
Modeling a Reconfigurable System for Computing the FFT in Place via
Rewriting-Logic‡

Mauricio Ayala-Rincón1,*, Rodrigo B. Nogueira§,2,*, Carlos H. Llanos2,*, Ricardo P. Jacobi 3,*,
Reiner W. Hartenstein4,+

Departamentos de 1Matemática, 2Engenharia Mecânica, 3Ciência da Computação, *Universidade
de Brasília, 4Fachbereich Informatik, +Universität Kaiserlautern

ayala@mat.unb.br, llanos@unb.br, rjacobi@cic.unb.br, rhartenst@rhrk.uni-kl.de

‡ Work supported by the CAPES-DFG Brazilian-German foundations.
§ Author partially supported by the CNPq Brazilian council.

Abstract

The growing adoption of reconfigurable architectures
opens new implementation alternatives and creates new
design challenges. In the case of dynamically
reconfigurable architectures, the choice of an efficient
architecture and reconfiguration scheme for a given
application is a complex task. Tools for exploration of
design alternatives at higher abstraction levels are needed.
This paper describes the modeling and simulation of a
dynamically reconfigurable hardware implementation of
the Fast Fourier Transform – FFT using rewriting-logic. It
is shown that rewriting-logic can be used as a framework
for fast design space exploration, providing a quick
evaluation of different reconfigurable solutions.

1. Introduction

Reconfigurable Computing is a new research area which is
gaining momentum due to the potential improvement that
can be obtained when compared both to software solutions
as well as to dedicated full-custom devices. When
compared to software solutions running on general purpose
processors, reconfigurable computing delivers more
processing power due to the implementation of algorithms
in hardware. A remarkable example in this case is
DeCypher [9], a reconfigurable machine targeted to
accelerate genetic related algorithms. It is built upon
commercial FPGAs interconnected through a PCI bus and
can improve the performance of genetic algorithms by
some orders of magnitude. Several other examples can be
drawn from telecommunication systems, in tasks such as
data compression, encoding and decoding, and digital
signal processing. On the other hand, reconfigurable
computing provides more flexibility than dedicated full
custom ASICs (Application Specific Integrated Circuits).

Moreover, the exploding costs of integrated circuits fabrics
associated with shorter devices lifetimes makes the design
of ASIC a very expensive alternative. The growing capacity
of Field Programmable Gate Arrays (FPGA), the possibility
of reconfiguring them to implement different hardware
architectures and its lower cost compared to full custom
design makes it a good solution to the rapid changing
electronic market. There are several taxonomies applied to
reconfigurable computing. Concerning the specific moment
in time where reconfiguration occurs, dynamic
reconfiguration refers to systems that change their
functionality during the execution of a computational task.
To describe the behavior of such systems for a given
application, it could be interesting to use a three
dimensional coordinate system, with time, data and
configuration as axes (Figure 1).

Figure 1: Reconfigurable system behavior
A dynamically reconfigurable system, in a given instant of
time t, processes data d(t) using a configuration cfg(t).
Instead of referring to an instruction stream and a data
stream, as it is done in Flynn classification [10], this kind of
systems can be described by their configuration streams
and data streams. Optimization of such systems relies on
an adequate choice of a reconfigurable hardware structure
and a reconfiguration scheme for a given application under
a set of constraints. It is a complex task, since there are no
commercial tools available that are well adapted to this kind

time

cfg
data

behavior(t, d, cfg)

