The rewriting theory of explicit substitution at a distance

Beniamino Accattoli

Ecole Polytechnique, LIX

Introduction

2 Confluence

- 3 Refining the calculus
- Other properties

5 Developments

Accattoli (INRIA Parsifal)

< 17 ▶

Introduction

- 2 Confluence
- 3 Refining the calculus
- Other properties
- 5 Developments

Accattoli (INRIA Parsifal)

- Many calculi of explicit substitutions (ES).
- How to discriminate?
- Denotational and categorical semantics describe *normal forms*.
- Explicit substitutions can always be *executed*, getting a λ -term.
- Normal forms thus are λ-terms without ES.
- Denotational and categorical semantics *cannot help*.

- Explicit substitutions are a *purely operational* topic.
- Our discrimination criterion: *logic background* and *quality of* the rewriting theory.
- Logic background: Linear Logic Proof-Nets (previous talk).
- Quality of the rewriting theory: properties, insights and compactness of the proofs.
- **Challenge**: match the **beauty** of λ -calculus rewriting theory.
- *Faith*: beauty will induce a *powerful theory*.

Introduction

2 Confluence

- 3 Refining the calculus
- Other properties

5 Developments

Accattoli (INRIA Parsifal)

Definition

• A system S if *confluent* when:

• A system S if *locally confluent* when:

- Termination ⇒ Confluence = Local Confluence (Newman's Lemma).
- λ-calculus and calculi with ES do not terminate.

Parallel reductions

- Confluence for non-terminating calculi often obtained via *parallel* reduction (Tait-Martin-Löf).
- *Idea*: find a new reduction \Rightarrow s.t.:
 - **Extends** \rightarrow : \rightarrow \subseteq \Rightarrow \subseteq \rightarrow ^{*}.
 - Is parallel (=diamond property=strong confluence):

- Parallelism implies \Rightarrow and \Rightarrow^* are confluent.
- By 1) $\Rightarrow^* = \rightarrow^*$
- So \rightarrow is confluent.

Residuals are a sort of *refinement* of parallel reduction.

The refinement consist in:

- Adding a *tracing system* for redexes.
- Asking that the redexes reduced to close the diagram can be traced back to the *starting term*:

 $\begin{array}{ccccc} t & \Rightarrow_{R} & u_{1} & & t & \Rightarrow_{R} & u_{1} \\ \Downarrow_{S} & & \text{implies } \exists v, R/S, S/R \text{ s.t.} & & \Downarrow_{S} & & \Downarrow_{R/S} \\ u_{2} & & & u_{2} & \Rightarrow_{S/R} & v \end{array}$

S/R is the **set** of redexes which are residuals of S after R.

A (10) A (10)

Examples in λ -calculus

• Singleton set:

$$(\begin{array}{c} II \\ \downarrow S \\ I \\ (II) \end{array}) \Rightarrow_{R} (II) \\ \downarrow_{R/S} \\ \downarrow_{R/S} \\ \downarrow_{R/S} \\ II \end{array}$$

Set:

$$\begin{array}{c|c} (\lambda x.xx) (II) & \Rightarrow_{R} & (\lambda x.xx) I \\ & \downarrow_{S} & & \downarrow_{R/S} \\ (II) (II) & \Rightarrow_{R/S} & II \end{array}$$

• Empty Set:

$$\begin{array}{c|c} (\lambda x.y) (II) & \Rightarrow_R & (\lambda x.y) I \\ & \downarrow_S & & \downarrow_{R/S} \\ & y & \Rightarrow_{R/S} & y \end{array}$$

- The residual property implies *confluence* (it induces a parallel reduction).
- The *advanced rewriting theory* of λ-calculus (standardization, families, optimality) is based on residuals.
- Residuals are the right *semantic* abstraction of being orthogonal.
- *Traditionally*: a system is orthogonal if it is *left-linear* and it has *no critical pair*.
- This is a *syntactic* definition.
- But there are systems with residuals which are *not orthogonal*.

Rules:

• λj does not enjoy the residual property.

