
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting.
Both can be found through links on the ENTCS Web Page.

Topological Graphs and Combinators - Extended Version

Bruno de Assis Delboni†1 Mauricio Ayala-Rincón†,‡ 2 Daniele Nantes-Sobrinho†3

Departamentos de †Matemática e ‡Ciência da Computação
Universidade de Braśılia, Braśılia, Brazil

Abstract

A class of topological graphs is provided that represents combinators and subclasses of lambda-terms. The graph representation
takes into account points in the real Cartesian plane R×R which become vertices if they have a specific annotation and edges that
are curves incident to two points that might or not be vertices. The graph structure is enriched with an ordering on the edges
incident to each vertex built through the use of a notion of orientation. A calculus is provided to generate subclasses of topological
graphs that corresponds to BCI and BCK combinators. As an application, a principal type algorithm on these graphs is provided.

Keywords: Topological graphs, combinatory logic, lambda terms, type inference.

1 Introduction

The objective of this paper is to study the relation between combinators, λ-terms and a new class of graphs,
called topological graphs, which is proposed here. The approach follows/extends the technique proposed by
Zeilberger in [Zei16], where several connections between linear λ-terms and rooted connected trivalent maps
were coined out. It was shown that linear λ-term have a tree representation of its structure that can be related
to a unique connected rooted trivalent map. This result can be extended to BCK λ-terms and rooted maps
whose vertices have degree two or three.

The use of diagrams for the representation of
λ-terms is well-known and very intuitive. For
instance, the linear λ-term B ≡ λxyz.x(yz)
has the string diagram (a.k.a, syntactic tree)
on the left of the figure, whereas the draw-
ing on the right of the figure is the trivalent
rooted map representation of B, following the
approach in [Zei16].

String Diagram Rooted Trivalent Map

λx

λy

λz

@

x @

y z

λ

λ

λ

@

@

We have observed that for non-linear, closed λ-terms without variable clashes, there is also a natural
association with connected rooted non-trivalent maps. This relation arises from the fact that such a term can
be obtained from a BCK λ-term in which each free variable is identified with a bounded variable. From this
observation, it arises the question: how to decide whether a non necessarily trivalent connected rooted map
represents or not a λ-term?

To answer this question, a new structure is introduced, called topological graph, which is capable of rep-
resenting non-linear λ-terms. This structure includes, besides (free-)edges and vertices, a new kind of object
called whip, which is used to represent several occurrences of the same variable. For instance, the figure below

1 Email: bruno.delboni@gmail.com Author supported by a Ph.D. Scholarship from the Brazilian Federal Counsel CNPq.
2 Email: ayala@unb.br Author partially supported by a CNPq high productivity research grant 307672/2017-4.
3 Email: dnantes@unb.br Research supported by the Federal District Foundation FAPDF within grant DE 0193001369/2016.

c©2018 Published by Elsevier Science B. V.

http://entcs.org
mailto: bruno.delboni@gmail.com
mailto:ayala@unb.br
mailto:dnantes@unb.br

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

illustrates the string diagram (left) of W ≡ λxy.xyy, the non-trivalent rooted map associated to W (center),
and the trivalent topological graph (right) that is constructed and explored in this paper. The red “edges”
representing the two occurrences of y (center) collapsed in one so called 2-whip (red object on the right).

String Diagram Trivalent Topological Graph

λx

λy

@

@

x y

y

λ

λ

@@

Rooted Map

λ

λ

@@

Contributions. The main contributions of this paper are listed below.

• A new general definition of graphs, the topological graphs, which include whips, and can represent several
occurrences of the same variable (free or bound).

• A constructive notion of graph decomposition which identifies graphs corresponding to λ-terms. This de-
composition starts from any free edge of a connected graph, removing it and its incident vertices giving as
result either one or two connected subgraphs according to the vertex being associated to an abstraction or
application.

• Classification of fully decomposable subclasses of graphs that correspond to so called BCK-, BCI- and ω-graphs
associated respectively to the combinatorial classes BCK, BCI and SK. A calculus is given to generate these
kind of graphs which is proved sound and complete modulo isomorphism.

• Finally, a principal type algorithm over ω-graphs is given.

Related Work. As in computation, graphs are ubiquitous in the theory of combinators and in λ-calculus.
Syntactically λ-terms have a natural representation as trees in which their occurrences, positions and subterms
are organised. Also, statical analyses of λ-terms are naturally performed over this structure; for instance, by
subject-construction Theorem the simple type deduction of a λ-term has the same tree structure than the tree
structure of the term (e.g., see [Hin97]). Also, regarding dynamic analysis, well-known Böhm’s trees are used
to provide denotational semantics to computations through λ-calculus (e.g., Chapter 10 in [Bar12]).

The correspondence between closed linear λ-terms and classes of rooted trivalent graphs or maps on
compact-oriented surfaces without boundary was introduced by Bodini, Gardy and Jacquot in [BGJ13]. They
related unlabelled and labelled rooted combinatorial maps with BCI and BCK λ-systems and explored their
combinatorial properties based on these structures. In [ZG15] Zeilberger and Giorgetti proved a correspon-
dence between rooted planar maps and normal planar lambda terms. Further, a more general and conceptual
account of this correspondence was formalised by Zeilberger in [Zei16] in which λ-terms with free variables
were considered too. The last paper references correspondences among α-equivalence classes of λ-terms and
isomorphism classes of these maps relating λ-terms with rooted maps, linear λ-terms with rooted trivalent
maps, normal planar λ-terms with rooted planar maps, and normal linear λ-terms with rooted maps. Zeil-
berger extended Bodini et al. bijection to a more general one that relates linear λ-terms with free variables
and rooted trivalent maps with a marked boundary of free edges and provides decomposition and forgetful
operators that are applied to extract λ-terms from trivalent graphs and to build these graphs from the natural
diagrammatic representation of λ-terms. An interesting application of Zeilberger’s approach is a representation
of the four colors theorem. More recently, Zeilberger’s work evolves to the development of connections between
type inference and flow problem in maps [Zei18]. When the λ-terms are closed, their representations can be
seen as connected rooted hyper graphs [LZ04] with vertices of degree either two or three.

For the objectives of this paper, in which the planarity of the representation over general topological surfaces
is not a requirement, the proposed topological graphs are build just over the surface R2 and, as previously
mentioned, whips are used to deal with non linearity. Indeed, R2 is used only for simplicity since any two
dimensional topological orientable space would be adequate.
Organisation. Sec. 2 gives some basic notions about combinators and introduces topological graphs while
Sec. 3 presents the combinatorial graphs, as well as, the subclasses of BCK BCI- and ω-graphs. Sec. 4 defines
operations on ω- graphs, introduces a calculus to generate them and their relation to λ-terms. Sec. 5 introduces
a sound and complete principal typing algorithm for graphs, and Sec. 6 concludes. Additional details and
complete proofs are included in the appendix.

2

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

2 Background

2.1 Combinators

Combinatory logics[HS86], invented by Schönfinkel in 1924 and independently by Curry in 1930, uses combina-
tors to get rid of the complications concerned with operations related to the manipulation of bound variables
such as substitution and α-equivalence. Combinators are constants that describe, by concatenation, operations
without using free variables. Curry’s notation for combinators is used and the class of CL-terms defined as
concatenations of variables and the constants S and K, called principal combinators, as following.

Definition 2.1 [CL-terms] Let V be a countably set of variables disjoint of {), (, S, K}. CL-terms are inductively
defined as: • x ∈ V is a CL-term, • S, K are CL-terms, • (MN) is a CL-term, if M and N are CL-terms.

Notation 1 As usual, application of CL-terms is associated to the left allowing elimination of unnecessary
parentheses; for instance, PQR abbreviates ((PQ)R), but (P (QR)) can be abbreviated just as P (QR).

The set of all variables occurring in a CL-term Q is denoted as FV(Q) and, if FV(Q) = ∅, then Q is called
closed. Let P,Q and R be CL-terms, x and y distinct variables. Define the operation of substitutition, as the
act of replacing a term R for a variable x in P , denoted as P [R/x], by induction over the CL-terms as
• x[R/x] := R, • y[R/x] := y, • (PQ)[R/x] := (P [R/x]Q[R/x]).

Example 2.2 Consider the CL-termsQ ≡ x(Syx) andR ≡ SKK, then FV(Q) = {x, y} and FV(R) = ∅, Q[SS/x] ≡
SS(Sy(SS)) and R[Q/x] ≡ R.

