
Verification of the Completeness of Unification Algorithms à la

Robinson

Andréia B. Avelar1, Flávio L. C. de Moura2, André Luiz Galdino3 and Mauricio Ayala-Rincón1,2⋆

Departamentos de 1Matemática e 2Ciência da Computação

Universidade de Braśılia, Braśılia, Brazil

3Departamento de Matemática, Universidade Federal de Goiás, Catalão, Brazil

{andreia@mat, ayala@, flaviomoura@, galdino@}.unb.br

Abstract. This work presents a general methodology for verification of the completeness of first-

order unification algorithms à la Robinson developed in the higher-order proof assistant PVS. The

methodology is based on a previously developed formalization of the theorem of existence of most

general unifiers for unifiable terms over first-order signatures. Termination and soundness proofs of any

unification algorithm are proved by reusing the formalization of this theorem and completeness should

be proved according to the specific way in that non unifiable inputs are treated by the algorithm.

1 Introduction

In a previous development, done in the PVS proof assistant [ORS92], a formalization of the theorem of

existence of most general unifiers (mgu’s) for unifiable terms over first-order theories was presented. That

development was given as the PVS theory unification [AdMARG10]. The formalization was based on three

constructive operators: given a pair of unifiable terms as input, the first one generates the first position of

conflict whenever the terms are different; the second one builds a resolution for the conflict and; the third

one builds an mgu. These operators use the powerful machinery of types available in PVS in order to build

a dependent type of pairs of unifiable terms as input. Thus, these operators correspond to a unification

algorithm restricted to unifiable terms in the style of Robinson’s original unification algorithm [Rob65]. This

theorem of existence is enough for several applications, as for instance, for a formalization of the well-know

Knuth-Bendix Critical Pair Theorem [KB70] presented in [GAR10]. The failure cases that appear for non

unifiable terms are not treated in that formalization. But all the proof techniques applied are reusable as

a general methodology useful to verify termination and soundness of unification algorithms in this style of

unification. The verification of completeness of any unification algorithm depends upon proving that the

specific treatment of the failure cases given by the unification algorithm is adequate.

⋆ Corresponding author

In [Rob65], a constructive proof of correctness of the unification algorithm was introduced in order

to prove, by contradiction, the completeness of the resolution method for the propositional calculus. The

introduced unification algorithm either gives as output an mgu for each unifiable pair of terms, or fails

whenever the terms are not unifiable. The proof of correctness of this algorithm consists in proving that

the algorithm always terminates, and that, when it terminates an mgu is provided if and only if the terms

are unifiable. Several variants of this first-order unification algorithm appear in well-known textbooks on

computational and mathematical logic, semantics of programming languages, rewriting theory, etc (e.g.,

[Llo87,EFT84,Bur98,BKdV03,BN98]). Since the formalization follows the classical proof schema, which is

one of the main positive aspects of the current work, no analytic presentation of this proof will be given here.

In order to illustrate the general proof methodology, a specification of a unification algorithm is provided

in the PVS theory robinsonunification inside the PVS library trs for term rewriting systems that was

introduced in [GAR09] and is available at http://ayala.mat.unb.br/publications.html. In addition, the

theory unification is available inside the library trs.

Section 2 presents a specification of a unification algorithm à la Robinson; Section 3 explains how the

verification methodology works in order to prove termination and soundness for the case of unifiable terms.

Section 4 illustrates the solution to prove completeness, that is, it show how to deal with failure in unification.

Related work and conclusions are then presented. Familiarity with the notions and notations related with

unification theory is assumed, but for the benefit of the refeering process two appendices are included, in

which basic notions are given and it is explained how these notions were specified.

2 Specification of unification algorithms

The methodology of verification of first-order unification algorithms is based on the formalization of the

existence of first-order mgu’s as presented in the theory unification which consists of 57 lemmas from

which 30 are type proof obligations or type correctness conditions (TCCs) that are lemmas automatically

generated by the type-checker of the prover. The specification file has 272 lines and its size is 9.5 KB and

the proof file has 11.424 lines and 638.4 KB. The verification of the completeness of a unification algorithm

is given in the theory robinsonunification and consists of 49 lemmas from which 25 are TCCs in a

specification file of 252 lines of code (9.0 KB) and a file of proofs of 12.397 lines of proofs (747.8 KB).

