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Discriminating ES calculi

Many calculi of explicit substitutions (ES).

How to discriminate?

Denotational and categorical semantics describe normal forms.
Explicit substitutions can always be executed , getting a λ-term.

Normal forms thus are λ-terms without ES.

Denotational and categorical semantics cannot help.
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Discriminating ES calculi

Explicit substitutions are a purely operational topic.

Our discrimination criterion: logic background and quality of
the rewriting theory .

Logic background : Linear Logic Proof-Nets (previous talk).

Quality of the rewriting theory : properties, insights and
compactness of the proofs.

Challenge: match the beauty of λ-calculus rewriting theory.

Faith: beauty will induce a powerful theory .
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Definition

A system S if confluent when:

t →∗ u1 t →∗ u1↓∗ implies ∃v s.t. ↓∗ ↓∗
u2 u2 →∗ v

A system S if locally confluent when:

t → u1 t → u1↓ implies ∃v s.t. ↓ ↓∗
u2 u2 →∗ v

Termination⇒ Confluence = Local Confluence
(Newman’s Lemma).

λ-calculus and calculi with ES do not terminate.
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Parallel reductions

Confluence for non-terminating calculi often obtained via parallel
reduction (Tait-Martin-Löf).
Idea: find a new reduction⇒ s.t.:

Extends→: →⊆⇒⊆→∗.

Is parallel (=diamond property=strong confluence):

t ⇒ u1 t ⇒ u1⇓ implies ∃v s.t. ⇓ ⇓
u2 u2 ⇒ v

Parallelism implies⇒ and⇒∗ are confluent.

By 1)⇒∗=→∗
So→ is confluent.
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Residuals

Residuals are a sort of refinement of parallel reduction.

The refinement consist in:

1 Adding a tracing system for redexes.

2 Asking that the redexes reduced to close the diagram can be
traced back to the starting term:

t ⇒R u1 t ⇒R u1⇓S implies ∃v ,R/S,S/R s.t. ⇓S ⇓R/S
u2 u2 ⇒S/R v

S/R is the set of redexes which are residuals of S after R.
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Examples in λ-calculus

Singleton set:
( I I ) ( I I ) ⇒R ( I I ) I⇓S ⇓R/S

I ( I I ) ⇒R/S I I

Set:
(λx .xx) ( I I ) ⇒R (λx .xx) I⇓S ⇓R/S

( I I ) ( I I ) ⇒R/S I I

Empty Set:

(λx .y) ( I I ) ⇒R (λx .y) I⇓S ⇓R/S
y ⇒R/S y
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Residuals

The residual property implies confluence (it induces a parallel
reduction).

The advanced rewriting theory of λ-calculus (standardization,
families, optimality) is based on residuals.

Residuals are the right semantic abstraction of being
orthogonal .

Traditionally : a system is orthogonal if it is left-linear and it has
no critical pair .

This is a syntactic definition.

Orthogonality ⇒ residual property , which is why orthogonal
systems are interesting.

But there are systems with residuals which are not orthogonal .
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The structural λ-calculus λj

Rules:

(λx .t)L u →B−distance t [x/u]L

t [x/u] →weakening t |t |x= 0

t [x/u] →dereliction t{x/u} |t |x= 1

t [x/u] →contraction t[y ]x [x/u][y/u] |t |x> 1 & y fresh

λj does not enjoy the residual property .
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No residuals for λj 1

Consider:

x [y/w ] w ← x [z/y y ][y/w ] →c x [z/y1 y2][y1/w ][y2/w ]

↓w ↓w
x x [y1/w ][y2/w ]

The diagram can be closed :

x [y/w ] w ← x [z/y y ][y/w ] →c x [z/y1 y2][y1/w ][y2/w ]

↓w ↓w
x w ← x [y1/w ] w ← x [y1/w ][y2/w ]

But the two further steps reduce created redexes.
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No residuals for λj 2

Consider:
(xx)[x/z] d ← (xx)[x/y ][y/z] →c (x1x2)[x1/y ][x2/y ][y/z]

↓c ↓c
(x1x2)[x1/z][x2/z] (x1x2)[x1/y1][x2/y2][y1/z][y2/z]

The diagram can be closed :

(xx)[x/z] d ← (xx)[x/y ][y/z] →c (x1x2)[x1/y ][x2/y ][y/z]

↓c ↓c
(x1x2)[x1/z][x2/z] d ← (x1x2)[x1/y1][x2/z][y1/z] d ← (x1x2)[x1/y1][x2/y2][y1/z][y2/z]

But the two further steps reduce created redexes.
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Milner’s calculus

The linear substitution calculus λls:

(λx .t)L u →dB t [x/u]L

C[x ][x/u] →ls C[u][x/u]

t [x/u] →w t x /∈ fv(t)

Is a mix of λj and Milner’s calculus.