There are some special combinations of the principal combinators S and K, such as

B := S(KS)K C := S(BS(BKS))(KK) I := SKK

CL-terms built using only K and S are called pure; otherwise, they are called applied. Notice that some
combinators can be built from others, for instance C uses the combinators S, K and B, therefore C is an applied
combinator.

CL - A calculus for combinators
The logical theory of combinators, denoted as CL, consists of the (SK)-axioms and the set of equality-rules,

presented in Figure 1, where P,Q and R are arbitrary CL-terms.

(SK)-axioms:

KPQ = P SPQR = PR(QR) P = P

Equality-rules:

P = Q
[sym]

Q = P

P = Q Q = R
[tr]

P = R

P = Q
[closr]

PR = QR

P = Q
[closl]

RP = RQ

Fig. 1. CL: a calculus for combinators

Example 2.3 Consider the combinators B ≡ S(KS)K and I ≡ SKK. For all CL-terms M,N and P , CL ` IM = M
and CL ` BMNP = M(NP) hold; also, CL ` CMNP = MPN holds.

Different fragments of the combinatory logic can be created based on the identities between combinators
used as axioms, these are called (BCK)- and (BCI)- combinatory logic:

(BCK)-axioms: BPQR = P (QR) CPQR = PRQ KPQ = P P = P

(BCI)-axioms: BPQR = P (QR) CPQR = PRQ IP = P P = P

3

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

2.2 Topological Graphs

A theory of topological graphs is developed with the aim to establish a correspondence between these graphs
and the CL-terms. This correspondence works as a first approach to the intention of relating topological graphs
to lambda-terms(, which are known to have a relation with combinators.)

Familiarity with the basic notions of topology as in [Mun15] is assumed.
To relate combinators and topological graphs, the notion of graphs proposed by Zeilberger in [Zei16] is

extended. The notion of graphs adopted in this work allows “edges” that can be connected to more than two
vertices. These edges are called whips and are used to represent multiple occurrences of the same variable in
combinators.

In order to define topological graphs, topological subspaces of R2 are of particular interest, they contain
the “edges” of the topological graphs. The definition below describes objects that are homeomorphic to (i)
segments of curves in R2, or (ii) to circles (S1) or (iii) to “unions” of curves (whips), see figure in Definition 2.4.

Definition 2.4 [Topological Edges] Let F = {τi}i∈I , be a non empty family of topological subspaces of R2

and a finite set V ⊆ GF :=
⋃
i∈I τi, which is called the vertex set . For τ ∈ F , ∆τ := τ ∩ V denotes the set of

vertices incident with τ , and τ◦ := τ \∆τ be the interior of τ . It is said that τ is a topological edge of R2 if
and only if (see also figure).

(i) τ is homeomorphic to the interval [0, 1]; or

(ii) τ is homeomorphic to S1 = {(x, y) ∈ R2 | x2 + y2 = 1}; or

(iii) τ is an n-whip that is a compact and connected topological
space with n ≥ 1 and a unique point pτ ∈ τ such that
τ◦ \ {pτ} has n+ 1 connected components homeomorphic to
(0, 1) or [0, 1).

�i) �ii) �iii)

�

A set T = {τi}i∈I of topological edges is called a conformal if, in addition, the following property holds: for
all topological edge τ, τ ′ ∈ T , if τ ∩ τ ′ is infinite then τ = τ ′. This condition is technical and guarantees that
there is no infinite overlap of topological edges.

Remark 2.5 Vertices are points in R2 depicted as bullets (•). In figure in Definition 2.4, the topological
edge (i) has one vertex, (ii) has no vertices and (iii) has three vertices. Every vertex is a point in R2 but not
every point is a vertex. There is a point at the opposite ending of the edge subspace (i). This distinction is
fundamental for the notions of edges and free edges.

The notion of topological graph differs from the usual notion of graph by allowing free edges and whips.

Definition 2.6 [Topological Graph] Let T = {τi}i∈I be a non-empty, finite and conformal set of topological
edges, and V ⊆ GT :=

⋃
i∈I τi be a finite vertex set. The pair G = 〈V, T 〉 is a topological graph if and only if

(i) for each τ ∈ T , τ◦ is a connected topological space.

(ii) if τ is homeomorphic to S1 then |∆τ | = 1, and τ is called loop.

(iii) if τ is homeomorphic to [0, 1] then |∆τ | = 2 or 1, and τ is called an edge or free edge(half edges in [Zei16]),
respectively.

(iv) if τ is an n-whip then 1 ≤ |∆τ | ≤ n. In this case, τ is called a bound n-whip if and only if τ◦ \ {pτ} have
no connected component homeomorphic to [0, 1); otherwise, it is called free n-whip.

GT is said to be the graph drawing of G. The boundary of T , denoted by ∂T is the set of all free edges and
free n-whips of T .

Remark 2.7 A topological graph G = 〈V, T 〉, by definition above, must have at least one topological edge in
the sense of Definition 2.4 and ∆τ ∩ V 6= ∅ for each τ ∈ T . By abuse of notation, the pair 〈∅, {τ}〉, for τ a
topological edge, is called a degenerated topological graph.

Remark 2.8 It is easy to see that, for each v ∈ V, T (v) := {τ ∈ T | v ∈ ∆τ}, i.e., the set of edges incident
to v, is finite.

Definition 2.9 [Rooted Topological Graph] Let G = 〈V, T 〉 be a topological graph and r ∈ V a distinguished
vertex. The triple 〈V, T , r〉 is called a rooted topological graph, denoted by G(r), if and only if, there exists a
unique topological edge τr ∈ T such that r ∈ ∆τr and τr is neither a loop nor a n-whip. In this case, τr is
called a rooted edge, r is the root and v ∈ ∆τr \ {r} is the rooted vertex.

Example 2.10 Four (rooted) topological graphs are given. Bullets are vertices and black squares roots.

4

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

(a) (b) (c) (d)

(i) is the simplest topological graph with one vertex
and one free edge.

(ii) is a free 3-whip.

(iii) is a rooted topological graph with 4 vertices and a
free 2-whip.

(iv) is a rooted topological graph with 5 vertices and
one bound 2-whip.

The notions of planarity and connectivity are different because rooted topological graphs are not only
concerned about the relation between vertices and edges, but also with the drawing of the graph. Therefore,
the notions of vertex degree, connectedness and planarity for topological graph G = 〈V, T 〉 should be established.

Definition 2.11 [Vertex Incidence, Vertex Degree] Let G = 〈V, T 〉 be a topological graph, v ∈ V a vertex
and τ ∈ T (v). Inc(v) is defined as the multiset over T (v) denoting the incidences of each τ ∈ T (v) on v,
where Inc(v)(τ) is defined as: (i) if τ is an edge or free edge then Inc(v)(τ) = 1; (ii) if τ is a loop then
Inc(v)(τ) = 2; (iii) if τ is a n-whip, then Inc(v)(τ) is equal the number of connected components of τ◦ \{pτ}
that have v as an accumulation point.

Finally, degG(v) = |Inc(v)| is defined as the vertex degree of v. For simplicity, the subindex G is omitted
when G is clear from the context.

Example 2.12 Given a topological graph 〈V, T 〉
where V = {u, v} and T = {τ0, τ1, τ2, τ3} as in the
figure on the right, the multiset Inc(v) counts how
many topological edges are incident with v, including
multiple incidence by the same topological edge.

v

u

τ0

τ1

τ2

τ3

Inc(u) = ffτ0; τ1; τ1; τ2gg

Inc(v) = ffτ2; τ3; τ3gg

In the remaining of this paper it is assumed that Inc(v) is ordered in a counter-clockwise manner.

Definition 2.13 [Adjacent Vertices, Path] Let G = 〈V, T 〉 be a topological graph and u, v ∈ V. The vertices
u and v are called adjacent vertices in G, and denoted by u ↔ v, if and only if u = v or there exists an edge

τ ∈ T such that u, v ∈ ∆τ . An (u, v)-path in G, denoted as u
∗↔ v, is a finite sequence of adjacent vertices

u = u0, u1, . . . , un = v.

Definition 2.14 [Connected Graph] G = 〈V, T 〉 is a connected graph if and only if for each u, v ∈ V one has

u
∗↔ v.

In the example 2.10, (a), (c) and (d) are connected topological graphs whereas (b) is not since any pair of
different vertices in (b) is disconnected (because only edges are considered in the definition).

Remark 2.15 For a rooted topological graph G(r) connectedness adapts straightforwardly, since r ∈ V. A
degenerated topological graph 〈∅, {τ}〉 is connected since it does not contain any vertices.