Basic notions on unification are specified straightforwardly in the language of PVS (see also the appen-

dices). For instance the notion of most general substitution is given as

<=(theta, sigma): bool = EXISTS tau: sigma = comp(tau, theta)

From this definition, one proves that the relation <= is a pre-order, that is, it is reflexive and transitive.

The notions of unifier, unifiable, the set of unifiers of two terms and a mgu of two terms are defined as

2

unifier(sigma)(s,t): bool = ext(sigma)(s) = ext(sigma)(t)

unifiable(s,t): bool = EXISTS sigma: unifier(sigma)(s,t)

U(s,t): set[Sub] = {sigma: Sub | unifier(sigma)(s,t)}

mgu(theta)(s,t): bool =

member(theta, U(s,t)) & FORALL sigma: member(sigma, U(s,t)) => theta <= sigma

The key point of the proposed general methodology of proof is to reuse the proof techniques inside the

theory unification. In this theory, a unification algorithm, called unification algorithm, restricted to

unifiable terms, is given for which the main two properties formalized are:

– the restricted algorithm terminates and

– it is sound, that is, it gives as output an mgu of the (unifiable) inputs.

Thus, reusing the proof techniques for formalizing these two properties, it is possible to complete the

verification of any unification algorithm that has as input two terms that may not be unifiable. What

remains in order to verify a unification algorithm is to prove the completeness of the specific treatment of

the exception cases; i.e., to prove the completeness of the treatment of non unifiable terms according to the

specific algorithmic methodology.

The unification algorithm inside unification receives two unifiable terms as arguments, gives a substi-

tution as output and is specified as follows:

unification_algorithm(s: term, (t: term | unifiable(s,t))):

RECURSIVE Sub =

IF s = t THEN identity

ELSE LET sig = sub_of_frst_diff(s, t) IN

comp(unification_algorithm((ext(sig))(s), (ext(sig)(t))) , sig)

ENDIF

MEASURE Card(union(Vars(s), Vars(t)))

In this specification, the function sub of frst diff provides the linkage substitution, that is the one

that resolves the first conflict appearing from left to right between the two terms s and t. The proof of

the existence of this linkage substitution, that is a link from a variable to a term without occurrences of

this variable is formalized inside the theory unification and the methodology of proof is reusable for any

unification algorithm in the Robinson style. In the theory robinsonunification, the type dependence on

the parameters t and s is eliminated in order to obtain a constructive unification algorithm for unrestricted

terms. In general, completeness of any algorithm should be proved guaranteeing that it detects all possible fail

3

cases, that is, conflicts without resolution, whenever the terms are not unifiable. Inside robinsonunification

is specified a unification algorithm as the operator robinson unification algorithm.

robinson_unification_algorithm(s, t: term): RECURSIVE Sub =

IF s = t THEN identity

ELSE LET sig = link_of_frst_diff(s,t) IN

IF sig = fail THEN fail

ELSE

LET sigma = robinson_unification_algorithm(ext(sig)(s) , ext(sig)(t)) IN

IF sigma = fail THEN fail ELSE comp(sigma, sig) ENDIF

ENDIF

ENDIF

MEASURE Card(union(Vars(s), Vars(t)))

This operator calls the function link of frst diff, that in contrast to the function sub of frst diff,

used by the unification algorithm operator, allows as parameters different unrestricted terms and gives

as output either “fail” or a linkage substitution, whenever the first found conflict between the terms is

solvable. The key point of any unification algorithm à la Robinson is exactly the way which unresolved

conflicts are reported.