It enjoys residuals.
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Residuals for λls

The first critical pair:

x [z/y y ][y/w ] →ls x [z/w y ][y/w ]

↓w ↓w
x [y/w ] = x [y/w ]

The second one:

(xx)[x/y ][y/z] →ls (xx)[x/z][y/z]

↓ls ↓ls
(yx)[x/y ][y/z] →ls (zx)[x/z][y/z] →ls (zx)[x/z][y/z]

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 17 / 29



Outline

1 Introduction

2 Confluence

3 Refining the calculus

4 Other properties

5 Developments

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 18 / 29



Postponment of erasing steps

In λ-calculus it is not possible to postpone erasing steps:

(λx .λy .y) t v →β (λy .y) v︸ ︷︷ ︸
erasing step

→β v

In λls instead the postponement holds.

w-postponement : t →∗ u then t →∗¬w→∗w u.

λls generalizes Klop’s memory calculus.
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Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29



Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29



Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29



Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29



Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29



Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29



Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29



Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29



Properties of λj

Simulation of one-step β-reduction.

Strong Normalisation in the typed case.

Preservation of β-strong normalisation (PSN):
if t ∈ SNβ, then t ∈ SNλj.
Melliès counter-example out.
Short proof!

Full Composition:
t [x/u]→∗λj t{x/u}.
Without equations!

Confluence.

Meta-Confluence (Fabien Renaud, Kesner’s student).

Accattoli (INRIA Parsifal) The rewriting theory of explicit substitution at a distance 20 / 29



≡o-equivalence

The translation on graphs induces a quotient:

(λy .t)[u/x ] ≡ λy .(t [u/x ]) if y /∈ fv(u)

(t [u/x ]) v ≡ (t v)[u/x ] if x /∈ fv(v)

t [x/u][y/v ] ≡ t [y/v ][x/u] if y /∈ fv(u) & x /∈ fv(v)

Which is a strong bisimulation by construction:

t → t ′↓· ↓·
G → G ′↑· ↑·
s → s ′
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≡o-equivalence

≡o is a reformulation of Regnier’s σ-equivalence.

But ≡o is a strong bisimulation whether σ is not .

Strong bisimulations preserve reduction lengths.

⇒ λj and λls modulo ≡o enjoy PSN .

Church-Rosser modulo also follows.
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Composition

In λj there is no rule for composing substitutions:

t [y/v ] [x/u] 6→comp t [x/u] [y/v [x/u]]

There is a notion of implicit composition:

t [y/v {x/u}][x/u]

Which can be computed, at a distance, in λj.

For instance:

(x y)[y/x ][x/u] →c (x1 y)[y/x2][x1/u][x2/u] →d

(x1 y)[y/u][x1/u] =α

(x y)[y/u][x/u]
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Complete Developments

A complete development from a term t is a reduction sequence
in which all and only residuals of redexes that already exist in t are
contracted.
Complete developments are terminating (and confluent).
The result of complete developments can be defined by induction
on the term:

Dev(x) := x

Dev(λx .t) := λx .Dev(t)

Dev((λx .t) u) := Dev(t){x/Dev(u)}

Dev(t u) := Dev(t) Dev(u) if t 6= λ
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Extending complete developments

Creation of redexes in λ-calculus (Levy):

1) ((λx .λy .t)u) v →β (λy .t{x/u}) v

2) (λx .x)(λy .t) u →β (λy .t) u

3) (λx .C[x v ]) (λy .u) →β C{x/λy .u}[(λy .u) v ]

1) Creates a redex that was hidden by a λ.

2) The redex was hidden by an identity redex.

3) It is the dangerous kind of creation: the one leading to
divergence.

δ δ creates only redexes of the third kind.
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Superdevelopments

There exists an extension of complete developments which
reduces redexes of type 1 and 2:

1) ((λx .λy .t)u) v →β (λy .t{x/u}) v

2) (λx .x)(λy .t) u →β (λy .t) u

These superdevelopments are convergent and can be defined by
induction, too:

x◦◦ := x
(λx .t)◦◦ := λx .t◦◦

t u◦◦ := t◦◦ u◦◦ if t◦◦ 6= λ

t u◦◦ := t1{x/u◦◦} if t◦◦ = λx .t1
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Developments

Developments and Superdevelopments can be characterized in
new ways in λls and λj.

The idea is that a (Super)development can be seen as the normal
form of some subreductions of λls or λj.

But two new notions of developments can also be defined.

One reducing only creations of type 1.

One reducing creations of type 1, 2 and a linear case of type 3.
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Conclusions

The linear substitution calculus is the best refinement of
λ-calculus I know of :

Simple: 3 rules;

Solid : propagations can be modularly added;

Expressive: head linear reduction, developments;

Perfect rewriting theory : residuals, short PSN proof.

Logiacl foundation: inspired by Linear Logic,

Graphical syntax : Proof-Nets.
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