Definition 2.16 [Planar Topological Graph] Let G = 〈V, T 〉 be a topological graph. G is non planar if and
only if there exists τ, γ ∈ T \ ∂T such that τ 6= γ and τ◦ ∩ γ◦ 6= ∅; otherwise, G is called planar.

Example 2.17 In the figure, (a) is a planar rooted
topological graph while (b) is non planar.

(a) (b)

In the sequel, unless stated otherwise, by a graph it should be understood a topological graph.
The definition of L-function below provides an ordering between the edges of a non-degenerated graph.

Definition 2.18 [L-function] Let G = 〈V, T 〉 be a non-degenerated graph and τ ∈ ∂T a free edge such that
∆τ = {v}, i.e., v is the only incident vertex to τ . The function Lv maps the integers in {0, 1, . . . , deg(v)−1} to
the the edges τ ∈ T (v) that are incident to v, that is, Lv : {0, 1, . . . , deg(v)− 1} → T (v) such that Lv(0) = τ
and Lv(0), . . . , Lv(deg(v)− 1) in counter-clockwise manner.

5

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

Example 2.19 Consider the connected graph G, with a singleton vertex set {v}
and degG(v) = 3. Notice that L : {0, 1, 2} → {τ1, τ2, τ3}, and starting from τ1, it
follows by definition that Lv(0) = τ1, Lv(1) = τ2 and Lv(2) = τ3 (following the
counter clockwise orientation of the edges). Starting with edge τ3 instead, would give
Lv(0) = τ3, Lv(1) = τ1 and Lv(2) = τ2.

v

��

��
�3

3 Combinatorial Graphs

The subclass of combinatorial graphs, for short CL-graphs, is introduced. They consist of rooted and connected
topological graphs in which vertices have degree two or three, without whips. Formally,

Definition 3.1 [BCK-graph, BCI-graph] Let G(r) = 〈V, T , r〉 be a rooted connected graph and τr ∈ Inc(r).
Then G(r) is called a BCK-graph if and only if G(r) holds the following properties: (i) for each v ∈ V \ {r},
deg(v) = 2 or 3; and (ii) there is no n-whip in G(r). In addition, G(r) is called a BCI-graph if and only if G(r)
is a BCK-graph and for each v ∈ V \ {r}, degG(v) = 3. BCI and BCK graphs are called combinatorial graphs.

Example 3.2 According to the Definition3.1, B, C and I are BCI graphs whereas K is a BCK graph. However,
W is neither a BCI nor a BCK-graph, since it has a whip.

B C
K I W

It is well-known that combinators have a correspon-
dence with λ-terms, for instance, B = λxyz.x(yz),
C = λxyz.xzy, K = λxy.x, I = λx.x, and W = λxy.(xy)y
(the combinator with axiom WPQ = PQQ). It is easy to
see that the graphs B,C,K, I and W above correspond
to the combinators B, C, K and W, respectively.

This subclass of topological graphs is limited: the absence of whip does not allow one to represent non-linear
λ-terms. Therefore, some extension are necessary.

3.1 Generalised CL-graphs

The class of generalised CL-graphs (CLg-graphs, for short) is introduced. This class contains the CL-graphs and
consist of connected graphs containing at least one free edge and vertices of degree either two or three, i.e., the
requirement of non-existence of n-whips in CL-graphs is removed. Also,the rooted edge condition is replaced
by the existence of free-edges: this gives flexibility for choosing any free edge as the rooted edge.

Definition 3.3 [Generalised CL-graph] A graph G = 〈V, T 〉 is called a generalised CL-graph (CLg-graph) if and
only if the following conditions hold: • G is connected; • each vertex v ∈ V is such that deg(v) = 2 or
deg(v) = 3; and, • there exists at least one free edge τ ∈ ∂T .

A rooted topological graph G(r) = 〈V, T , r〉 is called a rooted CLg-graph if after removing the root r,
G = 〈V, T 〉 is a CLg-graph.

Degenerated graphs are considered as CLg-graphs. Graphs (c) and (d) in Example 2.10, by removing the
root, are CLg-graphs.

Lemma 3.4 Let G = 〈V, T 〉 be a CLg-graph and τ ∈ ∂T be a free edge. If |T | > 1 and G′ = 〈V \∆τ, T \ {τ}〉
then G′ is a CLg-graph or the union of two CLg-graphs.

Example 3.5 Notice that the rooted graph in Example 2.10(d) is a CLg-graph, if the root vertex, say r, is
removed, and the edge incident to the root, say τr, becomes free in (d), denote such a graph as G = 〈V, T 〉.
Also, the graph G′ = 〈V \{∆τr}, T \{τr}〉 obtained by eliminating this free edge and the vertex in its boundary
is also connected. The figure illustrates Lemma 3.4.

(a) (b) (c)
(a) is the rooted version of Dumbbell graph: remov-

ing the free edge and its incident vertex, two (dis-
joint) connected graphs are obtained.

(b) represents the K combinator (Example 3.2). Note
that by removing the red free edge, a connected
graph is obtained.

(c) by removing its free edge one obtains a discon-
nected graph: whips do not connect vertices.

6

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

3.2 Graph Decomposition and ω-graph

Here a decomposition operation on topological graphs is introduced. This operation allows us to develop
a (topological) graph characterization of non-linear λ-terms. ω-graphs are obtained from a “decomposition
property” imposed on CLg-graphs.

To start, a graph decomposition operation is defined on non-degenerated graphs G = 〈V, T 〉 w.r.t. a free
edge τ ∈ ∂T . Therefore, graph decomposition operation is non-deterministic since G may have more than one
vertex in ∂T and a choice can be made for τ . The graph decomposition consists of the application of rules
(D− abs) or (D-app), based on the degree of vertices and their connectivity properties. The intuition of the
rules is given below and after that, they are formally introduced (in Definition 3.6). Starting from a choice of
τ ∈ ∂T , such that ∆τ = {v}:
• (D-abs): this rule is applied when v has degree 2, or it has degree 3 and the L-function is associated to edges

such that Lv(1), Lv(2) are not in ∂T , and if v and τ are removed from G the resulting graph is connected or
Lv(1) is a loop. See, for instance, the first decomposition step in Figure 2.

• (D-app): this rule is applied when the v has degree 3, and rule (D-abs) cannot be applied. That is, one has
either Lv(1) or Lv(2) in ∂T (first (D-app) in Figure 2), or when removing τ and v the resulting graph is not
connected. Each application of this rule decomposes the graph into two subgraphs.

τ3

τ1

τ2

τ4

τ5

τ3
τ2

τ4

τ5 τ4

τ3

τ4

τ5

τ4

τ5D-abs D-app

D-app

D-abs
τ3

τ0

τ1

τ2

τ4

τ5

v0v1

v2

v3 v1

v2
v2

v3
v3

v3

Fig. 2. A CLg- graph decomposition.

Definition 3.6 [Decomposition step] Let G = 〈V, T 〉 be a non-degenerated graph and τ ∈ ∂T a free edge
such that ∆τ = {v}. Suppose that Lv(1) is not a bound n-whip, a decomposition step, denoted as =⇒D, is
defined via the application of the one of the following rules, where T ′ = T \ {τ} and V ′ = V \∆τ :

(D-abs) (T ,V, τ) =⇒D (T ′,V ′, Lv(1)), if degG(v) = 2; or degG(v) = 3, Lv(1), Lv(2) 6∈ ∂T and 〈T ′,V ′〉
is a connected graph or Lv(1) is a loop.

In this case v is called an abs-node and denoted as (λ)-node in 〈V, T 〉 w.r.t. τ .

(D-app) (T ,V, τ) =⇒D (Ti,Vi, Lv(i)), if the following conditions hold:

(i) degT (v) = 3,V ′ = V1∪̇V2, (iii) if Vi = ∅ then Lv(i) ∈ ∂T for some i ∈ {1, 2};

(ii) if V1 6= ∅ and V2 6= ∅ then, for each w1 ∈ V1, w2 ∈ V2, (iv) T1 ∩ T2 does not contain a bound n-whip;

w1 and w2 are not connected in 〈T \ {τ},V \ {v}〉;
where Ti = {τ ′ ∈ T ′ | τ ′ ∩Vi 6= ∅} ∪ {Lv(i)}, for i = 1, 2, and in this case, v is called an app-node and denoted
as (@)-node in 〈V, T 〉 with relation to τ .