The operator link of frst diff has as parameters two different terms and invokes the operator first diff

that returns the position of the first conflict between these terms.

link_of_frst_diff(s: term , (t: term | s /= t)): Sub =

LET k: position = first_diff(s,t) IN

LET sp = subtermOF(s,k) , tp = subtermOF(t,k) IN

IF vars?(sp)

THEN IF NOT member(sp, Vars(tp))

THEN (LAMBDA (x: (V)): IF x = sp THEN tp ELSE x ENDIF)

ELSE fail ENDIF

ELSE

IF vars?(tp)

THEN IF NOT member(tp, Vars(sp))

THEN (LAMBDA (x: (V)): IF x = tp THEN sp ELSE x ENDIF)

ELSE fail ENDIF

ELSE fail ENDIF

ENDIF

The specification of the operator first diff is presented below. The parameters of this operator are two

unrestricted, but different terms.

4

first_diff(s: term, (t: term | s /= t)):

RECURSIVE position =

(CASES s OF

vars(s): empty_seq,

app(f, st):

IF length(st) = 0 THEN empty_seq

ELSE

(CASES t OF

vars(t): empty_seq,

app(fp, stp):

IF f = fp THEN

LET k: below[length(stp)] =

min({kk: below[length(stp)] |

subtermOF(s,#(kk+1)) /= subtermOF(t,#(kk+1))}) IN

add_first(k+1,

first_diff(subtermOF(s,#(k+1)),subtermOF(t,#(k+1))))

ELSE empty_seq ENDIF

ENDCASES)

ENDIF

ENDCASES)

MEASURE s BY <<

Inside the theory unification the functions resolving diff and sub of frst diff play the same role

as the functions first diff and link of frst diff, respectively, but the latter can receive as argument

non unifiable terms.

3 Reusing the proof technology: termination and soundness

Exactly the same proof technology applied in the theory unification is possible for formalizing the prop-

erties of the corresponding operators in robinsonunification for unifiable inputs. In what follows, it is

explained how the properties of termination and soundness are formalized for unifiable inputs inside the

former theory.

Termination The formalization of this property follows the usual proof methodology: to prove that after

each recursive input the measure, that is given by the number of variables occurring in the terms, decrease.

The measure of the operator unification algorithm is the cardinality of the union of the sets of variables

occurring in its parameters s and t. The PVS type-checker automatically generates the type proof obligation

below that guarantees termination.

5

unification_algorithm_TCC6: OBLIGATION

FORALL (s, (t | unifiable(s, t))):

NOT s = t IMPLIES

(FORALL (sig: Sub):

sig = sub_of_frst_diff(s, t) IMPLIES

Card(union(Vars(ext(sig)(s)), Vars(ext(sig)(t))))

<

Card(union(Vars(s), Vars(t))))

This TCC is not automatically proved and it requires the proof of the auxiliary lemma:

vars_ext_sub_of_frst_diff_decrease: LEMMA

FORALL (s: term, t: term | unifiable(s, t) & s /= t):

LET sig = sub_of_frst_diff(s, t) IN

Card(union(Vars(ext(sig)(s)), Vars(ext(sig)(t))))

< Card(union(Vars(s), Vars(t)))

The proof of this lemma requires the existence of a linkage substitution σ for the first conflicting position,

which maps a variable into a term without occurrences of this variable. This guarantees that the mapped

variable disappears from the instantiated terms σ̂(s) and σ̂(t), and hence the decreasingness property holds.

Soundness Inside the theory unification the correctness of the restricted unification algorithm is given

by the lemma:

unification: LEMMA unifiable(s,t) => EXISTS theta: mgu(theta)(s,t)

The proof of this lemma is obtained from two auxiliary lemmas: the first one, states that the substitution

given by the operator unification algorithm is, in fact, a unifier and the second one that it is an mgu.

unification_algorithm_gives_unifier: LEMMA

unifiable(s,t) IMPLIES member(unification_algorithm(s, t), U(s, t))

unification_algorithm_gives_mg_subs: LEMMA

member(rho, U(s, t)) IMPLIES unification_algorithm(s, t) <= rho

The former lemma is proved by induction on the cardinality of the set of variables occurring in s and t,

for which, three auxiliary lemmas are necessary:

– the lemma vars ext sub of frst diff decrease described in the previous subsection, which guarantees

that the cardinality of the set of variables decreases;

6

– the lemma

ext_sub_of_frst_diff_unifiable: LEMMA

FORALL (s: term, t: term | unifiable(s, t) & s /= t):

LET sig = sub_of_frst_diff(s, t) IN

unifiable(ext(sig)(s), (ext(sig)(t)))

which states that the instantiations of two different and unifiable terms sσ̂ and tσ̂ with the substitution

σ that resolves the first conflict between these terms, are still unifiable; and

– the lemma unifier o presented at the beginning of this section, which states that for any unifier θ of

sσ̂ and tσ̂, θ ◦ σ is a unifier of s and t.

