 will be a witness. Thus, P⇒µ Q follows by an application of
rule (µfp). To prove that 〈∇, σ〉 ∈MC(Q), one has to show that the conditions of Definition 22
are satisfied, having as hypothesis that 〈∇, σ〉 ∈MC(P). Conditions (ii), (iii) and (iv) are trivially
verified and intersection emptiness is proved using Corollary 26. For condition (i), a constraint
a#X is chosen that is in ∆∪ dom(π)#X to analyse if it is either in ∆ or dom(π)#X . If a#X is
in ∆ the proof is trivial, otherwise one first proves the assertion that {X} ∩ dom(σ) = /0 from the
hypotheses that P is valid and Rvar(P)∩ dom(σ) = /0. This allows to replace every Xσ and every
(π.X)σ , respectively, just by X and π.X , because X /∈ dom(σ). Since π.X ≈? X is in P] {π.X ≈?
X} and 〈∇, σ〉 ∈MC(P), we have that ∇ ` (π.X)σ ≈{α,C} X , therefore ∇ ` π.X ≈{α,C} X and
then dom(π)#X ⊆∇. On the other hand, having a∈ dom(π) as hypothesis, one has to prove that
∇ ` a#Xσ , which is the same as ∇ ` a#X . Using the fact that dom(π)#X ⊆∇, one concludes.

Sufficiency is formalised as a direct consequence of Lemma 30.

Theorem 32 (Soundness of⇒∗µ). Let P = 〈∆,X , δ , P〉 be a valid quadruple and P⇒∗µ Q. If Q
is a matching leaf and 〈∇, σ〉 ∈MC(Q) such that Rvar(P)∩ dom(σ) = /0 then 〈∇, σ〉 ∈MC(P).

Proof. The proof uses Corollaries 27 and 26 and Lemma 30, and it is done by induction on the
number of steps of⇒µ . If P =Q the proof is trivial. In the case where P⇒µ Q, Lemma 30 is
applied to conclude. When P⇒µ R and R⇒∗µ Q, one uses Lemma 30, IH and Lemmas 27 and
26 to conclude.

Theorem 33 (Completeness of ⇒∗µ). Let P = 〈∆,X , δ , P〉 be a valid quadruple and 〈∇, σ〉 ∈
MC(P). Then there exists a matching leaf Q such that P⇒∗µ Q and 〈∇, σ〉 ∈MC(Q).

Proof. The formalisation follows by well-founded induction on the number of applications of⇒µ .
Also, Lemma 28 is applied in the analysis of the cases where either P is a matching leaf or there

14 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

exists Q′ such that P⇒µ Q′. If P is a matching leaf then P =Q and the proof is completed. If
there exists Q′ such that P⇒µ Q′, one applies Lemma 28 to obtain that P is not a matching leaf.
Lemma 31 is applied to the premise that P is not a matching leaf. From this and the hypothesis
〈∇, σ〉 ∈MC(P) one obtains that there exists Q′ such that P⇒µ Q′.

The IH is established as the following statement: ∀R valid, if P⇒µ R, Rvar(R)∩ dom(σ)
and 〈∇, σ〉 ∈MC(R), then there exists S , such that R⇒∗µ S and 〈∇, σ〉 ∈MC(S). This is
applied to the hypothesis P⇒µ Q′ to conclude that there exists Q, such that Q′⇒∗µ Q and
〈∇, σ〉 ∈MC(Q

′). The other premises of IH are achieved with the auxiliary results given by
Lemma 27 and Corollary 26. Finally, by case analysis on the statement Q′⇒∗µ Q, one concludes.

Theorem 34 (Characterisation of successful matching leaves). Let Q = 〈∆,X , δ , Q〉 a matching
leaf, if Q is a proper problem and there exists 〈∇, σ〉 ∈MC(Q), then Q = /0.

Proof. First one proves the assertion that Q is a fixed point problem. This statement is proved using
Theorem 20, Lemma 24 and rule (µυ) of the definition of matching step (Figure 7). Therefore,
if Q is a fixed problem it must be equal to the empty set, otherwise Q could be reduced by an
application of rule (µfp) of Figure 7, which contradicts the fact that Q is a matching leaf.