When executing the decomposition steps, condition (iv) in rule D-app, avoids n-whips being bound. As it
will be shown in the paper, this guarantees no collapsing variables in the corresponding λ-term. Condition (iii)
in rule D-app forces that rule D-abs cannot be applied.

Example 3.7 This example illustrates how rule D-app works.
The CLg-graph in (a) becomes a
duplicated degenerated graph in
(b). Notice that degT (v) = 3,
V ′ = V \ {v} = ∅ = V1∪̇V2,
by vacuity, vertices in V1 and V2
are not connected in 〈V ′, T ′ =
T \ {τ}〉. Since V1 = ∅, one
has {τ ′ ∈ T ′ | τ ′ ∩ V1 6= ∅} =
∅, therefore, by definition, T1 =
{Lv(1)} = {τ ′}. Similarly, T2 =
{Lv(2)} = {τ ′}.

τ

τ
0

v

τ
0

τ
0

=)
D-app

V 0 = V n∆τ = ;; T 0 = T n fτg = fτ 0g

for i = 1; 2

Ti = ; [fLv(i)g = T 0

(a)

Vi = ;;

T = fτ; τ 0g; @T = fτ; τ 0gV = fvg;

Inc(v) = ffτ; τ 0; τ 0gg

Lv(0) = τ; Lv(1) = τ
0; Lv(2) = τ

0

(b)

(a)
(b)

7

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

As usual
+

=⇒D and
∗

=⇒D denote the transitive and reflexive-transitive closure of =⇒D. A normal form of

(T ,V, τ) is a triple (T ′,V ′, τ ′) such that (T ,V, τ)
∗

=⇒D (T ′,V ′, τ ′) and no rule can be applied to (T ′,V ′, τ ′).

Lemma 3.8 The relation given by the decomposition step =⇒D is terminating.

Theorem 3.9 (D-consistency) Let G = 〈V, T 〉 be a non degenerated CLg-graph and τ ∈ ∂T a free edge. If
(T ,V, τ) =⇒D (T ′,V ′, τ ′) then τ ′ ∈ T ′ and G′ = 〈V ′, T ′〉 is a CLg-graph or a degenerated graph.

In [Zei16] decomposition was also proposed, but the distinguishing feature here is the capability to deal
with multiple occurrences of the same (free-)edges corresponding to the same variable, using n-whips.

Definition 3.10 [ω-graph] Let G(r) = 〈V, T , r〉 be a rooted CLg-graph and τr ∈ Inc(r). Then G(r) is called
an ω-graph if and only if each normal form of (T ,V \ {r}, τr) with relation to =⇒D is a degenerated graph.

Example 3.11 Graph in Figure 2 is an ω-
graph. In the figure, (a) is an ω-graph whereas
(b) is not since it has a bound whip as Lv(1).

�

�a)

�

�b)
��

From λ-terms to ω-graphs
Construction of a graph and a string diagram from a given λ-term is similar. The rooted topological graphs

for λx.x, λxλy.(xy), and λx.(xy) are obtained by associating bound variables to edges connected to a (λ)-node
and free variables correspond to free edges. However, with this extension one can draw the topological graph
corresponding to λx.(xx) using a 2-whip to represent the two bounded occurrences of variable x.

λx:x λxλy:(xy) λx:(xx) λx:(xy)

x

λ λ

λ

λ λ

x x x

yy

@

@

@

ω-graphs correspond to λ-terms without variable clashes; e.g. (xλxλy.(xy)) does not have an associated ω-
graph. Therefore, =⇒D can be used as an ω-graph checker. The graph in Figure 2 corresponds to λxy.((xy)y).

The notions of BCI- BCK- and ω-graph illustrate the importance of vertex orientation; the reflection of BCI-
and BCK-graphs results in BCI- BCK-graphs the same is not true for ω-graphs, one can introduce bound n-whip.

4 Operations on combinatorial graphs

This section establishes operations on ω-graphs that generate only ω-graphs. To start, some standards on
graph drawing are established. Let G(r) be a rooted graph, the choice of one of the three drawings in Figure 3
makes explicit the existence of a particular edge, or vertex or whip, as the interest relies on one of these objects.
GT denotes the omitted parts of the drawing of G(r).

��

r

�r
�

r
�

v

��
��

r

�r
��

Fig. 3. First: r is the root and τr is the only edge connected to r, called rooted edge, τ a free edge. Second: v is a vertex called
rooted vertex, τ is an edge connected to v. Third: τn is a n-free whip

Definition 4.1 [whip-junction] Let G1(r1) = 〈V1, T1, r1〉 and G2(r2) = 〈V2, T2, r2〉 be rooted graphs, τ1 and τ2
be n and m-whips in G1 and G2, respectively. τ1τ2 is called a junction of τ1 and τ2 if and only if τ1τ2 is an
(n+m)-whip respecting the incidence of each vertex belonging to ∆τi, i = 1, 2, and ∆(τ1τ2) = ∆τ1 ∪∆τ2.

8

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

Example 4.2

Let τ1, τ2 be a 3-whip and 2-whip, respectively. The
junction of τ1τ2 is depicted in the figure on the right.
Note that τ1τ2 contains the combined number of in-
cidences on each vertex from τ1 and τ2.

��

�2 �3 �4

�5

��

�2 �3 �4

�5

��
�2

���2

G(ω): an ω-graph generator
The calculus G(ω) introduced in Figure 4 generate ω-graphs. Rules operate on triples of the form (∂T ,V, r)

consisting of a set of free edges, a set of vertices, and a root vertex, respectively.

�@T �;V �; r�) `

�@T � _[@T ��;V � _[�V �� n fr��g) _[frg; r) `

�@T ��;V ��; r��) `
�app)

GT ��r�r

GT �

�@T �;V �; r�) `
�!-app)

�@T ;V; r) `

�@T ��;V ��; r��) `
� ��
�

GT ��r�r

GT �

� �
n
� ��
�

r�
GT �

� �
n r��

GT ��

�abs*)

r�
GT

r��
GT ��

�@T ;V; r) `
�� � @T

�@T n f��g;V _[fr�g; r�) `

�!-abs)

r
GT

�n

GT

rr�

� �
�

� � @T�abs)
�@T ;V; r) `

�@T n f�g;V _[fr�g; r�) `
rr� � �

GT

r �
GT

�
�ax)

�f�g; frg; r) `

�@T ;V; r) `

�@T ;V _[fr�g; r�) `

r
GT

rr�
GT

Fig. 4. G(ω): a calculus to generate ω-graphs.

Intuitively, rule (app) takes two rooted graphs GT ′(r′) and GT ′′ (r′′) and produces a new rooted graph by
colliding the vertex r′′ into r′ and connecting a new root vertex r to r′. Rule (abs) takes as premise a rooted
graph GT ′(r) with a free edge τ and produces a new graph by connecting τ to r and adding a new root r′

connected to r. Rule (abs∗) is analogous to (abs) but no free edge is connected to r; this corresponds to
vacuous abstractions, when one looks at the correspondence with λ-terms. Rule (ω-app) takes as premises

rooted graphs GT ′(r′) and GT ′′ (r′′) and produces a new graph in which r′ and r
′′

are collapsed in one vertex,

say r′, a new root r is added and the n- and m-whips, τ ′n and τ
′′

m are gathered together using the junction

operator, obtaining an (n + m)-whip τ ′nτ
′′

m. This rule includes multiple junctions, that is, for ni-whips say
τ ′n1

, . . . , τ ′nk
∈ ∂T ′ and mj-whips, say τ ′′m1

, . . . , τ ′′mk
∈ ∂T ′′, pairwise distinct, one can conclude junctions τ ′ni

τ ′′mi

for each i = 1, . . . , k. The description of the remaining rules is self-explanatory and is omitted.

Notation 2 (∂T ,V, r) `G GT denotes a derivation using rules in G(ω). When the calculus is clear from
context, G is dropped from `G. In the following, rules (ω-app) and (ω-abs) are referenced as ω-rules.

Example 4.3 Figure 5 illustrates derivations of two ω-graphs, using rules of the calculus G(ω). The first
derivation produces the combinatorial graph for K whereas the second for W (see Example 3.2).