The formalization of the lemma unification algorithm gives mg subs is done by induction on the

same measure. For proving this lemma two auxiliary lemmas are applied: the lemma vars ext sub of frst

diff decrease and the lemma presented below, which states that for each unifier ρ of s and t, two different

and unifiable terms, and given σ the substitution that resolves the first difference between these terms, there

exists θ such that θ ◦ σ = ρ.

sub_of_frst_diff_unifier_o: LEMMA

FORALL (s: term, t: term | unifiable(s, t) & s /= t):

member(rho, U(s, t)) IMPLIES

LET sig = sub_of_frst_diff(s, t) IN

EXISTS theta: rho = comp(theta, sig)

4 Treatment of exceptions: proof of completeness

The theory robinsonunification illustrates the application of the methodology of proof. The main op-

erators inside this theory give a treatment of failing cases in such a way that whenever unsolvable con-

flicts between non unifiable terms are detected (by the operator first diff) the substitution “fail” is

returned. This substitution is built explicitly as the substitution with the singleton domain {xx} and im-

age ff(xx), where xx and ff are, respectively, a specific variable and a unary function symbol. In this

way, the substitution fail is discriminated from any other possible unifier which is built by the function

robinson unification algorithm, for all pair of terms. The formalization of the property of termination

follows the same lines of the lemma vars ext sub of frst diff decrease from the theory unification.

termination_lemma: LEMMA

FORALL (s: term, t: term | s /= t):

LET sig = link_of_frst_diff(s, t) IN

NOT sig = fail IMPLIES

7

Card(union(Vars(ext(sig)(s)), Vars(ext(sig)(t))))

< Card(union(Vars(s), Vars(t)))

Similarly, the formalization of the property of soundness is followed in order to verify the lemmas below.

robinson_unification_algorithm_gives_unifier: LEMMA

unifiable(s,t) IFF member(robinson_unification_algorithm(s, t), U(s, t))

robinson_unification_algorithm_gives_mg_subs : LEMMA

member(rho, U(s, t)) IMPLIES

robinson_unification_algorithm(s, t) <= rho

The former states that the algorithm gives as output a unifier of the input terms, whenever they are

unifiable, and the latter that the output is in fact an mgu of the input terms.

In order to obtain completeness, two additional lemmas that distinguish the selected fail substitu-

tion from any possible unifier are necessary. These lemmas respectively state that, for unifiable inputs, the

substitution built by the operator robinson unification algorithm has as domain a subset of variables

occurring in the input terms, and as range terms whose variables also range in this set and that conform a set

of variables disjoint from the domain. This distinguish the substitution fail from any resolving substitutions.

rob_uni_alg_dom_subset_union_vars: LEMMA

unifiable(s, t) IMPLIES

LET sigma = robinson_unification_algorithm(s, t) IN

subset?(Dom(sigma), union(Vars(s), Vars(t)))

rob_uni_alg_dom_ran_disjoint: LEMMA

unifiable(s,t) IMPLIES

LET sigma = robinson_unification_algorithm(s, t) IN

subset?(VRan(sigma) ,

difference(union(Vars(s), Vars(t)), Dom(sigma)))

In addition, it is necessary to formalize an auxiliary lemma that states that the algorithm gives the output

fail exactly when the input terms are not unifiable.

robinson_unification_algorithm_fails_iff_non_unifiable : LEMMA

NOT unifiable(s,t) IFF robinson_unification_algorithm(s,t) = fail

The completeness theorem states that, for given s and t, the operator robinson unification algorithm

either returns fail or the mgu of these terms correctly. Its formalization follows easily from the previous

lemmas on soundness and failure.