A (10) A (10) A (10)

No residuals for $\lambda j 1$

• Consider:

• The diagram *can be closed*:

• Consider:

 $\begin{array}{cccc} (xx)[x/z] & {}_{\mathrm{d}} \leftarrow & (xx)[x/y][y/z] & \rightarrow_{\mathrm{c}} & (x_1x_2)[x_1/y][x_2/y][y/z] \\ & \downarrow_{\mathrm{c}} & & \downarrow_{\mathrm{c}} \\ (x_1x_2)[x_1/z][x_2/z] & & (x_1x_2)[x_1/y_1][x_2/y_2][y_1/z][y_2/z] \end{array}$

• The diagram *can be closed*:

 $(xx)[x/z] \qquad {}_{d} \leftarrow \qquad (xx)[x/y][y/z] \qquad \rightarrow_{c} \qquad (x_{1}x_{2})[x_{1}/y][x_{2}/y][y/z]$ $\downarrow_{c} \qquad \qquad \downarrow_{c}$

 $(x_1x_2)[x_1/z][x_2/z] \quad d \leftarrow \quad (x_1x_2)[x_1/y_1][x_2/z][y_1/z] \quad d \leftarrow \quad (x_1x_2)[x_1/y_1][x_2/y_2][y_1/z][y_2/z][y_2/z][y_1/z][y_2/z][y_1/z][y_2/z][y_2/z][y_1/z][y_2/z][y_2/z][y_1/z][y_2/z][$

But the two further steps reduce *created redexes*.

э

A (10) A (10)

1 Introduction

2 Confluence

Other properties

5 Developments

Accattoli (INRIA Parsifal)

• The linear substitution calculus λ_{ls} :

 $\begin{array}{lll} (\lambda x.t)L \ u & \rightarrow_{\mathrm{dB}} & t[x/u]L \\ \\ C[x][x/u] & \rightarrow_{\mathrm{ls}} & C[u][x/u] \\ \\ t[x/u] & \rightarrow_{\mathrm{w}} & t & x \notin \mathrm{fv}(t) \end{array}$

Is a *mix* of λj and *Milner's calculus*.

• It enjoys residuals.

A (B) + A (B) + A (B) +

• The first critical pair:

$$\begin{split} x[z/y \ y][y/w] &\rightarrow_{1s} x[z/w \ y][y/w] \\ \downarrow_w & \downarrow_w \\ x[y/w] &= x[y/w] \end{split}$$

$$\bullet \text{ The second one:} \\ (xx)[x/y][y/z] &\rightarrow_{1s} (xx)[x/z][y/z] \\ \downarrow_{1s} & \downarrow_{1s} \\ (yx)[x/y][y/z] \rightarrow_{1s} (zx)[x/z][y/z] \rightarrow_{1s} (zx)[x/z][y/z] \end{split}$$

2

イロト イヨト イヨト イヨト

1 Introduction

2 Confluence

- 3 Refining the calculus
- Other properties

5 Developments

Accattoli (INRIA Parsifal)

• In λ-calculus it *is not possible to postpone erasing steps*:

$$\underbrace{(\lambda x.\lambda y.y) \ t \ v \rightarrow_{\beta} \ (\lambda y.y) \ v}_{\text{erasing step}} \rightarrow_{\beta} v$$

- In λ_{ls} instead the postponement *holds*.
- *w-postponement*: $t \to^* u$ then $t \to^*_{\neg w} \to^*_{w} u$.
- λ_{ls} generalizes Klop's memory calculus.

• Simulation of one-step β-reduction.

- Strong Normalisation in the typed case.
- Preservation of β-strong normalisation (PSN): if t ∈ SN_β, then t ∈ SN_{λj}. Melliès counter-example out. Short proof!
- Full Composition: $t[x/u] \rightarrow^*_{\lambda j} t\{x/u\}.$ Without equations!
- Confluence.
- Meta-Confluence (Fabien Renaud, Kesner's student).

Properties of λj

- Simulation of one-step β-reduction.
- Strong Normalisation in the typed case.
- **Preservation of** β -strong normalisation (PSN): if $t \in SN_{\beta}$, then $t \in SN_{\lambda j}$. Melliès counter-example out. Short proof!
- Full Composition: $t[x/u] \rightarrow^*_{\lambda j} t\{x/u\}.$ Without equations!
- Confluence.
- Meta-Confluence (Fabien Renaud, Kesner's student).