of problem. Prototyping alternatives in VHDL or even
SystemC, in a first approach, may be too cumbersome.
In this paper we propose the use of rewriting systems to
model and evaluate dynamically reconfigurable systems.
We present a case study based on the dynamic
reconfiguration of a circuit designed to compute the FFT.
Rewriting has been successfully applied into different areas
of research in computer science as an abstract formalism for
assisting the simulation, verification and deduction of
complex computational objects and processes. In particular,
in the context of computer architectures, rewriting theory
has been applied as a tool for reasoning about hardware
design. It is worth to mention the work of Kapur, who has
used his well-known Rewriting Rule Laboratory - RRL for
verifying arithmetic circuits [14,12,13] as well as the work
of Arvind’s group that treated the implementation of
processors based on simple architectures [16, 17,2], which
we have extended for simulation and analysis of
performance of processors in [3]; the rewrite-based
description and synthesis of simple logical digital circuits
[11]; and the description of cache protocols over memory
systems [18,19]. In our specifications we apply rewriting-
logic, that is basically rewriting enlarged with logic. For
recent evidence about the usefulness of this paradigm see
[15]. The programming environment used in this work is
ELAN [7,6]. It provides more flexibility than pure rewriting
systems by introducing logical strategies, which are meta
rules that control the application of the rewriting rules.
The paper outline is as follows. Section 2 provides an
introduction to basic concepts in rewriting theory and
shortly describes the FFT. Section 3 discusses the use of
rewriting-logic to specify and simulate a dynamically
reconfigurable architecture for computing in optimal space
the FFT and section 4 is the conclusion.

2. Background

We include the minimal needed notions on rewriting
theory, rewriting-logic and the Fast Fourier Transform. For
a detailed presentation on rewriting see [5] and for the FFT
see classical text books on algorithms such as [8,4, 1].

2.1. Rewriting theory

A Term Rewriting System, TRS for short, is defined as a
triple � R, S, S0 �, where S and R are respectively sets of
terms and of rewrite rules of the form l � r if p(l) being l
and r terms and p a predicate and where S0 is the subset of
initial terms of S. l and r are called the left-hand and right-
hand sides of the rule and p its condition.
In the architectural context of [17], terms and rules
represent states and state transitions, respectively.

A term s can be rewritten or reduced to the term t, denoted
by s � t, whenever there exist a subterm s' of s that can be
transformed according to some rewrite rule into the term s''
such that replacing the occurrence of s' in s with s'' gives t.
A term that cannot be rewritten is said to be in normal or
canonical form. The relation over S given by the previous
rewrite mechanism is called the rewrite relation of R and is
denoted by �. Its inverse is denoted by ← and its reflexive-
transitive closure by �* and its equivalence closure by ↔*.
The important notions of terminating property (or
Noetherianity) and Church-Rosser property or confluence
are defined as usual. These notions correspond to the
practical computational aspects as the determinism of
processes and their finiteness.

• a TRS is said to be terminating if there are no infinite
sequences of the form s0 � s1 � ...

• a TRS is said to be confluent if for all divergence of the
form s �* t1, s �* t2 there exists a term u such that t1 �* u
and t2 �* u .

The use of the subset of initial terms S0, representing
possible initial states in the architectural context (which is
not standard in rewriting theory), is simply to define what is
a "legal" state according to the set of rewrite rules R; i.e., t
is a legal term (or state) whenever there exists an initial
state s ∈ S0 such that s �* t.
Using these notions of rewriting one can model the
operational semantics of algebraic operators and functions.
Although in the pure rewriting context rules are applied in a
truly non deterministic manner in practice it is necessary to
have a control of the ordering in which rules are applied.
This is provided by rewriting-logic, which is the union of
rewriting theory with logic.

2.2. The Fast Fourier Transform

The FFT is an implementation of the Discrete Fourier
Transform - DFT, which is widely used in signal
processing. Given an n-array of complex numbers a = (a0,
…, an-1), its DFT, Fn × a, is the n-array (b0, …, bn-1), where

b j = ak ⋅ωn
kj

k= 0

n−1

� for j = 0,1,...,n −1

and ωn = e
i
2π
n

is a primitive nth complex root of the unity.
The basic operations are multiply-accumulate, executed
over complex numbers. The DFT has a time complexity of
O(n2), which is too excessive for large sequences. The FFT
is an O(n ln n) run time implementation of DFT based on a
recursive algorithm proposed by Cooley-Tukey. This
algorithm can be implemented in dataflow hardware as it is
shown in the Figure 2.