8

completeness_robinson_unification_algorithm : THEOREM

IF unifiable(s,t) THEN mgu(robinson_unification_algorithm(s,t))(s,t)

ELSE robinson_unification_algorithm(s,t) = fail

ENDIF

Notice that in the specific approach to deal with failing cases given in the theory robinsonunification,

the property of idempotence is a simple corollary proved as consequence of the selection of fail.

5 Related work

To the best of our knowledge, the first formalization of the unification algorithm was given by Paulson

[Pau85]. Paulson’s formalization of Manna and Waldinger’s theory of unification was done in the theorem

prover LCF and subsequently this approach was followed by Konrad Slind in the theory Unify in the proof

assistant Isabelle/HOL from which an improved version called unification is available now. Similarly to our

approach, idempotence of the computed unifiers is unnecessary to prove neither termination nor correctness

of the specified unification algorithm.

In contrast with our termination proof, which is based on the fact that the number of different variables

occurring in the terms being unified decreases after each step of the unification algorithm (Section 3), the

termination proof of the theory Unify is based on separated proofs of non-nested and nested termination

conditions and the unification algorithm is specified based on a specification of terms built by a binary

combinator operator.

Additional facts that make our formalization closer to the usual theory of unification (algorithms) as

presented in well-known textbooks (e.g., [Llo87,BN98]), is the decision to present terms as a data type built

from variables and the operator app that builds terms as an application of a function symbol (of a given

arity) to a sequence of terms with the right size. In this way, the substitution was specified as a function

from variables to terms and its homomorphic extension is straightforward.

An algorithm similar to Robinson’s one was extracted from a formalization done in the Coq proof as-

sistant [Rou92]. That formalization uses a generalized notion of terms, that uses binary constructors in the

style of Manna and Waldinger, whose translation to the usual notation is not straightforward.

In [RRAH06], Ruiz-Reina et al presented a formalization in ACL2 of the correctness of an implementation

of an O(n2) run-time unification algorithm. The specification is based on Corbin and Bidot’s development

[CB83] as presented in [BN98] in which terms are represented as directed acyclic graphs (DAGs). The merit

of this formalization is that by taking care of an specific data structure such as DAGs for representing terms,

the correctness proof results much more elaborated than the current one. But in the current paper, the focus

is to have a natural mechanical proof of the completeness of any unification algorithm in the Robinson style,

reusing the general methodology for the verification of termination and soundness, which come from the

9

proof of existence of mgu’s for unifiable terms. Although the representation of terms is sophisticated (via

DAGs), the refereed formalization diverges from textbooks proofs of correctness of the unification algorithm

in which it is first-order restricted. In fact, instead of representing second-order objects such as substitutions

as functions from the domain of variables to the range of terms, they are specified as first-order association

lists. In our approach, taking the decision to specify substitutions as functions allows us to apply all the

theory of functions available in the higher-order proof assistant PVS, which makes our formalization very

close to the ones available in textbooks.

Programming and proving are closely related in what concerns the construction of correct software. In

fact, declarative programming style is much closer to formal specification than imperative programming, and

this permits one to think about the extraction of executable code from a PVS specification. In [JSS07], a

unification algorithm à la Robinson is specified, and functional code is generated via a translator that is in

its prototype stage. This specification of the unification algorithm is proved sound and complete but it just

claims that whenever the given terms are unifiable, the output substitution is the most general one. This

property can be proved using the technology provided by our specification.

6 Conclusions and Future Work

The formalization of the theorem of existence of mgu’s for unifiable terms, previously developed in PVS,

provides general proving techniques for the treatment of the properties of termination and soundness of

unification algorithms. For the treatment of non necessarily unifiable terms, this methodology can be reused

taking into account how the exceptions or failing cases are specifically treated by any algorithm. The appli-

cation of the general methodology of verification of completeness was illustrated by showing how verification

is given for a specification of the unification algorithm in which the failing cases were (correctly) detected

and distinguished by giving as output a non-idempotent substitution.