Properties of λj

- Simulation of one-step β-reduction.
- Strong Normalisation in the typed case.
- **Preservation of** β -strong normalisation (PSN): if $t \in SN_{\beta}$, then $t \in SN_{\lambda j}$. Melliès counter-example out. Short proof!
- Full Composition: $t[x/u] \rightarrow^*_{\lambda j} t\{x/u\}.$ Without equations!
- Confluence.
- Meta-Confluence (Fabien Renaud, Kesner's student).

Properties of λj

- Simulation of one-step β-reduction.
- Strong Normalisation in the typed case.
- Preservation of β-strong normalisation (PSN): if t ∈ SN_β, then t ∈ SN_{λj}. Melliès counter-example out. Short proof!
- Full Composition: $t[x/u] \rightarrow^*_{\lambda j} t\{x/u\}.$ Without equations!
- Confluence.
- Meta-Confluence (Fabien Renaud, Kesner's student).

- Simulation of one-step β-reduction.
- Strong Normalisation in the typed case.
- **Preservation of** β -strong normalisation (PSN): if $t \in SN_{\beta}$, then $t \in SN_{\lambda j}$. Melliès counter-example out. Short proof!
- Full Composition:

 $t[x/u] \rightarrow^*_{\lambda_j} t[x/u].$ Without equations!

• Confluence.

• Meta-Confluence (Fabien Renaud, Kesner's student).

- Simulation of one-step β-reduction.
- Strong Normalisation in the typed case.
- Preservation of β-strong normalisation (PSN): if t ∈ SN_β, then t ∈ SN_{λj}. Melliès counter-example out. Short proof!
- Full Composition: $t[x/u] \rightarrow^*_{\lambda_j} t\{x/u\}.$ Without equations!
- Confluence.
- Meta-Confluence (Fabien Renaud, Kesner's student).

- Simulation of one-step β-reduction.
- Strong Normalisation in the typed case.
- Preservation of β-strong normalisation (PSN): if t ∈ SN_β, then t ∈ SN_{λj}. Melliès counter-example out. Short proof!
- Full Composition: $t[x/u] \rightarrow^*_{\lambda j} t\{x/u\}.$ Without equations!
- Confluence.
- Meta-Confluence (Fabien Renaud, Kesner's student).

- Simulation of one-step β-reduction.
- Strong Normalisation in the typed case.
- Preservation of β-strong normalisation (PSN): if t ∈ SN_β, then t ∈ SN_{λj}. Melliès counter-example out. Short proof!
- Full Composition: $t[x/u] \rightarrow^*_{\lambda j} t\{x/u\}.$ Without equations!
- Confluence.
- Meta-Confluence (Fabien Renaud, Kesner's student).

A (1) > A (1) > A

- Simulation of one-step β-reduction.
- Strong Normalisation in the typed case.
- Preservation of β-strong normalisation (PSN): if t ∈ SN_β, then t ∈ SN_{λj}. Melliès counter-example out. Short proof!
- Full Composition: $t[x/u] \rightarrow^*_{\lambda j} t\{x/u\}.$ Without equations!
- Confluence.
- Meta-Confluence (Fabien Renaud, Kesner's student).

\equiv_{\circ} -equivalence

• The translation on graphs induces a quotient:

 $\begin{array}{rcl} (\lambda y.t)[u/x] &\equiv& \lambda y.(t[u/x]) & \text{if } y \notin f_{\nabla}(u) \\ (t[u/x]) v &\equiv& (t \ v)[u/x] & \text{if } x \notin f_{\nabla}(v) \\ t[x/u][y/v] &\equiv& t[y/v][x/u] & \text{if } y \notin f_{\nabla}(u) \& x \notin f_{\nabla}(v) \end{array}$

• Which is a strong bisimulation by construction:

$$egin{array}{cccc} t &
ightarrow & t' \ \downarrow^{-} & \downarrow^{-} \ G &
ightarrow & G' \ \uparrow^{-} & \uparrow^{-} \ s &
ightarrow & s' \end{array}$$

э

\equiv_{\circ} -equivalence

• The translation on graphs induces a quotient:

 $(\lambda y.t)[u/x] \equiv \lambda y.(t[u/x])$ if $y \notin fv(u)$

 $(t[u/x]) v \equiv (t v)[u/x] \text{ if } x \notin fv(v)$

 $t[x/u][y/v] \equiv t[y/v][x/u] \text{ if } y \notin fv(u) \& x \notin fv(v)$

• Which is a strong bisimulation by construction:

$$egin{array}{cccc} t &
ightarrow & t' \ \downarrow ar{\cdot} & \downarrow ar{\cdot} \ m{G} &
ightarrow & m{G'} \ \uparrow ar{\cdot} & \uparrow ar{\cdot} \ m{s} &
ightarrow & m{s'} \end{array}$$

э

\equiv_{\circ} -equivalence

• The translation on graphs induces a quotient:

$$(\lambda y.t)[u/x] \equiv \lambda y.(t[u/x])$$
 if $y \notin fv(u)$

$$(t[\mathbf{u}/\mathbf{x}]) \mathbf{v} \equiv (t \mathbf{v})[\mathbf{u}/\mathbf{x}] \text{ if } \mathbf{x} \notin fv(\mathbf{v})$$

 $t[x/u][y/v] \equiv t[y/v][x/u] \text{ if } y \notin fv(u) \& x \notin fv(v)$

• Which is a strong bisimulation by construction:

$$egin{array}{cccc} t &
ightarrow & t' \ \downarrow^{-} & \downarrow^{-} \ {m G} &
ightarrow & {m G}' \ \uparrow^{-} & \uparrow^{-} \ {m s} &
ightarrow & {m s}' \end{array}$$

• \equiv_{\circ} is a reformulation of *Regnier's* σ *-equivalence*.

• But \equiv_{\circ} is a strong bisimulation whether σ *is not*.

- Strong bisimulations preserve reduction lengths.
- $\Rightarrow \lambda j$ and λ_{1s} modulo \equiv_{\circ} enjoy **PSN**.
- Church-Rosser modulo also follows.

• \equiv_{\circ} is a reformulation of *Regnier's* σ -equivalence.

• But \equiv_{\circ} is a strong bisimulation whether σ *is not*.

- Strong bisimulations preserve reduction lengths.
- $\Rightarrow \lambda j$ and λ_{1s} modulo \equiv_{\circ} enjoy **PSN**.
- Church-Rosser modulo also follows.

4 A N

- \equiv_{\circ} is a reformulation of *Regnier's* σ -equivalence.
- But \equiv_{\circ} is a strong bisimulation whether σ *is not*.
- Strong bisimulations preserve reduction lengths.
- $\Rightarrow \lambda j$ and λ_{1s} modulo \equiv_{\circ} enjoy **PSN**.
- Church-Rosser modulo also follows.

- \equiv_{\circ} is a reformulation of *Regnier's* σ -equivalence.
- But \equiv_{\circ} is a strong bisimulation whether σ *is not*.
- Strong bisimulations preserve reduction lengths.
- $\Rightarrow \lambda j$ and λ_{ls} modulo \equiv_{\circ} enjoy *PSN*.
- Church-Rosser modulo also follows.

- \equiv_{\circ} is a reformulation of *Regnier's* σ -*equivalence*.
- But \equiv_{\circ} is a strong bisimulation whether σ *is not*.
- Strong bisimulations preserve reduction lengths.
- $\Rightarrow \lambda j$ and λ_{1s} modulo \equiv_{\circ} enjoy *PSN*.
- Church-Rosser modulo also follows.

• In λ_j there is *no rule* for *composing substitutions*: $t [v/v] [x/u] \neq_{comp} t [x/u] [v/v[x/u]]$

• There is a notion of *implicit* composition:

 $t \left[y / v \{ x / u \} \right] \left[x / u \right]$

Which can be computed, *at a distance*, in λj .

• For instance:

 $(x y)[y/x][x/u] \rightarrow_{c} (x_{1} y)[y/x_{2}][x_{1}/u][x_{2}/u] \rightarrow_{d}$ $(x_{1} y)[y/u][x_{1}/u] =_{\alpha}$

(X Y)[Y/U][X/U]

• In λ j there is **no rule** for **composing substitutions**: $t [y/v] [x/u] \not\rightarrow_{comp} t [x/u] [y/v[x/u]]$

• There is a notion of *implicit* composition:

 $t \left[y/v\{x/u\} \right] [x/u]$

Which can be computed, *at a distance*, in λj .