(fτ1g; fv1g; v1) ` (fτ2g; fv2g; v2) `

(ax)

(app)

(ax)

(fτ1; τ2g; fv1; v3g; v3) `

τ1
v1

τ2

v2

τ1

τ2

τ3

v1v3 (fτ4g; fv4g; v4) `
τ4

v4

(ax)

(!-app)

(fτ1; τ2τ4g; fv1; v3; v4g; v4) `
τ1

τ2τ4

τ3

v1
v3

(!-abs)

(fτ1g; fv1; v3; v4; v5g; v5) `

τ1

τ2τ4

v1
v3

v4

v4

v5

(;; fv1; v3; v4; v5; rg; r) `

τ1τ2τ4

v1
v3

v4

r

v5

(abs)

τ4

τ5

τ6

(fτ1g; fv1g; v1) ` τ1

v1

(abs*)

(ax)

(fτ1g; fv1; v2g; v2) `
τ1

v1

v2

(abs)

(;; fv1; v2; rg; r) ` τ
0

1v1

v2

τ2

τ2

r

Fig. 5. Red edges are new edges included and purple object are the free edges and free whips

9

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

The following result concern correctness of the calculus G(ω) regarding the generation of ω-graphs.

Definition 4.4 [Topological Graph Isomorphism] Let 〈V, T , r〉 and 〈V ′, T ′, r′〉 be ω-graphs and ϕ : T → T ′
and ψ : V → V ′ mappings between edges and vertices, respectively. We say that the 2-map cell (ϕ,ψ) is an
isomorphism if and only if the following properties hold:

(i) ϕ and ψ are bijections and ψ(r) = r′;

(ii) ϕ(τ) is homeomorphic to τ , for all τ ∈ T ;

(iii) ψ(∆τ) = ∆ϕ(τ), for all τ ∈ T ;

(iv) ϕ(Inc(v)) = Inc(ψ(v)), for all v ∈ V. Besides, ϕ(Inc(v)) and Inc(ψ(v)) have the same clockwise orienta-
tion.

Theorem 4.5 (Correctness) Let G(r) = 〈V, T , r〉 be a rooted graph.

(i) (Soundness) If (∂T ,V, r) ` GT then G(r) is an ω-graph. Moreover, if only rules (ax), (app) and (abs)
rules are then G(r) is a BCI-graph and, if the ω-rules are not used, then G(r) is a BCK-graph.

(ii) (Completeness) If G(r) is an ω-graph, then there exists an ω-graph 〈V ′, T ′, r′〉 isomorphic to G(r) such
that (∂T ′,V ′, r′) ` GT ′ .

Proof. [sketch] (i) The proof is by induction on the derivation ∇ of (∂T ,V, r) ` GT , by analysing the last rule

applied in ∇. If The rule is (app), by definition one has ∂T = ∂T ′ ∪ ∂T ′′ , V = V ′ ∪ (V ′′ \ {r′′} ∪ {r}) and
there exist derivations ∇′ and ∇′′ of (∂T ′,V ′, r′) ` GT ′(r′) and (∂T ′′,V ′′, r′′) ` GT ′′(r′′), respectively. By IH,
GT ′(r′) and GT ′′(r′′) are ω-graphs. Notice that GT (r) is obtained by colliding the roots of GT ′(r′) and GT ′′(r′′)
into vertex r′ and maintaining all other connections and adding a new root vertex r and a new edge,say
τr, connecting r and r′. So degT (r′) = 3 and r′ and connects all other vertices in V ′ and V ′′. Therefore,
degT (v) = 2 or 3 for all v ∈ V \ {r} and GT is connected.

It remains to show that all normal forms of (T ,V, τr) w.r.t. =⇒D correspond to degenerated graphs.
First, notice that no bound whip is added. Also, since degT (r′) = 3 one could apply rules (D-app) or
(D-abs). However, 〈V \ {r′}, T \{τr}, Lv(1)〉 is disconnected; therefore, the rule applied should be (D-app) and
(T ,V, τr) =⇒D (Ti,Vi, Lv(i)), which corresponds to ω-graphs GT ′ and GT ′′ , respectively for i = 1, 2, and their
normal forms w.r.t. =⇒D correspond also to degenerated graphs.

2

The following results demonstrates that there is an one-to-one correspondence between the class of λ-terms
without variable clash modulo α-equivalence and free variables renaming and the class of ω-graphs modulo
topological graph isomorphism.

Theorem 4.6 (ω-graph to λ-term) For each ω-graph exists only one λ-term M without variable-clashes,
modulo α-conversion and free variables renaming and a surjective function f : T 7→ Subterms(M) such that
for each v ∈ V\{r} where τ := Lv(0), τ ′ := Lv(1) and (when degT (v) = 3) τ ′′ := Lv(2), the following properties
hold for f :

(i) For each γ, γ′ ∈ ∂T distinct, f(γ), f(γ′) are distinct variables.

(ii) if v is an app-node then, f(τ) = (f(τ ′)f(τ ′′))

(iii) if v is an abs-node and degT (v) = 3 then, f(τ) = λf(τ ′′) · f(τ ′) where f(τ ′′) is a variable.

(iv) if v is an abs-node and degT (v) = 2 then, f(τ) = λxv · f(τ ′), where xv is a variable.

Proof. The proof follows from theorem 4.5 and using induction on the calculus G(ω). 2

Theorem 4.7 (λ-term to ω-graph) For each λ-term M without variable clash there exist an ω-graph G(r) =
〈V, T , r〉 and a surjective function f : T 7→ Subterms(M) such that f has the properties listed in the theorem 4.6
and f(τr) = M .

Proof. The proof is by induction on λ-term construction, applying the the calculus G(ω) and using the
theorem 4.5. 2

From the combinatorial graphs it is possible to create a terminating graph rewriting system which mimics
the behavior of BCK and BCI axioms. For the graph rewrite rules, the notion of graph redex of a graph
G is defined as a particular subgraph of G. These subgraphs simulate the action of combinatorial graphs
over topological graphs. In the definition below the combinators B, C, K, S and I are identified with their
corresponding combinatorial graphs.

10

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

Definition 4.8 [Graph Redex] Let B, C, K, S and I be the combinatorial graphs and M1,M2 and M3 connected
topological graphs with empty frontier. The graph rewrite rules over the topological graphs are defined as

S M1 M2 M3 M1 M3 M2 M3

B M1 M2 M3 M2 M3M1
C M1 M2 M3 M1 M3 M2

K M1 M2
M1

I M1
M1

It is easy to see that considering only B, C, K and I one has a terminating rewriting graph system.

Proposition 4.9 Let M,N be graphs such that M −→ N . If M is a BCK-graph (BCI-graph) then N is a
BCK-graph (BCI-graph).

Proof. [sketch] Let M be a BCK-graph such that M −→ N , so M has a B, C, K or I subgraph. For simplicity,
suppose it is a B-redex, then by the Theorem 4.5, M has a proof tree in the graph calculus G(ω) in which
ω-rules are not used. Let (((BM1)M2)M3) be the B-redex of M , then M1,M2 and M3 are BCK-graphs and
also have proofs in G(ω). By Theorem 4.5, ((M1M2)M3) is a BCK-graph, therefore N is obtained from M by
replacing (((BM1)M2)M3) by ((M1M2)M3) and then N is a BCK-graph. The other cases are analogous 2

5 PTG: a typing algorithm for graphs

An algorithm for simple type assignment is given. It is assumed reader’s familiarity with the notion of typability
(e.g., see [Hin97]).

Definition 5.1 [Types, Type substitution] Let A be an countably infinite set of type variables. The set of
Types built over A, denoted by Type(A), is defined inductively as: (i) each a ∈ A is a type, called atom; (ii) if
ρ, σ are types, then (ρ→ σ) is a type, called composite type.

When the atoms set is not relevant or there is no ambiguity, instead Type(A), it would be used simply Type.
Also, for brevity, composite types (ρ→ σ) are denoted simply as ρσ.

A function t : Type(A)→ Type(A) is called type substitution if and only if t satisfies:

(i) there exist only finitely many atoms a ∈ A such that ta 6= a; and

(ii) t(ρ→ σ) = (tρ→ tσ) for all composite type (ρ→ σ).

The notion of typed graphs defined below and exemplified in Figure 6 relies on L-functions and on the
notions of abs- and app-nodes.

Definition 5.2 [Typed Graph] Let G = 〈V, T 〉 be a CLg - graph, τ ∈ ∂T a free-edge and E : T → Type be
a function from edges to types. The pair 〈G, E〉 is called a typed graph w.r.t. τ if and only if for τi := Lv(i),
where 0 ≤ i < degT (v), the following conditions hold.

• For each vertex v ∈ V such that degT (v) = 3: (i) if v is a abs-node then E(τ0) = E(τ2) → E(τ1) and, (ii)
if v is a app-node then E(τ1) = E(τ2)→ E(τ0).