The number of data points is a power of 2. The network of
nodes is a butterfly circuit. Each node implements a
complex number multiplies-accumulate operation on its
inputs: bj = uj + z vj.

Figure 2: FFT circuit for n = 8

3. Modeling a Reconfigurable System for the FFT

In this section we analyze an implementation of the FFT
using a compact n-array of MACs (Multiply-Adders).
Observe that classical circuits for Fn use O(n ln(n)) cells
(see the Figure 2). For simplicity, our presentation is
formulated for the computation of F8.

The 8-array architecture that we use for computing F8 is
founded on these circuits and its (operational semantics
and) correctness is based on the adequate application of
dynamic reconfiguration of the operators, constants and
data selection registers. Reconfiguration steps are alternated
with execution steps on the array of MACs. For this
example, the structure of each MAC is presented in the
Figure 3. It is not designed exclusively to FFT application:
it could be reused to implement other array processing
applications like matrix multiplication, string matching, etc.
We distinguish between reconfigurable (shadowed) and
fixed components. The formers are the two data selection
registers, Ar1 and Ar2; the two operators, Op1 and Op2;
and the constant, C1. The latter are the ports, P1 and P2;
and registers, R1 and R2.
The registers, ports and constant store complex numbers
and consist of two components: the real and imaginary
parts. The two operators can be reconfigured to be any
operation over complex numbers. In particular, for

implementing FFT we will use only addition (+),
subtraction (-) and multiplication (×) of complex numbers.
In each of the eight MACs the data selection registers, Ar1
and Ar2, indicate the origin of the data that should be
loaded into the respective ports, P1 and P2. The options for
their configuration are either the input (I) (as input we will
supply the coefficients of a given polynomial permuted
adequately) or the output (second register R2) of one of the
eight nodes (indexed by 0,1,...,7).
In any reconfiguration the constant part of each MAC is set
to arbitrary complex numbers. For implementing FFT, these
constants are set with adequate complex roots of the unity.

3.1 The 8-nodes Array

The Figure 4 shows the basic idea behind the 8-array
implementation. The upper row is composed by nodes with
the architecture depicted in the Figure 3. The node outputs
are feedback to their inputs through a reconfigurable
interconnection network (RIN). The RIN can provide to the
MAC ports any MAC output or an external input. The
configuration of data selection registers Ar1 and Ar2 will
select from the RIN the specific node inputs in a given
iteration. In the first step, the 8-array receives as input zeros
and coefficients of an input polynomial a0+a1·x+...+a7·x7 in
the adequate ordering (bit-reversal permutation; see Figure
2), taken from the primary (external) inputs. Then, at each
step the interconnections and the node operations are
reconfigured in order to implement the corresponding
butterfly slice (columns in the Figure 2). The initial
reconfiguration parameters are given by the sequence:

0: I,I,+,1, ×; 1: I,I,+,1, ×; 2: I,I,+,1, ×; 3: I,I,+,1, ×;
4: I,I,+,1, ×; 5: I,I,+,1, ×; 6: I,I,+,1, ×; 7: I,I,+,1, ×;

This means that the node 0 receives its inputs from the
corresponding external inputs; its first operator is
configured as addition; its constant component as 1; and its
second operator as multiplication. Similarly for the
remaining seven nodes. After this reconfiguration, the
operations are executed, obtaining in the output register
(R2) of each node the input coefficients: a0, a4, a2, a6, a1, a5,
a3 and a7, respectively. Observe that this first step provides
again the same input, but now, after a second

Reconfigurable Interconnection Network

Fig. 4: Reconfigurable 8-array FFT

R2

Op2

R1 C1

Op1

Ar1 Ar2

P1 P2

Figure 3: node architecture for FFT

a0
a4
a2
a6
a1
a5
a3
a7

b0
b1
b2
b3
b4
b5
b6
b7

reconfiguration, it can be combined adequately by means of
the selection registers. The current execution is stopped
while the second reconfiguration parameters are provided:

 0: 0,1,+,1, ×; 1: 0,1,-,1, ×; 2: 2,3,+,1, ×; 3: 2,3,-, i, ×;
 4: 4,5,+,1, ×; 5: 4,5,-,1, ×; 6: 6,7,+,1, ×; 7: 6,7,-, i, ×;
This means that the first and second data selection registers
of the nodes 0 and 1 should be loaded with 0 and 1. Thus,
the outputs of nodes 0 and 1 are loaded in the associated
ports, and these are added in the first node and subtracted in
the second node. In this iteration, the constants in all nodes
are configured as 1 except for the fourth and eighth nodes
where it is set to i. The second operator remains as
multiplication. After the second reconfiguration and
execution we will obtain as respective outputs the values: a0

+a4, a0-a4, a2+i·a6, a2-i·a6, a1+a3, a1-a3, a5+i·a7 and a5-i·a7.
The third reconfiguration is given by the sequence:

The interconnections that result from this reconfiguration
step are illustrated in the Figure 5. Finally, after the
execution phase, the 8-array is reconfigured with the
following sequence:
 0: 0,4,+,1, ×; 1: 1,5,+,1, ×; 2: 2,6,+,1, ×; 3: 3,7,+,1, ×;
 4: 0,4,-,1, ×; 5: 1,5,-,1, ×; 6: 2,6,-,1, ×; 7: 3,7,-,1, ×;

This gives as output F8×(a0, ..., a7), that is the DFT of the
polynomial a0 + a1·x +...+ a7·x7.

3.2 The 8-array in ELAN

The key operators of our specification in ELAN of this
dynamically reconfigurable 8-array have the type
description given in the Table 1. The notation
“<@ @> : (num num) complexUnit;” means that “< >” is
a binary operator of type complexUnit with two parameters
of type num. Our processor is described as the 10-ary
operator:
<@ @ @ @ @ @ @ @ @ @> : (int rArrayStruct
 MAC MAC MAC MAC MAC MAC MAC MAC)Proc;
whose first two parameters are the identifier of the current
reconfiguration step and an 8-array for the transfer of data
between the registers and ports of the eight MACs. Each
MAC consists of its fixed and reconfigurable components
fixMAC and recMAC as shown in the Figure 3.
The execution steps of the 8 MACs are split in four
rewriting rules (MAC01, MAC23, MAC45, MAC67) for
pairs of MACs. The specification of the rule MAC01 for
the first pairs of MACs is presented in the Table 2. In this
rule the values in the ports of the first two MACs are
operated according to the configuration of the first operator
in each MAC: (cRegRes1 := () operate(cPort1,cPort2,op1)
and cRegRes3 := () operate(cPort3,cPort4,op3)); then this
result loaded in the first register is operated with the
configured constants according to the configuration of the
second operator: (cRegRes2 :=() operate(cRegRes1,
cConst1, op2) and cRegRes4 :=() operate(cRegRes3,
cConst2, op4)) and the result is loaded in the second
register of each MAC as well as in the 8-array with the rule:
(sendToRegsArray(regsStr, cRegRes2, cRegRes4)). The
process is executed for the eight MACs via the logical
strategy MAC01; MAC23; MAC45; MAC07, which
determines the order of application of these rules. In fact, in

0: 0, 2, +,1, ×; 1: 1,3,+, 1, ×;
2: 0, 2, -, 1, ×; 3: 1,3, -, 1, ×;
4: 4, 6, +,1, ×; 5: 5,7,+, (1+i)/ 2 , ×;
6: 4, 6, -, i, ×; 7: 5,7, -, (-1+i)/ 2 , ×;