Example 35 (Nominal C-matching). This example is similar to Example 17, but now the set of
protected variables is equal to the right-hand side variables of the initial problem, that is {X , Z}.
This results in the execution of the nominal C-matching algorithm that provides the matching
leaves

〈 /0, {X , Z}, { Y/(a b).X}, {X ≈? b, (a b).Z ≈? Z, a#? f 〈[a](a ∗ X), Z〉}〉,

and, 〈{a#X , b#X , a#Z, b#Z}, {X , Z}, {Y/b}, /0〉.

Since X is a protect variable, the former problem has no solution due the fact that the equation
X ≈? b cannot be solved since X cannot be instantiated. The latter problem has just one solu-
tion given by 〈{a#X , b#X , a#Z, b#Z}, {Y/b}〉. Theorems 32 and 33 show that this solution is the
unique C-matching solution for the initial problem.

P = 〈 /0, {X , Z}, id, {[a] f 〈[b](X ∗Y), Z〉 ≈ [b] f 〈[a]((a ∗ X)), Z〉}〉
⇒(≈?[ab]) 〈 /0, {X , Z}, id, { f 〈[b](X ∗Y), Z〉 ≈? f 〈[b](b ∗ (a b).X), (a b).Z〉, a#? f 〈[a](a ∗

X), Z〉}〉
⇒(≈?app) 〈 /0, {X , Z}, id, {〈[b](X ∗Y), Z〉 ≈? 〈[b](b ∗ (a b).X), (a b).Z〉, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?pair) 〈 /0, {X , Z}, id, {[b](X ∗Y)≈? [b](b ∗ (a b).X), Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?[aa]) 〈 /0, {X , Z}, id, {X ∗Y ≈? (b ∗ (a b).X), Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

(1)
⇒(≈?C) 〈 /0, {X , Z}, id, {X ≈? b, Y ≈? (a b).X , Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inst) 〈 /0, {X , Z}, {Y/(a b).X}, {X ≈? b, Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inv) 〈 /0, {X , Z}, { Y/(a b).X}, {X ≈? b, (a b).Z ≈? Z, a#? f 〈[a](a ∗ X), Z〉}〉
(2)
⇒(≈?C) 〈 /0, {X , Z}, id, {X ≈? (a b).X , Y ≈? b, Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inv) 〈 /0, {X , Z}, id, {(a b).X ≈? X , Y ≈? b, Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

Formalisations of Nominal C-Matching Through Unification With Protected Variables 15

⇒(≈?inst) 〈 /0, {X , Z}, {Y/b}, {(a b).X ≈? X , Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inv) 〈 /0, {X , Z}, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(#?app) 〈 /0, {X , Z}, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z, a#?〈[a](a ∗ X), Z〉}〉

⇒(#?pair) 〈 /0, {X , Z}, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z, a#?[a](a ∗ X), a#?Z}〉

⇒(#?a[a]) 〈 /0, {X , Z}, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z, a#?Z}〉

⇒(#?var) 〈{a#Z}, {X , Z}, {Y/b}, {(a b).X ≈? X , (a b).Z ≈? Z}〉

⇒(µfp) 〈{a#X , b#X , a#Z}, {X , Z}, {Y/b}, {(a b).Z ≈? Z}〉

⇒(µfp) 〈{a#X , b#X , a#Z, b#Z}, {X , Z}, {Y/b}, /0〉

Example 36 (Nominal C-equivalence checking). This example exhibits the execution of the
nominal C-unification algorithm applied to nominal C-equivalence check. In item (a), the set of
protected variables, {X ,Y, Z}, consists now of all variables in the input problem. The algorithm
generates two leaves

〈 /0, {X ,Y, Z}, id, {X ≈? b, Y ≈? (a b).X , (a b).Z ≈? Z, a#? f 〈[a](a ∗ X), Z〉}〉

and, 〈 /0, {X ,Y, Z}, id, {(a b).X ≈? X , Y ≈? b, (a b).Z ≈? Z, a#? f 〈[a](a ∗ X), Z〉}〉.
Both are quadruples that have equations without solutions. In the former one, the X cannot be

instantiated to solve X ≈? b, and in the latter one, Y cannot be instantiated to solve Y ≈? b.
In item (b), the set of protected variables, {X ,Y}, consists also of all variables in the input

problem, but the generated leaves are

〈 /0, {X ,Y}, id, {X ≈? b, b≈? (a b).X , (a b).Y ≈? Y, a#? f 〈[a](a ∗ X),Y 〉}〉

and, 〈{a#X , b#X , a#Y, b#Y}, {X ,Y}, id, /0〉
The first leaf has also equations with the protected variable X . Namely, in equations X ≈? b and

b≈? (a b).X X cannot be instantiated. Thus, neither equation has solutions. On the other branch,
the second leaf provides a solution given by the freshness context {a#X , b#X , a#Y, b#Y}.