• For each vertex v ∈ V such that degT (v) = 2, it holds E(τ0) = ρ→ E(τ1), where ρ is an arbitrary type.

ba

cb

c

b

a
ca

(cb)ca

(ba)(cb)ca

ρ

σ
bbd

b

bd

d
bd

(bbd)bd

(a) (b) (c)

Fig. 6. (a) is not typable; (b), (c) are typed graphs

Finally, a (principal type) PTG-algorithm (Algorithm 1) is introduced that assigns types to CLg-graphs: it
takes as input a CLg-graph G = 〈V, T 〉, a free-edge τ ∈ ∂T and a partial function E : T → Type and associates
to each edge in T a type. The algorithm works as Hindley’s simple typing algorithm, but assigning new type
variables and composite types for each edge of the graph. Type assignment should satisfy abstraction type

11

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

requirements in abs-nodes of the graph, as well as application requirements in app-nodes of the graph, which
is guaranteed by resolving the associated first-order unification problems.

Algorithm 1 Principal Type for Graphs - PTG(T ,V, τ, E)

1: Input: A CLg-graph 〈V, T 〉, a free-edge τ ∈ ∂T , E is a partial function from edges to types.
2: Output: The partial function E.
3: Begin . a is chosen always as a fresh atom
4: if 〈V, T , τ〉 is a degenerated graph then
5: if E(τ) is not defined then return E ∪ {τ 7→ a}
6: else return E
7: else
8: if (T ,V, τ) is a normal form w.r.t. =⇒D then return FAIL
9: else

10: Let v be the only vertex incident to τ in 〈V, T 〉
11: if v is an abs-node then
12: Let (T ′,V ′, τ ′) be a triplet such that (T ,V, τ) =⇒D (T ′,V ′, τ ′)
13: E′ ← PTG(T ′,V ′, τ ′, E)
14: if E′ = ∅ or FAIL then return E′

15: else
16: if degT (v) = 2 then
17: return E′ = (E′ \ {τ 7→ E′(τ)}) ∪ {τ 7→ (a→ E′(Lv(1)))}
18: else
19: return E′ = (E′ \ {τ 7→ E′(τ)}) ∪ {τ 7→ (E′(Lv(2))→ E′(Lv(1))}
20: else
21: Let (T1,V1, τ1) and (T2,V2, τ2) be direct successors of (T ,V, τ) w.r.t. =⇒D
22: E1 ← PTG(T1,V1, τ1, E)
23: if E1 = ∅ or FAIL then return E1
24: else
25: E2 ← PTG(T2,V2, τ2, E1)
26: if E2 = ∅ or FAIL then return E2
27: else
28: Let γi be E(Lv(i)), i = 1, 2
29: if γ1 is a composite of the form ρ→ σ then
30: t← Unify(ρ, γ2) and γ ← σ
31: else
32: t← Unify(γ1, γ2 → a) and γ ← a

33: if t = FAIL then return ∅
34: else
35: return t(E2 \ {τ 7→ E2(τ)}) ∪ {τ 7→ t(γ)}

Example 5.3 Figure 7 illustrates the execution of Algorithm PTG for the graph in Figure 2 (cf. Figure 6 (c)).

Theorem 5.4 (Termination of PTG) PTG terminates for each valid instance (T ,V, τ, E).

Proof. Let µ be the following measure, µ(T ,V, τ, E) = |T |. It is clear that (T ,V, τ, E) =⇒PTG (T ′,V ′, τ ′, E′)
implies that |T ′| < |T | for T ′ = T \ {τ}. Then, µ(T ,V, τ, E) < µ(T ′,V ′, τ ′, E′) and the result follows. 2

In the proof below the relation =⇒PTG is used in the following sense: (T ,V, τ, E) =⇒PTG (T ′,V ′, τ ′, E′)
means that to compute PTG(T ,V, τ, E) one needs to compute PTG(T ′,V ′, τ ′, E′). Soundness and completeness
are obtained by induction over |T ′| using some auxiliary lemmas.

Theorem 5.5 (Soundness and Completeness of PTG) Let 〈V, T 〉 be a CLg-graph, τ ∈ ∂T a free-edge,
T : T 7→ Type a partial function

(i) (Soundness) If E = PTG(T ,V, τ, T) 6= ∅ and E 6= FAIL then (〈V, T 〉, E) is a typed CLg-graph w.r.t. τ .

(ii) (Completeness) If E = PTG(T ,V, τ, ∅) 6= FAIL and (〈V, T 〉, T) is a typed graph w.r.t. τ then there exists a
type substitution t such that T (τ) = t(E(τ)).

6 Conclusion

A new notion of topological graphs which contain free edges and whips has been introduced: the former corre-
sponds to free variables whereas the latter to multiple occurrences of the same variable in λ-terms. Topological
graphs whose vertices have degree 2 or 3 and contains at least one free edge are called CLg-graphs. When
CLg-graphs does not have whips they called BCK-graphs, BCK-graphs whose vertices (different from root) have
degree three are called BCI-graphs. It is introduced a notion of graph decomposition that checks if a topological
graph is an ω-graph: CLg-graphs whose normal forms w.r.t. the graph decomposition relation are degenerated
graphs. In addition, a sound and complete calculus to generate ω-graphs was proposed. To conclude, a sound
and complete principal typing algorithm on CLg-graphs was given. As future work, it is planned to explore
graph transformations via the proposed graph rewriting rules.

12

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

a

b

fa 7! bcg Unify(a; bc)

b

bc

b

fc 7! bdg Unify(c; bd)

c

bd
b

bbd

d

bbd

b

bd

d

bdbbdbd

d
bd

(bd)bbd

b

a

bτ0

τ1 τ1

τ2

τ2 τ2

τ3 τ3 τ3

τ3

τ3

τ3

τ4
τ4 τ4

τ4
τ5

τ5 τ5

τ5

τ5

Fig. 7. PTG: Principal Type Algorithm. The figure at the top illustrates the process of decomposition; when a degenerated
topological graphs are reached, a new type variable is assigned to them. The figure must be read from the left to the right,
following the oriented arrows and respecting the priority of colors, RED, BLUE, BLACK. The figure at the bottom continues
the one above and must be read from right to left, following the oriented arrows with the same priority. Each red letter in a
degenerated topological graph is a new assignment, and if it is in a non-degenerated graph, it is the result of an application
or abstraction, depending whether it is connected to an app-node or an abs-node.Each blue letter is the result of applying the
unification algorithm to all assigned topological edges in this instance.

References

[Bar12] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics. Number 40 in Studies in Logic. College Publications,
2012.

[BGJ13] O. Bodini, D. Gardy, and A. Jacquot. Asymptotics and random sampling for BCI and BCK lambda terms. Theor.
Comput. Sci., 502:227–238, 2013.

[Hin97] J. R. Hindley. Basic Simple Type Theory. Cambridge University Press, 1997.

[HS86] J. R. Hindley and J. P. Seldin. Introduction to Combinators and λ-Calculus. Number 1 in London Mathematical Society
Student Texts. Cambridge University Press, 1986.

[LZ04] S. K. Lando and A. K Zvonkin. Graphs on Surfaces and their Applications. Springer, 2004.

[Mun15] J. R. Munkres. Topology. Pearson, 2nd edition, 2015.

[Zei16] N. Zeilberger. Linear lambda terms as invariants of rooted trivalent maps. J. Funct. Program., 26:e21, 2016.

[Zei18] N. Zeilberger. A theory of linear typings as flows on 3-valent graphs. In Proc. of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS, pages 919–928. ACM, 2018.

[ZG15] N. Zeilberger and A. Giorgetti. A correspondence between rooted planar maps and normal planar lambda terms. Logical
Methods in Computer Science, 11(3), 2015.

13

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

A General Topology: basic concepts

Definition A.1 [Topological Space] Let M be a non-empty set and τ ⊆ P(M), where P(M) is the power set
of M . We say that (M, τ) is a topological space iff τ have the following properties:

(i) ∅ ∈ τ ;

(ii) if {Uλ}λ∈L ⊆ τ , then
⋃
Uλ ∈ τ

(iii) given Uλ1
, . . . ,Uλn

∈ τ , the finite intersection

n⋂
i=1

Uλi
∈ τ .

The collection τ is called a topology for M . When there is no confusion, τ is omitted and M is called a
topological space.