Figure 5: Interconnections in reconfiguration

0 2 3 4 5 6 7 1

Table 1: ELAN description of the operators
operators global // here all operators, functions, etc. are defined
 ‘+’ : Op; ‘-‘ : Op; ‘*’ : Op; // defining the operators: type Op
 < @ > : (Op) OpUnit; // syntax <+> defines the operator add
 < @ @ > : (num num) complexUnit; // complex number
 const(@) : (complexUnit) Const; // complex constant
 port(@) : (complexUnit) Port; // MAC ports stores a complex
 reg(@) : (complexUnit) Reg; // complex register
 addr(@) : (int) Addr;
 @,@,@,@,@ : (int Port Port Reg Reg) fixMAC;
 @,@,@,@,@ : (Addr Addr Const OpUnit OpUnit) recMAC;
 [@ # @] : (fixMAC recMAC) MAC;
 < @ @ @ @ @ @ @ @ @ @ > : (int rArrayStruct MAC MAC MAC MAC MAC MAC MAC MAC)Proc;
 operate(@,@,@) : (complexUnit complexUnit OpUnit) complexUnit;
 initialize(@,@,@) : (int complexUnit complexUnit) fixMAC;
 getfixMAC (@,@,@) : (fixMAC recMAC regsArray) fixMAC;
 extractVal (@,@) : (regsArray int) complexUnit;
 @ eqOp @ : (Op Op) bool;
 @ | @ | @ | @ | @ | @ | @ | @ : (complexUnit complexUnit complexUnit complexUnit
 complexUnit complexUnit complexUnit complexUnit) regsArray;
end

theory a sole rule is necessary for the execution, but this is
done in this way because of a restriction in ELAN in the
number of different variables one can use in the description
of a rewriting rule.
Table 2: Rule for execution over MAC0 and MAC1
[MAC01]
 < recN regsStr
 [0,port(cPort1),port(cPort2),
 reg(cReg1),reg(cReg2)
 # addr1,addr2,const(cConst1),op1,op2]
 [1,port(cPort3),port(cPort4),
 reg(cReg3),reg(cReg4)
 # addr3,addr4,const(cConst2),op3,op4]
 [fix2#rec2] [fix3#rec3] [fix4#rec4]
 [fix5#rec5] [fix6#rec6] [fix7#rec7] >
=>
< recN sendToRegsArray(regsStr,cRegRes2,cRegRes4)
 [0,port(cPort1),port(cPort2),
 reg(cRegRes1),reg(cRegRes2)
 # addr1,addr2,const(cConst1),op1,op2]
 [1,port(cPort3),port(cPort4),
 reg(cRegRes3),reg(cRegRes4)
 # addr3,addr4,const(cConst2),op3,op4]
 [fix2#rec2] [fix3#rec3] [fix4#rec4]
 [fix5#rec5] [fix6#rec6] [fix7#rec7] >
where cRegRes1 :=()operate(cPort1,cPort2,op1)
where cRegRes2 :=()operate(cRegRes1,cConst1,op2)
where cRegRes3 :=()operate(cPort3,cPort4,op3)
where cRegRes4 :=()operate(cRegRes3,cConst2,op4)
end

Reconfiguration steps and executions of the operations in
the eight MACs are alternatively applied. The rewriting rule
for the third reconfiguration, that has previously been
explained, is presented in the Table 3. This rule that is
guided by the index of reconfiguration (2 in this case),
reconfigures the processor exactly as indicated in the
previous comments. Observe that complex numbers are
given as pairs of numbers of the form <0,7071 0,7071>.
The use of explicit rewriting rules for reconfiguration is
unessential. In fact, in a more elaborated specification of
this processor we give as input both data and a
reconfiguration stream as it has been explained in the
Figure 1. For this specification a unique rewriting rule
guides the reconfiguration process based in the parameters
of reconfiguration given in the reconfiguration stream.
Now we explain how we use logical strategies for
simulating the desired execution with the alternate dynamic
reconfigurations. The key for a correct simulation of our
processor is in fact a very simple logical strategy, which
alternatively simulates a reconfiguration step and a
computation step followed by the propagation of results to
the 8-array. The former corresponds to a reconfiguration
step and the latter to the sequence MAC01; MAC23;
MAC45; MAC07. The logical strategy for controlling the
execution of the process, i.e. this alternatively execution of
reconfigurations and executions, is specified as:
 strategies for Proc
 implicit
 [] process =>
 input; MAC01; MAC23; MAC45; MAC67;

 repeat*(reconfiguration; propagate; MAC01; MAC23;
 MAC45; MAC67); output
 end
 end