(a) 〈 /0, {X ,Y, Z}, id, {[a] f 〈[b](X ∗Y), Z〉 ≈ [b] f 〈[a](a ∗ X), Z〉}〉

⇒(≈?[ab]) 〈 /0, {X ,Y, Z}, id, { f 〈[b](X ∗Y), Z〉 ≈? f 〈[b](b ∗ (a b).X), (a b).Z〉, a#? f 〈[a](a ∗
X), Z〉}〉

⇒(≈?app) 〈 /0, {X ,Y, Z}, id, {〈[b](X ∗Y), Z〉 ≈? 〈[b](b ∗ (a b).X), (a b).Z〉, a#? f 〈[a](a ∗
X), Z〉}〉

⇒(≈?pair) 〈 /0, {X ,Y, Z}, id, {[b](X ∗Y)≈? [b](b ∗ (a b).X), Z ≈? (a b).Z, a#? f 〈[a](a ∗
X), Z〉}〉

⇒(≈?[aa]) 〈 /0, {X ,Y, Z}, id, {X ∗Y ≈? (b ∗ (a b).X), Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

(1)
⇒(≈?C) 〈 /0, {X ,Y, Z}, id, {X ≈? b, Y ≈? (a b).X , Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inv) 〈 /0, {X ,Y, Z}, id, {X ≈? b, Y ≈? (a b).X , (a b).Z ≈? Z, a#? f 〈[a](a ∗ X), Z〉}〉

16 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

(2)
⇒(≈?C) 〈 /0, {X ,Y, Z}, id, {X ≈? (a b).X , Y ≈? b, Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inv) 〈 /0, {X ,Y, Z}, id, {(a b).X ≈? X , Y ≈? b, Z ≈? (a b).Z, a#? f 〈[a](a ∗ X), Z〉}〉

⇒(≈?inv) 〈 /0, {X ,Y, Z}, id, {(a b).X ≈? X , Y ≈? b, (a b).Z ≈? Z, a#? f 〈[a](a ∗ X), Z〉}〉

(b) 〈 /0, {X ,Y}, id, {[a] f 〈[b](X ∗ b),Y 〉 ≈ [b] f 〈[a](a ∗ X),Y 〉}〉

⇒(≈?[ab]) 〈 /0, {X ,Y}, id, { f 〈[b](X ∗ b),Y 〉 ≈? f 〈[b](b ∗ (a b).X), (a b).Y 〉, a#? f 〈[a](a ∗
X),Y 〉}〉

⇒(≈?app) 〈 /0, {X ,Y}, id, {〈[b](X ∗ b),Y 〉 ≈? 〈[b](b ∗ (a b).X), (a b).Y 〉, a#? f 〈[a](a ∗ X),Y 〉}〉

⇒(≈?pair) 〈 /0, {X ,Y}, id, {[b](X ∗ b)≈? [b](b ∗ (a b).X), Y ≈? (a b).Y, a#? f 〈[a](a ∗ X),Y 〉}〉

⇒(≈?[aa]) 〈 /0, {X ,Y}, id, {X ∗ b≈? (b ∗ (a b).X), Y ≈? (a b).Y, a#? f 〈[a](a ∗ X),Y 〉}〉

(1)
⇒(≈?C) 〈 /0, {X ,Y}, id, {X ≈? b, b≈? (a b).X , Y ≈? (a b).Y, a#? f 〈[a](a ∗ X),Y 〉}〉

⇒(≈?inv) 〈 /0, {X ,Y}, id, {X ≈? b, b≈? (a b).X , (a b).Y ≈? Y, a#? f 〈[a](a ∗ X),Y 〉}〉
(2)
⇒(≈?C) 〈 /0, {X ,Y}, id, {X ≈? (a b).X , b≈? b, Y ≈? (a b).Y, a#? f 〈[a](a ∗ X),Y 〉}〉