• For instance:

 $(x y)[y/x][x/u] \rightarrow_{c} (x_{1} y)[y/x_{2}][x_{1}/u][x_{2}/u] \rightarrow_{d}$ $(x_{1} y)[y/u][x_{1}/u] =_{\alpha}$

(X Y)[Y/U][X/U]

Composition

• In λ j there is *no rule* for *composing substitutions*: $t [y/v] [x/u] \not\rightarrow_{comp} t [x/u] [y/v[x/u]]$

• There is a notion of *implicit* composition:

$t \left[y/v\{x/u\} \right] [x/u]$

Which can be computed, *at a distance*, in λj .

• For instance:

 $(x y)[y/x][x/u] \rightarrow_{c} (x_{1} y)[y/x_{2}][x_{1}/u][x_{2}/u] \rightarrow_{d}$ $(x_{1} y)[y/u][x_{2}/u] = -$

(X V)[V/U][X/U], (A) (A) (A)

Composition

• In λ j there is *no rule* for *composing substitutions*: $t [y/v] [x/u] \not\rightarrow_{comp} t [x/u] [y/v[x/u]]$

• There is a notion of *implicit* composition:

$t \, [y/v\{x/u\}][x/u]$

Which can be computed, *at a distance*, in λj .

• For instance:

 $(x y)[y/x][x/u] \rightarrow_{c} (x_{1} y)[y/x_{2}][x_{1}/u][x_{2}/u] \rightarrow_{d}$

 $(\mathbf{x}_1 \ \mathbf{y})[\mathbf{y}/\mathbf{u}][\mathbf{x}_1/\mathbf{u}] =_{\alpha}$

(X V)[V/U][X/U], (A) (A) (A)

• In λ j there is *no rule* for *composing substitutions*: $t [y/v] [x/u] \not\rightarrow_{comp} t [x/u] [y/v[x/u]]$

• There is a notion of *implicit* composition:

 $t [y/v{x/u}][x/u]$

Which can be computed, *at a distance*, in λj .

• For instance:

 $(x y)[y/x][x/u] \rightarrow_{c} (x_1 y)[y/x_2][x_1/u][x_2/u] \rightarrow_{d}$

 $(\mathbf{x}_1 \ \mathbf{y})[\mathbf{y}/\mathbf{u}][\mathbf{x}_1/\mathbf{u}] =_{\alpha}$

(X V)[V/U][X/U], $(A \to A \to A \to A$

• In λ j there is *no rule* for *composing substitutions*: $t [y/v] [x/u] \not\rightarrow_{comp} t [x/u] [y/v[x/u]]$

• There is a notion of *implicit* composition:

 $t \, [y/v\{x/u\}][x/u]$

Which can be computed, *at a distance*, in λj .

• For instance:

 $(x \ y)[y/x][x/u] \rightarrow_{c} (x_{1} \ y)[y/x_{2}][x_{1}/u][x_{2}/u] \rightarrow_{d}$ $(x_{1} \ y)[y/u][x_{1}/u] =_{\alpha}$

1 Introduction

- 2 Confluence
- 3 Refining the calculus
- Other properties

5 Developments

Accattoli (INRIA Parsifal)

- A *complete development* from a term *t* is a reduction sequence in which all and only residuals of redexes that already exist in *t* are contracted.
- Complete developments are terminating (and confluent).
- The result of complete developments can be defined by induction on the term:

< ロ > < 同 > < 回 > < 回 > < 回 >

Extending complete developments

- Creation of redexes in λ-calculus (Levy):
 - 1) $((\lambda x.\lambda y.t)u) v \longrightarrow_{\beta} (\lambda y.t\{x/u\}) v$
 - 2) $(\lambda x.x)(\lambda y.t) u \longrightarrow_{\beta} (\lambda y.t) u$
 - **3**) $(\lambda x. C[x v]) (\lambda y. u) \rightarrow_{\beta} C[x/\lambda y. u][(\lambda y. u) v]$
- 1) Creates a redex that was hidden by a λ .
- 2) The redex was hidden by an identity redex.
- 3) It is the dangerous kind of creation: the one leading to divergence.
- $\delta \delta$ creates only redexes of the third kind.