Recently, in [CM09], a certified resolution algorithm for the propositional calculus is extracted from a

Coq specification. This specification uses the built in pattern matching of the Coq proof assistant that is

enough to deal with resolution in the propositional calculus. An extension to first-order logic will requires

first-order unification and hence an explicit treatment of unification as presented here. As future work, it is

of great interest the extraction of certified unification algorithms alone, or in several contexts of its possible

applications such as the ones of first-order resolution and of type inference. Notice that for doing this it is

essential to give constructive specifications such as the current one. Several contributions on the extraction

of executable code from PVS specifications were given in [LMG09], among others.

10

References

[AdMARG10] A.B. Avelar, F.L.C. de Moura, M. Ayala-Rincón, and A. Galdino. A Formalization of The Existence

of Most General Unifiers. Departamentos de Matemática e Ciência da Computação, Universidade de

Braśılia, Available: http://ayala.mat.unb.br/publications.html, 2010.

[BKdV03] M. Bezem, J.W. Klop, and R. de Vrijer, editors. Term Rewriting Systems by TeReSe. Number 55 in

Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2003.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.

[Bur98] S. N. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998.

[CB83] J. Corbin and M. Bidoit. A Rehabilitation of Robinson’s Unification Algorithm. In IFIP Congress,

pages 909–914, 1983.

[CM09] R. Constable and W. Moczydlowski. Extracting the resolution algorithm from a completeness proof

for the propositional calculus. Annals of Pure and Applied Logic, 161(3):337–348, 2009.

[EFT84] H. D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Springer, 1984.

[GAR09] A. L. Galdino and M. Ayala-Rincón. A PVS Theory for Term Rewriting Systems. In Proc. of the

3rd Workshop on Logical and Semantic Frameworks with Applications - LSFA 2008, volume 247 of

Electronic Notes in Theoretical Computer Science, pages 67–83. Elsevier, 2009.

[GAR10] A. L. Galdino and M. Ayala-Rincón. A Formalization of the Knuth-Bendix(-Huet) Critical Pair The-

orem. J. of Automated Reasoning, 2010. DOI 10.1007/s10817-010-9165-2, Springer Online First.

[JSS07] Bart Jacobs, Sjaak Smetsers, and Ronny Wichers Schreur. Code-carrying theories. Formal Asp.

Comput., 19(2):191–203, 2007.

[KB70] D. E. Knuth and P. B. Bendix. Computational Problems in Abstract Algebra, chapter Simple Words

Problems in Universal Algebras, pages 263–297. J. Leech, ed. Pergamon Press, Oxford, U. K., 1970.

[Llo87] J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation – Artificial Intelligence.

Springer, second edition, 1987.

[LMG09] L. Lensink, C. Muñoz, and A. Goodloe. From verified models to verifiable code. Technical Memorandum

NASA/TM-2009-215943, NASA, Langley Research Center, Hampton VA 23681-2199, USA, June 2009.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification System. In Deepak Kapur,

editor, 11thInt. Conf. on Automated Deduction (CADE), volume 607 of Lecture Notes in Artificial

Intelligence, pages 748–752, Saratoga, NY, June 1992. Springer Verlag.

[Pau85] Lawrence C. Paulson. Verifying the Unification Algorithm in LCF. Science of Computer Programming,

5(2):143–169, 1985.

[Rob65] J. A. Robinson. A Machine-oriented Logic Based on the Resolution Principle. Journal of the ACM,

12(1):23–41, January 1965.

[Rou92] J. Rouyer. Développement de l’algorithme d’unification dans le calcul des constructions. Technical

Report 1795, INRIA, 1992.

[RRAH06] J.-L. Ruiz-Reina, F.-J. Mart́ın-Mateos J.-A. Alonso, and M.-J. Hidalgo. Formal Correctness of a

Quadratic Unification Algorithm. J. of Automated Reasoning, 37(1-2):67–92, 2006.