⇒(≈?inv) 〈 /0, {X ,Y}, id, {(a b).X ≈? X , b≈? b, Y ≈? (a b).Y, a#? f 〈[a](a ∗ X),Y 〉}〉
⇒(≈?refl) 〈 /0, {X ,Y}, id, {(a b).X ≈? X , Y ≈? (a b).Y, a#? f 〈[a](a ∗ X),Y 〉}〉
⇒(≈?inv) 〈 /0, {X ,Y}, id, {(a b).X ≈? X , (a b).Y ≈? Y, a#? f 〈[a](a ∗ X),Y 〉}〉
⇒(≈?app) 〈 /0, {X ,Y}, id, {(a b).X ≈? X , (a b).Y ≈? Y, a#?〈[a](a ∗ X),Y 〉}〉
⇒(≈?pair) 〈 /0, {X ,Y}, id, {(a b).X ≈? X , (a b).Y ≈? Y, a#?[a](a ∗ X), a#?Y}〉
⇒(≈?a[a]) 〈 /0, {X ,Y}, id, {(a b).X ≈? X , (a b).Y ≈? Y, a#?Y}〉
⇒(≈?var) 〈{a#Y}, {X ,Y}, id, {(a b).X ≈? X , (a b).Y ≈? Y}〉
⇒(µfp) 〈{a#X , b#X , a#Y}, {X ,Y}, id, {(a b).Y ≈? Y}〉

⇒(µfp) 〈{a#X , b#X , a#Y, b#Y}, {X ,Y}, id, /0〉

5. Adapting the recursive nominal C-unification algorithm to handle protected
variables

In this section we present a recursive matching algorithm obtained by adapting the algorithm
presented by Ayala-Rincón et al. (2019), and discuss the most interesting aspects of the adaptation.

The functional algorithm for nominal C-unification let us unify two terms t and s. By using
the appropriate set of protected variables, the algorithm can be adapted to do C-matching and
C-equality checking. The algorithm is recursive (see Algorithm 1) and keeps track of the pro-
tected variables, the current context, the substitutions done so far, the remaining terms left to
unify and the current fixed point equations. Therefore, the algorithm receives as input a quintuple
(X , ∆, σ , PrbLst, FPEqLst), where X is the set of protected variables, ∆ is the context we are
working with, σ represents the substitutions already made, PrbLst is a list of equations we must

Formalisations of Nominal C-Matching Through Unification With Protected Variables 17

still solve (each equation t ≈? s is represented as a pair (t, s) in Algorithm 1) and FPEqLst is a
list of fixed point equations we have already computed.

Remark 37. In contrast with Ayala-Rincón et al. (2018a), Algorithm 1 has an extra parameter to
store fixed point equations. This let us test termination of the algorithm just by checking if PrbLst
is empty.

The first call to the algorithm in order to unify the terms t and s is simply:
UNIFY(/0, /0, id, [(t, s)], /0). The algorithm eventually terminates, returning a list (possibly empty)
of triples of the form (∆, σ , FPEqLst). These triples correspond to the leafs of the algorithm of
Ayala-Rincón et al. (2018a).

Although long, the algorithm is simple. It starts by analysing the list of terms it needs to unify.
If PrbLst is an empty list, then it has finished and can return the answer computed so far, which is
the list: [(∆, σ , FPEqLst)]. If PrbLst is not empty, then there are terms to unify, and the algorithm
starts by trying to unify the terms t and s in the head of the list. The algorithm calls itself on
progressively simpler versions of the problem until it finishes.

5.1 Main algorithm and modifications made
The pseudocode for the algorithm is presented in Algorithm 1. In relation to the algorithm pre-
sented in Ayala-Rincón et al. (2019), the only changes are: checking, in lines 6, 24 and 25 whether
the variable X is in X or not, and the addition of the parameter X for a set of protected variables,
which remains constant in the execution of the algorithm.

5.2 Auxiliary functions
Following the approach of Ayala-Rincón et al. (2016), freshness constraints are handled by aux-
iliary functions, making the main function UNIFY smaller. To deal with the freshness constraints,
the following auxiliary functions, which come from Ayala-Rincón et al. (2016), were used:

• fresh subs?(σ , ∆) returns the minimal context (∆′ in Algorithm 1) in which a#?Xσ holds,
for every a#X in the context ∆.

• fresh?(a, t) computes and returns the minimal context (∆′ in Algorithm 1) in which a is
fresh in t.

The two functions also return a Boolean (bool1 in Algorithm 1), to indicate if it was possible to
find the mentioned context.

5.3 Interesting points on adapting the algorithm to handle protected variables
After the addition of protected variables, the proofs of soundness and completeness remained
essentially the same as their previous versions, which were described in Ayala-Rincón et al.
(2019). The interesting points in this regard are in Remarks 38 and 39.