・ ロ ト ・ 同 ト ・ 目 ト ・ 目 ト

Superdevelopments

• There exists an extension of complete developments which reduces redexes of type 1 and 2:

1)
$$((\lambda x.\lambda y.t)u) v \rightarrow_{\beta} (\lambda y.t\{x/u\}) v$$

2) $(\lambda x.x)(\lambda y.t) u \rightarrow_{\beta} (\lambda y.t) u$

 These superdevelopments are convergent and can be defined by induction, too:

$$\begin{array}{rcl} x^{\circ\circ} & := & x \\ (\lambda x.t)^{\circ\circ} & := & \lambda x.t^{\circ\circ} \\ t & u^{\circ\circ} & := & t^{\circ\circ} & u^{\circ\circ} & \text{ if } t^{\circ\circ} \neq \lambda \\ t & u^{\circ\circ} & := & t_1\{x/u^{\circ\circ}\} & \text{ if } t^{\circ\circ} = \lambda x.t_1 \end{array}$$

< □ > < □ > < □ > < □ > < □ >

- Developments and Superdevelopments can be characterized in new ways in λ_{1s} and λj.
- The idea is that a (Super)development can be seen as the normal form of some subreductions of λ_{1s} or λ_j.
- But two *new notions* of developments can also be defined.
- One reducing only creations of *type 1*.
- One reducing creations of type 1, 2 and a *linear case of type 3*.

The linear substitution calculus is the *best* refinement of λ-calculus *l know of*:

- Simple: 3 rules;
- Solid: propagations can be modularly added;
- Expressive: head linear reduction, developments;
- Perfect rewriting theory: residuals, short PSN proof.
- Logiacl foundation: inspired by Linear Logic,
- Graphical syntax: Proof-Nets.

The linear substitution calculus is the *best* refinement of λ-calculus *l know of*:

• Simple: 3 rules;

- Solid: propagations can be modularly added;
- Expressive: head linear reduction, developments;
- Perfect rewriting theory: residuals, short PSN proof.
- Logiacl foundation: inspired by Linear Logic,
- Graphical syntax: Proof-Nets.

- The linear substitution calculus is the *best* refinement of λ-calculus *l know of*:
 - Simple: 3 rules;
 - Solid: propagations can be modularly added;
 - Expressive: head linear reduction, developments;
 - Perfect rewriting theory: residuals, short PSN proof.
 - Logiacl foundation: inspired by Linear Logic,
 - Graphical syntax: Proof-Nets.

- The linear substitution calculus is the *best* refinement of λ-calculus *l know of*:
 - Simple: 3 rules;
 - Solid: propagations can be modularly added;
 - Expressive: head linear reduction, developments;
 - Perfect rewriting theory: residuals, short PSN proof.
 - Logiacl foundation: inspired by Linear Logic,
 - Graphical syntax: Proof-Nets.

- The linear substitution calculus is the *best* refinement of λ-calculus *l know of*:
 - Simple: 3 rules;
 - Solid: propagations can be modularly added;
 - Expressive: head linear reduction, developments;
 - Perfect rewriting theory: residuals, short PSN proof.
 - Logiacl foundation: inspired by Linear Logic,
 - Graphical syntax: Proof-Nets.

- The linear substitution calculus is the *best* refinement of λ-calculus *l know of*:
 - Simple: 3 rules;
 - Solid: propagations can be modularly added;
 - *Expressive*: head linear reduction, developments;
 - Perfect rewriting theory: residuals, short PSN proof.
 - Logiacl foundation: inspired by Linear Logic,
 - Graphical syntax: Proof-Nets.

- The linear substitution calculus is the *best* refinement of λ-calculus *l know of*:
 - Simple: 3 rules;
 - Solid: propagations can be modularly added;
 - *Expressive*: head linear reduction, developments;
 - Perfect rewriting theory: residuals, short PSN proof.
 - Logiacl foundation: inspired by Linear Logic,
 - Graphical syntax: Proof-Nets.