11

A Basic notions on first-order unification

Consider a signature Σ in which function symbols and their associated arities are given (that is, the arity n

(n ∈ N) for each function symbol f in Σ is known) and a enumerable set V of variables is given. The set of

well-defined terms, denoted by T (Σ, V), over the signature Σ and the set V is recursively defined as:

– x ∈ V is a well-defined term;

– for each n-ary function symbol f ∈ Σ and well-defined terms t1, . . . , tn, f(t1, . . . , tn) is a well-defined

term.

Note that constants are 0-ary function symbols, and hence are well-defined terms.

In the sequel, for brevity “terms” instead of “well-defined terms” will be used.

A substitution in T (Σ, V), by convention denoted by lowercase Greek letters, is a function from a finite

set of variables to T (Σ, V).

Definition 1 (Substitution). A substitution σ is defined as a function from V to T (Σ, V), such that the

domain of σ, defined as the set of variables {x | x ∈ V, σ(x) 6= x} and denoted by Dom(σ), is finite.

The homomorphic extension of a substitution from the set V to T (Σ, V) is given as usual and denoted

as σ̂.

Definition 2 (Homomorphic extension of a substitution). The homomorphic extension of a substi-

tution σ, denoted as σ̂, is inductively defined over the set T (Σ, V) as

– xσ̂ := xσ;

– f(t1, . . . , tn)σ̂ := f(t1σ̂, . . . , tnσ̂).

Given the notion of homomorphic extension, it is possible to define substitution composition.

Definition 3 (Composition of substitutions). Consider two substitutions σ and τ , its composition is

defined as the substitution σ ◦ τ such that Dom(σ ◦ τ) = Dom(σ) ∪ Dom(τ) and for each variable x in this

domain, x(σ ◦ τ) := (xτ)σ̂.

Two terms s and t are said to be unifiable whenever there exists a substitution σ such that sσ = tσ.

Definition 4 (Unifiers). The set of unifiers of two terms s and t is defined as

U(s, t) := {σ | sσ = tσ}

Definition 5 (Most generality of substitutions). Given two substitutions σ and τ , σ is said to be most

general than τ whenever, there exists a substitution γ such that γ ◦ σ = τ . This is denoted as σ ≤ τ .

12

Definition 6 (Most General Unifier). Given two terms s and t such that U(s, t) 6= ∅. A substitution σ

such that for each τ ∈ U(s, t), σ ≤ τ , is said to be a most general unifier of s and t. For short it is said that

σ is an mgu of s and t.

Now, it is possible to state the theorem of existence of mgu’s.

Theorem 1 (Existence of mgu’s). Let s and t be terms built over a signature T (Σ, V). Then, U(s, t) 6= ∅

implies that there exists an mgu of s and t.

The analytic proof of this theorem is constructive and the first introduced proof was by Robinson itself

in [Rob65]. In this paper, a unification algorithm was introduced, which either gives as output a most general

unifier for each unifiable pair of terms or fails when there are no unifiers. The proof of correctness of this

algorithm, which consists in proving that the algorithm always terminates and that when terminates gives an

mgu implies the existence theorem. Several variants of this first-order unification algorithm appear in well-

known textbooks on computational and mathematical logic, semantics of programming languages, rewriting

theory, etc. (e.g., [Llo87,EFT84,Bur98,BKdV03,BN98]). Since the formalization follows the classical proof

schema, no analytic presentation of this proof will be given here.

B Specification of basic notions

The sub theory robinsonunification, inside the theory trs, imports sub theories for substitution, terms

and positions, among others. The most relevant notions related with unification are inside the sub-theories

positions, subterm and substitution. The PVS notions used for specifying these basic concepts are

taken from the prelude theories for finite sequences and finite sets. Namely, finite sequences are used

to specify well-formed terms which are built from variables and function symbols with their associated arities.

This is done by application of the PVS DATATYPE mechanism which is used to define recursive types.

term[variable: TYPE+, symbol: TYPE+, arity: [symbol -> nat]] : DATATYPE

BEGIN

vars(v:variable): vars?

app(f:symbol, args:{args:finite_sequence[term] | args‘length=arity(f)}): app?