Remark 38. In a preliminary attempt to extend the algorithm to handle protected variables, we
considered reusing the previous code but checking, before instantiating a moderated variable π.X ,
whether X was in X or not. If it was, and the other term was not also of the form π.X we
would return an empty list of solutions, as X cannot be instantiated. If X was not in X , the
algorithm would ran as before. This naive approach fails. Consider, for instance, the case where
you are trying to unify π.X with π ′.Y and X is a protected variable but Y is not. In this case, the

18 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

Algorithm 1 - First Part - Functional Nominal C-Unification
1: procedure UNIFY(X , ∆, σ , PrbLst, FPEqLst)
2: if nil?(PrbLst) then
3: return list((∆, σ , FPEqLst))
4: else
5: cons((t, s), PrbLst ′) = PrbLst
6: if (s matches π.X) and (X not in t) and (X not in X) then
7: σ ′ = {X/π−1 · t}
8: σ ′′ = σ ′ ◦ σ

9: (∆′, bool1) = fresh subs?(σ ′, ∆)
10: ∆′′ = ∆∪ ∆′

11: PrbLst ′′ = append((PrbLst ′)σ ′, (FPEqLst)σ ′)
12: if bool1 then return UNIFY(X , ∆′′, σ ′′, PrbLst ′′, nil)
13: else return nil
14: end if
15: else
16: if t matches ā then
17: if s matches ā then
18: return UNIFY(X , ∆, σ , PrbLst ′, FPEqLst)
19: else
20: return nil
21: end if
22: else if t matches π.X then
23: if X not in s then
24: if X not in X then
25: return nil
26: else
27: . Similar to case above where s is a suspension
28: end if
29: else if (s matches π ′.X) then
30: FPEqLst ′ = FPEqLst ∪ { π · X ≈α π ′ · X}
31: return UNIFY(X , ∆, σ , PrbLst ′, FPEqLst ′)
32: else return nil
33: end if
34: else if t matches 〈〉 then
35: if s matches 〈〉 then
36: return UNIFY(X , ∆, σ , PrbLst ′, FPEqLst)
37: else return nil
38: end if
39: else if t matches 〈t1, t2〉 then
40: if s matches 〈s1, s2〉 then
41: PrbLst ′′ = cons((s1, t1), cons((s2, t2), PrbLst ′))
42: return UNIFY(X , ∆, σ , PrbLst ′′, FPEqLst)
43: else return nil
44: end if
45: else if t matches [a]t1 then
46: if s matches [a]s1 then
47: PrbLst ′′ = cons((t1, s1), PrbLst ′)
48: return UNIFY(X , ∆, σ , PrbLst ′′, FPEqLst)
49: else if s matches [b]s1 then
50: (∆′, bool1) = f resh?(a, s1)
51: ∆′′ = ∆∪ ∆′

52: PrbLst ′′ = cons((t1, (a b) s1), PrbLst ′)
53: if bool1 then
54: return UNIFY(X , ∆′′, σ , PrbLst ′′, FPEqLst)
55: else return nil
56: end if
57: else return nil
58: end if

Formalisations of Nominal C-Matching Through Unification With Protected Variables 19

Algorithm 1 - Second Part - Functional Nominal C-Unification
59: else if t matches f t1 then . f is not commutative
60: if s matches f s1 then
61: PrbLst ′′ = cons((t1, s1), PrbLst ′)
62: return UNIFY(X , ∆, σ , PrbLst ′′, FPEqLst)
63: else return nil
64: end if
65: else . t is of the form f C(t1, t2)
66: if s matches f C(s1, s2) then
67: PrbLst1 = cons((s1, t1), cons((s2, t2), PrbLst ′))
68: sol1 = UNIFY(X , ∆, σ , PrbLst1, FPEqLst)
69: PrbLst2 = cons((s1, t2), cons((s2, t1), PrbLst ′))
70: sol2 = UNIFY(X , ∆, σ , PrbLst2, FPEqLst)
71: return APPEND(sol1, sol2)
72: else return nil
73: end if
74: end if
75: end if
76: end if
77: end procedure

instantiation X/(π−1 ⊕ π ′).Y is not possible, but the algorithm should not return an empty list of
solutions as the instantiation Y/(π ′−1 ⊕ π).X is feasible.