If M is a topological space with topology τ , we say that a subset U of M is an open set of M if U belongs
to the collection τ . Therefore, a topological space is a set M together with a collection of subsets (open sets)
of M such that ∅ and M are both open, arbitrary unions and finite intersections of open sets are open.

Example A.2 The collection of all open intervals (a, b) = {x | a < x < b}, in real line R, is called the standard
topology for R. The product of this topology with itself, i.e., the collection of all products (a, b)× (c, d) of open
intervals in R, is called the standard topology on R× R = R2.

a b

c

d

�a� b)� �c� d)

Fig. A.1. Standard Topology for R2

Definition A.3 Let M be a topological space with topology τ . If Y is a subset of M , the collection

τY = {Y ∩ U | U ∈ τ}

is a topology on Y , called subspace topology. With this topology, Y is called a subspace of X; its open sets
consist of all intersection of open sets of X with Y .

Consider the subset Y = [0, 1] of the real line R. The subspace topology has as basis all sets of the form
(a, b) ∩ Y , where (a, b) is an open interval in R.

A collection A of subsets of a space M is said to cover M , if the union of elements of A is equal to M . A
space M is said to be compact if every open covering A of M contains a finite subcollection that also covers
M .

Definition A.4 [Disconnected Space] Let (M, τ) be a topological space. (M, τ) is a disconnected space iff
there exist U and U ′ ∈ τ such that M = U ∪ U ′ and U ∩ U ′ = ∅; otherwise, (M, τ) is called a connected space.

Example A.5 The interval [0, 1] ⊆ R is a connected topological space considering the restriction to [0, 1] of
the standard topology for R. Similarly, the set S1 := {(x, y) ∈ R2 | x2 + y2 = 1} is a connected topological
space considering the standard topology for R2.

Let A be a subset of a topological space M and x be a point of M . It is said that x is a point of accumulation
of A if every neighborhood of x intersects A in some other point different from x itself.

Definition A.6 Let X and Y be topological spaces and f : X → Y be a bijection. If both f and its inverse
f−1 : Y → X are continuous, then f is called a homeomorphism.

14

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

B Examples of the decomposition process

Example B.1 [ω-graphs] Decompositions of two CLg-graphs are presented in the Figure B.1. Both them are
ω-graphs since every normal form is a degenerated graph.

The first ω-graph is a closed trivalent one, as described by Zeilberger [Zei16], and the rule =⇒D decomposes
it such as it is done in [Zei16]. Notice that in CLg-graphs without n-whips, it is unnecessary the labeling of
all edges because all normal forms are distinct.

The second ω-graph is not a closed trivalent map, as defined in [Zei16], because there is an n-whip in its
center, labeled as τ4. In this graph all edges and whips were labeled in order to highlight repetitions in the
decomposition, specifically after the first application of rule D-app when τ4 becomes a degenerated graph. The
red label points to the current orientation edge.

τ0

=)

=)

τ3

τ4

τ4
τ4

τ5

τ5

τ4

τ2
τ4

τ5

τ3 τ3

τ2

τ1

τ4

τ5

D-abs
D-abs =)

D-abs

=)
D-app

=)
D-app

=)
D-abs =)

D-abs =)
D-app

=)
D-app

τ1

τ2

τ3

τ3

τ0

τ1

τ2

τ4

τ5

Fig. B.1. First CLg-graph is a BCI-graph and the second is a proper ω-graph, i.e., with a whip

Example B.2 [Detailed Decomposition] Let G = 〈V, T 〉 be the CLg-graph in the Figure B.2, where V =
{v0, v1, v2, v3} and T = {τ0, τ1, τ2, τ3, τ4, τ5}.

By exhaustive application of the decomposition over G until all possible normal forms are obtained, it can
be straightforward decided if G is an ω-graph. The schema of this decomposition is given in the Figure B.3.

15

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

τ0

τ1

τ4

v0
v1

v2

v3

τ5

τ2 τ3

Fig. B.2. ω-graph that represents the elimination of redundant hypothesis in Implicational Intuitionist Logic

τ4

τ3

τ4

τ4

τ3

τ2
τ4

τ2

τ1

τ4

τ0

τ1

τ4

v0
v1

v2

v3

v1

v2

v3

(T ;V; τ0)

(T1;V1; τ1)

(T2;V2; τ2)

(T21;V21; τ3) (fτ4g; ;; τ4)

τ5

τ5

τ5

τ5

τ5

(fτ5g; ;; τ5) (fτ4g; ;; τ4)

τ2 τ3

τ3

v2

v3

v3

+D-abs

+D-abs

+D-app

+D-app

+D-abs

+D-abs

+D-app

+D-app

Fig. B.3. Schema of the Decomposition Process

C Proofs of Section 3

Theorem 3.9 (D-consistency) Let G = 〈V, T 〉 be a non degenerated CLg-graph and τ ∈ ∂T a free edge. If
〈T ,V, τ〉 =⇒D 〈T ′,V ′, τ ′〉 then τ ′ ∈ T ′ and G′ = 〈T ′,V ′〉 is a CLg-graph or degenerated graph.

Proof. Suppose that 〈T ,V, τ〉 =⇒D 〈T ′,V ′, τ ′〉 such that 〈T ′,V ′〉 is a non-degenerated graph. We proceed by
analysing the rule applied in this decomposition step.

(i) The rule is (D-abs):

16

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

(a) degT (v) = 2
Then T ′ = T \ {τ},V ′ = V \∆τ and Lv(1) = τ ′, implies that, Inc(v) = {{τ, τ ′}} and v ∈ ∆τ ′.

• if V ′ = ∅ then G′ is a degenerated graph and the result follows.
• if V ′ 6= ∅, then there exists u ∈ V ′ and u 6= v such that u ∈ ∆τ ′. Since G is a CLg-graph, one

has degG(u) = 2 or 3, therefore |>′| > 1. Notice that in G′ the vertices incident to τ ′ are {u}, i.e.,
∆τ ′ ∩ V ′ = {u}, therefore, τ ′ ∈ ∂T ′ is a free edge, so the result follows from Lemma 3.4.

(b) degT (v) = 3
• Lv(1), Lv(2) 6∈ ∂T and G′ is connected topological graph.

Note that τ ′ = Lv(1) /∈ ∂T and because a decomposition step applies, τ ′ cannot be a bound whip
G, then τ ′ is an edge in G, and |∆τ ′| = 2. Therefore, |∆τ ′ ∩ V ′| = 1 and τ ′ ∈ ∂T ′. Let w ∈ V ′
be a vertex in G′, since w 6= v it follows that w /∈ ∆τ and T (w) ⊆ T ′. Thus, T (w) = T ′(w) and
degT ′(w) = degT (w) = 2 or 3. The result follows.

• Lv(1) is a loop.
This case is trivial: V ′ = V \∆τ = ∅ and G′ is a degenerated graph.

(ii) The rule is (D-app):
In this case degT (v) = 3 and there exist topological graphs Gi = 〈Ti,Vi〉, for i = 1, 2. Notice that if
V1 = V2 = ∅ then both graphs Gi are degenerated and the result follows.

Suppose Vi 6= ∅ for some i = 1, 2. The remaining of the proof consists in showing that Gi is a CLg-graph.
(a) Gi = 〈Ti,Vi〉 is connected:

Suppose, without loss of generality, that i = 1 and let w,w′ ∈ V1 be distinct vertices in G1. Since
G is connected, there exists a sequence of pairwise distinct adjacent edges τ1, . . . , τm ∈ T connecting
w and w′ in G. Suppose, by contradiction, that there exists an index j such that τj /∈ T1, take the
smallest j with this property. Notice that τj /∈ T1 implies that τj ∩ V1 = ∅. Since τj−1 and τj are
adjacent, it follows that ∆τj−1∩∆τj 6= ∅, besides j−1 < j implies, by minimality of j, that τj−1 ∈ T1.
Since τj−1 and τj are edges in G = 〈V, T 〉 it follows that τj−1, τj 6= τ (for τ is a half edge). Besides,
τj−1 ∩ V2 = ∅, otherwise, there would be a connection between vertices from V1 and V2 contradicting
the condition in rule (app). Therefore, {v} = ∆τj−1 ∩∆τj , then τj−1 = Lv(1) and τj = Lv(2) ∈ T2.
However, in this case, there exists v′ ∈ V2 ∩∆τj connected to w′ ∈ V1 via path τj+1, . . . , τm, which is
a contradiction. Thus, G1 is connected.