Using logical strategies for guiding the rule application in
ELAN allows for a natural separation between the steps of
execution and reconfiguration in our proposed processors.
We believe that this is a clean way to specify and simulate
this kind of (dynamically) reconfigurable architectures. By
clean we mean in a realistically manner in relation to
physical implementations of the conceived systems.

 Table 3: Reconfiguration rule
[reconfiguration]
< 2 regsStr
 [fix0#rec0][fix1#rec1][fix2#rec2][fix3#rec3]
 [fix4#rec4][fix5#rec5][fix6#rec6][fix7#rec7] >
=>
 < 3 regsStr
 [fix0 # addr(0),addr(2),
 const(< 1,0000 0,0000 >), < + >,< * >]
 [fix1 # addr(1),addr(3),
 const(< 1,0000 0,0000 >), < + >,< * >]
 [fix2 # addr(0),addr(2),
 const(< 1,0000 0,0000 >), < - >,< * >]
 [fix3 # addr(1),addr(3),
 const(< 1,0000 0,0000 >), < - >,< * >]
 [fix4 # addr(4),addr(6),
 const(< 1,0000 0,0000 >), < + >,< * >]
 [fix5 # addr(5),addr(7),
 const(< 0,7071 0,7071 >), < + >,< * >]
 [fix6 # addr(4),addr(6),
 const(< 0,0000 1,0000 >), < - >,< * >]
 [fix7 # addr(5),addr(7),
 const(<minus(0,7071) 0,7071>), <->,<*>] >

end
With different strategies of (dynamical) reconfiguration the
8-array can be adapted to execute other operations, like
matrix multiplication, inverse of the DFT, etc.
It should be stressed here that one of the main advantages
of using the rewriting formalism is the direct reduction of
the correctness proof of our FFT specification to the usual
algebraic proof of the in place algorithm (as in [4]).

3.3 A Reconfigurable Pipeline Implementation

Our specification of the FFT has used a single vector of
MACs which makes it optimal in the use of space such as
the well-known in place algorithmic implementations of
this operator. The number of necessary reconfigurations
and computation steps is four (in the general case ln(n)+1).
In this approach, the data processing must be interrupted
while reconfiguration takes place. A more time efficient
alternative is to implement a two-stage pipeline, which
consists of two 8-array of MACs interconnected by a
reconfigurable network. The idea is illustrated in the Figure
6. Since computing of operations with complex numbers
takes longer time than reconfiguration time, this approach
does not provide a linear time reduction, but eliminates the
reconfiguration overhead. The idea is that while one row of

MACs is being reconfigured, the other is computing one
step of the FFT.
This architecture was modeled and simulated in ELAN,
using a similar approach. The details of the
implementations are not presented here, but they are
available at www.mat.unb.br/~ayala/TCgroup.

4. Conclusions

Since digital systems get more and more complex,
modeling the various architectural trade offs in the context
of reconfigurable systems may benefit from the high
abstraction level provided by rewriting-logic environments.
In this paper, we showed how rewriting systems can be
used to model a dynamically reconfigurable hardware to
implement the FFT in optimal space (O(n) that is the size of
the input). In our experiments we have compared two
alternative designs: one using a single reconfigurable vector
of MACs (presented in this paper) and another based on a
pipeline of two reconfigurable vectors (both available on
internet). The ELAN model allows us to simulate the
behavior of both designs and verify its correctness with
respect to a set of input vectors. Moreover, it gave us
insights on the time/space complexity of the
implementations. The high abstraction level provided by
ELAN makes the design exploration a simpler task and
provides a starting point to the design implementation.
Current work address the automatic generation of
synthesizable VHDL models from the ELAN specification.
VHDL in this case is used as an “assembly language” in
the design process. Compared to a SystemC or a Java
specification, ELAN has the advantage of an embedded
inference engine; a flexible type definition mechanism (data
and operators); a powerful manipulation of typed
expressions through rules and meta-rules and the
availability of logical strategies to control their application.