Remark 39. The theorems of soundness and completeness of the algorithm had to be specified
again, as the algorithm now has a new parameter X for the protected variables. In their new
specification, it is not possible to plug in Rvar(PrbLst) (where Rvar(PrbLst) is the set of vari-
ables occurring in the right-hand side of the list of unification problems) as the set of protected
variables X directly since the proofs of correctness and completeness are done by induction and
from one recursive call of the algorithm to another the set Rvar(PrbLst) may change, while X
remains unchanged. The correct way to proceed is to prove the soundness and completeness of
the algorithm with an arbitrary set of protected variables X and then, by a suitable choice of X ,
obtain as corollaries the correctness of the algorithm for unification and matching.

5.4 Example of the algorithm
Example 40 illustrates the execution of the algorithm.

Example 40. This example shows how the algorithm proceeds in order to unify f C〈(a b).X , a〉
and f C〈a, b〉. Notice we have X = /0 in all calls to the function UNIFY.

20 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

UNIFY(/0, /0, id, [f C〈(a b).X , a〉 ≈α f C〈a, b〉], /0)

UNIFY(/0, /0, id, [(a b) · X ≈α b, a≈α a], /0)

UNIFY(/0, /0, {X/a}, [a≈α a], /0)

UNIFY(/0, /0, {X→ a}, nil, /0)

(/0, {X→ a}, /0)

UNIFY(/0, /0, id, [(a b) · X ≈α a, a≈α b], /0)

UNIFY(/0, /0, {X/b}, [a≈α b], /0)

nil

6. Experiments comparing implementations
PVSIO is a PVS package that extends the ground evaluator with a predefined library of imperative
programming languages features, among them input and output operators [Muñoz and Butler
(2003)]. For our purposes, this means that we can run the formalised PVS function that performs
unification with the help of the ground evaluator, and use the input and output capabilities provided
by PVSIO to perform meaningful experiments.

Experiments to compare the Python 3 implementation with the executable code that can be
run inside PVS via the PVSIO feature have been made. In the next sections, we describe the
methodology used and present and discuss the results obtained so far.

6.1 Methodology
To compare the Python and the PVS implementation, we generated a fixed number of terms t
and s to be unified and ran the implementations, measuring the time. By printing the Python
results in the same way as the PVS implementation prints, it was possible to check whether the
implementations match or not and how long each one took to unify. The results can be seen in
Table 4.

Remark 41. The machine that ran the experiments has the following specifications:

• Operating System - MacOS High Sierra

• Processor - 3,6GHz Intel Core i7

• Memory - 16GB 2400 MHz DDR4

• Graphics - Radeon Pro 560 4096 MB

We generate the term t randomly according to the probabilities presented in Table 1. The num-
ber of different atoms, variables, function symbols and commutative function symbols is shown
in Table 2. Finally, to generate a permutation, we first define a probability p (0≤ p≤ 1) of gener-
ating a new swapping. Then, we generate a random number n between 0 and 1. If n > p we stop
generating swappings and return the permutation (i.e., the list of swappings) constructed so far. If
n≤ p we generate a new swapping, add this swapping to our current list of swappings and go back
to generating a new random number n. We repeat the procedure until we fall in the case n > p. We
used p = 0.5 in our experiments.

Finally, we generate the term s as a “copy with modifications” of the term t. These modifications
are:

Formalisations of Nominal C-Matching Through Unification With Protected Variables 21

Table 1. Probability of generating each type of term.

Type of term Probability

Atom 0.1

Moderated Variable 0.2

Unit 0.1

Abstraction 0.2

Pair 0.1

Function application 0.2

Commutative function application 0.1

Table 2. Number of different atoms, variables, function symbols and commutative function symbols.

Type of term Number of different terms in our domain

Atom 10

Variable 10

Function symbols 5

Commutative function symbols 5

Table 3. Probability of making modifications in the term s when constructing it from the term t.

Type of modification Probability

pvar 0.05

pC 0.5

pabs 0.5

patom 0.1

• With probability pvar we substitute part of the term t by a random moderated variable.

• If we encounter a commutative function application in t, with probability pC we change the
order of the two arguments.

• If we encounter an abstraction, with probability pabs we correctly change the atom being
abstracted (for instance, change a term [a]t ′ to a term [b](a b) · t ′).
• If we encounter an atom, with probability patom, we change the atom.

The probabilities of doing these modifications are shown in Table 3.

Remark 42. Notice that if we encounter an atom in the term t and change it when constructing
the term s this may result in non unifiable terms t and s. This is precisely what we hoped to
accomplish, since we also want to test how the algorithm runs when the terms are not unifiable.