END term

Notice that the fact that a term is well-formed, that is, that function symbols are applied to the right

number of arguments is guaranteed by typing the arguments of each function symbol f as a finite sequence

of length arity(f).

Finite sets and sequences are also used to specify sets of subterms and sets of term positions, as is shown

below.

13

The (finite) set of positions of a term t is recursively defined on the structure of the term as follows,

where only empty seq is a set containing only an empty finite sequence, that is the set containing the root

position only.

positionsOF(t: term): RECURSIVE positions =

(CASES t OF

vars(t): only_empty_seq,

app(f, st): IF length(st) = 0

THEN only_empty_seq ELSE

union(only_empty_seq,

IUnion((LAMBDA (i: upto?(length(st))):

catenate(i, positionsOF(st(i-1))))))

ENDIF

ENDCASES)

MEASURE t BY <<

In the subtheory subterm, the subterm of t at position p also is specified in a recursive way (now on the

length of p), as follows:

subtermOF(t: term, (p: positions?(t))): RECURSIVE term =

(IF length(p) = 0

THEN t ELSE

LET st = args(t),

i = first(p),

q = rest(p) IN

subtermOF(st(i-1), q)

ENDIF)

MEASURE length(p)

where first and rest are constructors that return, respectively, the first element and the rest of a finite

sequence, and positions?(t) is the (dependent) type of all positions in t, which is specified as follows:

positions?(t: term): TYPE = {p: position | positionsOF(t)(p)}

Several necessary results on terms, subterms and positions are formalized by induction on the structure

of terms following the lines of these definitions. For instance, properties such as the one that states that the

set of positions of a term is finite (lemma positions of terms finite in the subtheory positions) and the

one that states that the set of variables occurring in a term is finite (lemma vars of term finite in the

subtheory subterm) are proved by structural induction on terms. Also, several useful rules for computing

with positions and subterms are specified. For example,

14

pos_subterm: LEMMA

FORALL (p, q: position, t: term):

positionsOF(t)(p o q)

=> subtermOF(t, p o q) = subtermOF(subtermOF(t, p), q)

is formalized in the subtheory subterm, where p o q means the concatenation of the sequences p and q

denoted by pq in standard rewriting notation, and its proof is given by induction on the length of p according

to the formal definitions given above.

The subtheory substitution specifies the algebra of substitutions. In this subtheory the type of substitu-

tions is built as functions from variables to terms sig : [V -> term], whose domain is finite: Sub?(sig):

bool = is finite(Dom(sig)) and Sub: TYPE = (Sub?). Also, the notions of domain, range, and the vari-

able range are specified, closer to the usual theory of substitution as presented in well-known textbooks

(e.g., [BN98]). These notions are specified as follows:

Dom(sig): set[(V)] = {x: (V) | sig(x) /= x}

Ran(sig): set[term] = {y: term | EXISTS (x: (V)): member(x, Dom(sig)) & y = sig(x)}

VRan(sig): set[(V)] = IUnion(LAMBDA (x | Dom(sig)(x)): Vars(sig(x)))

where the operator IUnion can be found in the PVS prelude theory, (V) denote the type of all terms that

are variables and Vars(t) denotes the set of all variables occurring in a term t.

Also, in the subtheory substitution the homomorphic extension ext(sig) of a substitution sig is

specified inductively over the structure of terms, and the composition of two substitutions, denoted by comp,

is specified as

comp(sigma, tau)(x: (V)): term = ext(sigma)(tau(x))

In standard rewriting notation, the homomorphic extension of a substitution σ from its domain of vari-

ables to the domain of terms is denoted by σ̂, but to simplify notation, usually textbooks do not distinguish

between a substitution σ and its extension σ̂. In the formalization this distinction should be maintained

carefully.

Several important results, that are useful for the development of subtheory unification were formalized

in the subtheory substitution, as for instance, the property that states that the application of an homo-

morphic extension of a substitution preserves of the original set of positions of the term. This property is

specified as,

ext_preserv_pos: LEMMA

FORALL (p: position, s: term, sigma: Sub):

positionsOF(s)(p) => positionsOF(ext(sigma)(s))(p)

15