5. References

[1] S. G. Akl. Parallel Computation: Models and Methods.
Prentice-Hall, 1997.
[2] Arvind and X. Shen, Using Term Rewriting Systems to Design
and Verify Processors, Tech. Report 419, Laboratory for
Computer Science - MIT, 1999.
[3] M. Ayala-Rincón, R. Hartenstein, R. M. Neto, R. P. Jacobi and
C. Llanos, Architectural Specification, Exploration and
Simulation Through Rewriting-Logic, Colombian Journal of
Computation, 3(2):20-34, 2002.
[4] S. Baase and A. van Gelder, Computer Algorithms:
Introduction to Design and Analysis, Addison-Wesley, 1999.

[5] F. Baader and T. Nipkow, Term Rewriting and all That,
Cambridge University Press, 1998.

[6] P. Borovanský, C. Kirchner, H. Kirchner and P.-E. Moreau,
ELAN from a rewriting logic point of view, [15] pages 155-185.
[7] H. Cirstea and C. Kirchner, Combining Higher-Order and
First-Order Computation Using rho-Calculus: Towards a
Semantics of ELAN, Chap. 6 in Frontiers of Combining Systems 2,
Studies on Logic and Computation, 7, pages 95-121, Research
Studies Press/Wiley, 1999.
[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,
Introduction to Algorithms, The MIT Press, 2001.
[9] http://www.timelogic.com.
[10] M. Flynn. Some computer organizations and their
effectiveness, IEEE Transactions on Commputers, Sept. 1972.

[11] Hoe, J. C. and Arvind, Hardware Synthesis from Term
Rewriting Systems, Tech. Report 421A, Laboratory for Computer
Science - MIT, 1999.
 [12] D. Kapur. Theorem Proving Support for Hardware
Verification, invited talk, Third Int. Workshop on First-Order
Theorem Proving, St. Andrews, Scotland, 2000.
[14] D. Kapur and M. Subramaniam. Using and Induction Prover
for Verifying Arithmetic Circuits. J. of Software Tools for
Technology Transfer. 3(1):32-65, Springer Verlag, 2000.
 [13] D. Kapur and M. Subramaniam, Mechanizing Verification of
Arithmetic Circuits: SRT Division. In Proc. 17th FSTTCS, LNCS,
Vol. 1346, pages 103-122, Springer Verlag, 1997.
[15] N. Martí-Oliet and J. Meseguer, eds., Special issue on
Rewriting Logic and its Applications, Theoretical Computer
Science 285(2): 119-564, 2002.
[16] X. Shen and Arvind, Design and Verification of Speculative
Processors, Tech. Report 400A, Laboratory for Computer Science
- MIT, 1998.
[17] X. Shen and Arvind, Modeling and Verification of ISA
Implementations, Tech. Report 400B, Laboratory for Computer
Science - MIT, 1998.
[18] X. Shen, Arvind and L. Rudolph, CACHET: an adaptive
cache coherence protocol for distributed shared-memory systems,
ACM Int. Conference on Supercomputing, pages 135-144, 1999.
[19] J. Stoy, X. Shen and Arvind, Proofs of Correctness of Cache-
Coherence Protocols, FME 200: Formal Methods for Increasing
Software Productivity, Int. Symposium of Formal Methods,
Springer LNCS, Vol. 2021, pages 43-71, 2001

Fig. 6: Pipelined Reconfigurable FFT

Reconfigurable Interconnection Network

Reconfigurable Interconnection Network