22 M. Ayala-Rincón, M. Fernández, W. de Carvalho-Segundo, G. Silva, D. Nantes-Sobrinho

Table 4. Time each implementation took to unify a given number of terms.

Number of unification problems Python - time PVS - time

1000 < 1s 43s

2000 < 1s 1min24s

10000 3s Error - stack overflow

6.2 Results and interpretation
First we checked if both implementations gave equal results, which was indeed the case. Next, we
measured the running time, according to the number of terms being unified. The results are shown
in Table 4.

The results show that the Python implementation is faster (which was expected since the PVS
implementation is not LISP executing directly, but LISP executing under the PVS environment,
which adds an overhead). What was not expected was the difference in the performance of the
two implementations. Other surprising event was the PVS implementation giving an error when
the number of unification problems grew to 10000.

7. Conclusion and Future Work
This paper presents an extension of the nominal C-unification algorithm proposed in Ayala-Rincón
et al. (2018a), which permits the use of protected variables. When the set of protected variables
is the set of variables in the right-hand side of nominal equational problems given as input, the
algorithm outputs a nominal C-matcher for the input problem if one exists. If all the variables of a
nominal unification problem are protected, the algorithm becomes a nominal C-equality checker.
The nominal C-matching algorithm was checked through a formalisation in Coq which reused a
formalisation of the unification algorithm in Ayala-Rincón et al. (2018a) plus additional formali-
sations related with the main desired properties of the C-matching algorithm that are termination,
soundness and completeness.

This paper also extends the functional nominal C-unification algorithm of Ayala-Rincón et al.
(2019), by adding a parameter for the set of protected variables. Moreover, experiments comparing
the Python implementation with the executable code generated by PVS are performed and the
results are discussed.

We are currently investigating why the PVS performance was significantly slower than the
Python implementation and if the PVS implementation systematically fails when dealing with a
large number of unification problems. We also plan on refining our experiment, by generating a
fixed amount of unification problems (in our case 1000, 2000 and 10000 unification problems)
a multiple number of times (instead of only one) and calculating the average of time that each
implementation takes. To enhance the experiments, one could devise a recursive algorithm from
the inductive set of rules of Ayala-Rincón et al. (2018a) and prove its correctness and completeness
in Coq. This could be done by giving a heuristic on how to apply the rules (notice that the rules are
non-deterministic and for a given P there may be more than one applicable reduction rule). Then,
using the Coq feature of code extraction we would obtain executable code and we would be able to
compare the Python implementation with this other implementation. With the Coq code extraction
feature, we can obtain code in OCaml or Haskell that runs independently of the Coq environment.
Therefore, we expect the code extracted this way to have a better performance than the PVS
implementation and a competitive performance in relation to the Python implementation, although
this needs to be verified with careful experiments. Other possible paths of future work include

Formalisations of Nominal C-Matching Through Unification With Protected Variables 23

investigating the formalisation of nominal AC-unification and matching, dealing with restricted
cases such as linear AC-matching and working with unification modulo more general theories.

References
Ayala-Rincón, M., Carvalho-Segundo, W., Fernández, M., and Nantes-Sobrinho, D. 2017. On Solving Nominal Fixpoint

Equations. In Proc. of the 11th Int. Symp. on Frontiers of Combining Systems (FroCoS), volume 10483 of LNCS, pp.
209–226. Springer.

Ayala-Rincón, M., Carvalho-Segundo, W., Fernández, M., and Nantes-Sobrinho, D. 2018a. Nominal C-Unification. In
Post-proc. of the 27th Int. Symp. Logic-based Program Synthesis and Transformation (LOPSTR 2017), volume 10855 of
LNCS, pp. 235–251. Springer.

Ayala-Rincón, M., de Carvalho-Segundo, W., Fernández, M., Nantes-Sobrinho, D., and Rocha-Oliveira, A. 2019. A
Formalisation of Nominal alpha-equivalence with A, C, and AC Function Symbols. Theor. Comput. Sci., 781:3–23.

Ayala-Rincón, M., Fernández, M., and Nantes-Sobrinho., D. 2016. Nominal Narrowing. In Proc. of the 1st Int. Conf. on
Formal Structures for Computation and Deduction (FSCD), volume 52 of LIPIcs, pp. 11:1–11:17.

Ayala-Rincón, M., Fernández, M., and Nantes-Sobrinho, D. 2018b. Fixed Point Constraints for Nominal Equational
Unfication. In Proc. of the 3rd Int. Conf. Formal Structures for Computation and Deduction (FSCD), volume 108 of
LIPIcs, pp. 7:1–7:16.

Ayala-Rincón, M., Fernández, M., and Rocha-oliveira, A. C. 2016. Completeness in PVS of a Nominal Unification
Algorithm. ENTCS, 323:57–74.

Ayala-Rincón, M., Fernández, M., Silva, G., and Nantes-Sobrinho, D. 2019. A Certified Functional Nominal C-
Unification Algorithm. In Pre-proc. of the 29th Int. Symp. Logic-based Program Synthesis and Transformation
(LOPSTR).

Ayala-Rincón, M., de Carvalho-Segundo, W., Fernández, M., and Nantes-Sobrinho, D. 2019. A Formalisation of
Nominal C-Matching through Unification with Protected Variables. ENTCS, 344:47 – 65.

Baader, F. 1986. The Theory of Idempotent Semigroups is of Unification Type Zero. J. of Autom. Reasoning, 2(3):283–286.
Baader, F. and Schulz, K. U. 1996. Unification in the Union of Disjoint Equational Theories: Combining Decision

Procedures. J. of Sym. Computation, 21(2):211–243.
Baader, F. and Snyder, W. 2001. Unification Theory. In Handbook of Automated Reasoning (in 2 volumes), pp. 445–532.

Elsevier and MIT Press.
Calvès, C. F. 2010. Complexity and implementation of nominal algorithms. PhD Thesis, King’s College London.
Calvès, C. F. and Fernández, M. 2011. The First-order Nominal Link. In Proc. of the 20th Int. Symp. Logic-based Program

Synthesis and Transformation (LOPSTR), volume 6564 of LNCS, pp. 234–248. Springer.
Contejean, E. 2004. A Certified AC Matching Algorithm. In Proc. of the 15th Int. Conf. on Rewriting Techniques and

Applications, (RTA), volume 3091 of LNCS, pp. 70–84. Springer.
Fages, F. 1987. Associative-Commutative Unification. J. of Sym. Computation, 3:257–275.
Kapur, D. and Narendran, P. 1986. NP-Completeness of the Set Unification and Matching Problems. In 8th International

Conference on Automated Deduction (CADE), volume 230 of LNCS, pp. 489–495. Springer.
Kapur, D. and Narendran, P. 1987. Matching, Unification and Complexity. SIGSAM Bulletin, 21(4):6–9.
Kapur, D. and Narendran, P. 1992. Complexity of Unification Problems with Associative-Commutative Operators. J. of

Autom. Reasoning, 9(2):261–288.
Levy, J. and Villaret, M. 2010. An Efficient Nominal Unification Algorithm. In Proc. of the 21st Int. Conf. on Rewriting

Techniques and Applications (RTA), volume 6 of LIPIcs, pp. 209–226.
Muñoz, C. and Butler, R. 2003. Rapid prototyping in PVS. Technical Report NASA/CR-2003-212418, NIA-2003-03,

NASA Langley Research Center (NIA).
Pitts, A. M. 2013. Nominal Sets. Number 57 in Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press.
Schmidt-Schauß, M., Kutsia, T., Levy, J., and Villaret, M. 2017. Nominal Unification of Higher Order Expressions with

Recursive Let. In Post-proc. of the 26th Int. Sym. on Logic-Based Program Synthesis and Transformation (LOPSTR 2016),
volume 10184 of LNCS, pp. 328–344. Springer.

Siekmann, J. H. 1979. Matching under commutativity. In Proc. of the Int. Symposium on Symbolic and Algebraic
Manipulation (EUROSAM), volume 72 of LNCS, pp. 531–545. Springer.

Siekmann, J. H. 1989. Unification Theory. J. of Sym. Computation, 7(3-4):207–274.
Urban, C. 2010. Nominal Unification Revisited. In Proc. of the 24th Int. Work. on Unification (UNIF), volume 42 of EPTCS,

pp. 1–11.
Urban, C., Pitts, A. M., and Gabbay, M. J. 2004. Nominal Unification. Theor. Comput. Sci., 323(1-3):473–497.

	Introduction
	Background
	A nominal C-unification algorithm with protected variables
	Nominal C-matching
	Adapting the recursive nominal C-unification algorithm to handle protected variables
	Experiments comparing implementations
	Conclusion and Future Work