(b) degGi(w) = 2 or 3 for every w ∈ Vi.
For all w ∈ Vi, it follows that w 6= v and w ∈ V and, by hypothesis, degG(w) = 2 or 3, and the

result follows trivially.
(c) Lv(i) ∈ ∂Ti, i = 1, 2.

Since Vi 6= ∅ for some i, suppose, w.l.o.g., that i = 1 and let τ1 := Lv(1) be the edge in T1 assigned
via Lv. Notice that |∆τ1| = 2. It is straightforward to check that |∆τ1 ∩ V1| = 1 since v was removed
from G1 and τ1 ∈ ∂T1.

2

Lemma C.1 ((λ,@)-labelling consistency) Let G = 〈V, T 〉 be a non degenerated CLg-graph and τ ∈ ∂T a
free edge. If ∆τ = {v} and v is an (@)-node then v is not a (λ)-node.

Proof. Suppose that v is an (@)-node, then degG(v) = 3. Note that if Lv(1) ∈ ∂T or Lv(2) ∈ ∂T then
(λ)−rule cannot be applied. Suppose that Lv(1), Lv(2) /∈ ∂T , then by the last requirement of (@) it follows
that V1 and V2 are non empty sets of variables.

Note that Lv(1) cannot be a loop, otherwise, V = {v} and T = {τ, Lv(1)}, implying that V1 = ∅, which
contradicts the previous step. Let w1 ∈ V1 and w2 ∈ V2 be vertices then there is no path in 〈T \ {τ},V \∆τ〉
connecting w1 and w2 therefore 〈T \ {τ},V \ ∆τ〉 is not a connected topological CLg-graph. Therefore, the
(abs)-rule cannot be applied and v is not a (λ)-node. 2

C.1 Graph Skeleton

This subsection provides technical results regarding the notion of graph Skeleton that are used to prove
completeness of the typing algorithm for graphs (PTG) introduced in Section 5.

Definition C.2 [Skeleton] Let G = 〈V, T 〉 be a CLg-graph and τ ∈ ∂T a free edge, such that all normal forms
of 〈T ,V, τ〉 with relation to =⇒D are degenerated graphs. Then the set SkelT (τ) is defined inductively as
follows:

(i) if G is a degenerated graph then SkelT (τ) := ∅,
(ii) if 〈T ,V, τ〉 =⇒D 〈T ′,V ′, τ ′〉 via rule (D− abs) then SkelT (τ) := {τ} ∪ SkelT ′(τ ′)

(iii) if 〈T ,V, τ〉 =⇒D 〈Ti,Vi, τi〉, i = 1, 2 via (D− app) then SkelT (τ) := {τ} ∪ SkelT1(τ1) ∪ SkelT2(τ2)

17

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

The SkelT (τ0) of the graph in Figure 2 consists of the edges in red.

Lemma C.3 If (T ,V, τ) =⇒∗D (T ′,V ′, τ ′) then SkelT ′(τ
′) ⊆ SkelT (τ ′)

Proof. The proof is by induction on the number of steps in =⇒∗D.
Base Case: 〈T ,V, τ〉 =⇒D 〈T ′,V ′, τ ′〉.

This case follows directly from the definition of Skeleton.
Induction Step: Suppose that 〈T ,V, τ〉 =⇒D 〈T ′′,V ′′, τ ′′〉 =⇒∗D 〈T ′,V ′, τ ′〉. By the base case, SkelT ′′(τ

′′) ⊆
SkelT (τ) and by (IH) it follows that SkelT ′(τ

′) ⊆ SkelT ′′(τ
′′) and the result follows. 2

Lemma C.4 Let G = 〈V, T 〉 be a CLg-graph.

(i) If τ ′ ∈ SkelT (τ) then there exists a CLg-graph G′ = 〈T ′,V ′〉 such that τ ′ ∈ ∂T ′ and (T ,V, τ) =⇒∗D
(T ′,V ′, τ ′).

(ii) If τ ′ ∈ SkelV(T) \ {τ} then τ ′ is an edge in G.

(iii) If 〈T ,V, τ〉 =⇒D 〈Ti,Vi, τi〉 via rule (D− app) then SkelT1(τ1) ∩ SkelT2(τ2) = ∅.

Proof.

(i) The proof is by induction on the length of derivation =⇒∗D.
Note that τ ′ ∈ SkelT (τ) then it is not empty, implies that 〈V, T 〉 it is not a degenerated topological

graph and by hypothesis all normal forms are degenerated graphs, so =⇒D can be applied on (T ,V, τ) re-
sulting in two possible cases, (T ,V, τ) =⇒D (T1,V1, τ1) by D-abs or (T ,V, τ) =⇒D (T1,V1, τ1), (T2,V2, τ2)
by D-app. Therefore SkelT (τ) = {τ} ∪ SkelT1(τ1) or {τ} ∪ SkelT1(τ1) ∪ SkelT2(τ2), following that
τ ′ = τ or τ ′ ∈ SkelTi(τi) for some i ∈ {1, 2}. If τ ′ = τ then the result comes straight forward, suppose
that τ ′ 6= τ , implies that τ ′ ∈ SkelTi(τi), so by induction on =⇒D follows that exist 〈T ′,V ′〉 a CLg-
graph such that τ ′ ∈ ∂T ′ is a free edge and (Ti,Vi, τi) =⇒∗D (T ′,V ′, τ ′), and the result follows because
(T ,V, τ) =⇒D (Ti,Vi, τi).

(ii) By hypothesis, τ ′ ∈ SkelT (τ) \ {τ} and by item (i) there exists a CLg-graph 〈T ′,V ′〉 such that τ ′ ∈ T ′
and (T ,V, τ) =⇒n

D (T ′,V ′, τ ′) for some n ≥ 1 because τ ′ 6= τ . The proof is by induction on n.
Base Case: Suppose n = 1 then (T ,V, τ) =⇒D (T ′,V ′, τ ′) and follows directly by definition of =⇒D
because τ ′ ∈ SkelT (τ) = {τ} ∪ SkelT ′(τ ′), implying that τ ′ ∈ SkelT ′(τ

′) and for this 〈T ′,V ′〉 it is not a
degenerated topological graph.
Induction Step: Suppose that n > 1, so (T ,V, τ) =⇒D (T ′′,V ′′, τ ′′) =⇒n−1

D (T ′,V ′, τ ′) and then by
(IH) τ ′ is an edge in 〈T ′′,V ′′〉, but T ′′ ⊆ T and V ′′ ⊆ V so implies that τ ′ is also an edge in 〈V, T 〉.

(iii) If 〈Ti,Vi〉 is a degenerated topological graph for some i ∈ {1, 2} then SkelTi(τi) = ∅ and the result follows
directly.

Suppose that for each i = 1, 2, 〈Ti,Vi〉 it is not a degenerated topological graph. Then SkelTi(τi) =
{τi}∪Ri for i = 1, 2, then supposing by contradiction that R1∩R2 6= ∅, so exist a τ̂ ∈ R1∩R2 ⊆ SkelTi(τi)
for i = 1, 2, so τ̂ ∈ T1 ∩ T2 and by item (ii) τ̂ is an edge in Ti for i = 1, 2, contradicts that V1 ∩ V2 = ∅,
therefore R1 ∩R2 = ∅ and because τ1 6= τ2 and τ3−i /∈ Ti ⊇ Ri for i = 1, 2 the result follows.

2

D Proofs of Section 4

Definition 4.4 [isomorphism] Let 〈T ,V, r〉 and 〈T ′,V ′, r′〉 be ω-graphs and ϕ : T → T ′ and ψ : V → V ′
mappings between edges and vertices, respectively. We say that the 2-map cell (ϕ,ψ) is an isomorphism iff the
following properties hold:

(i) ϕ and ψ are bijections and ψ(r) = r′;

(ii) ϕ(τ) is homeomorphic to τ , for all τ ∈ T ;

(iii) ψ(∆τ) = ∆ϕ(τ), for all τ ∈ T ;

(iv) ϕ(Inc(v)) = Inc(ψ(v)), for all v ∈ V. Besides, ϕ(Inc(v)) and Inc(ψ(v)) have the same clockwise orienta-
tion.

Theorem 4.5 (Correctness) Let G(r) = 〈T ,V, r〉 be a rooted topological graph.

(i) (Soundness) If (∂T ,V, r) ` GT then G(r) is an ω-graph. Moreover, if only rules (ax), (app) and (abs)
rules are then G(r) is a BCI-graph and, if the ω-rules are not used, then G(r) is a BCK-graph.

(ii) (Completeness) If G(r) is an ω-graph, then there exists an ω-graph 〈T ′,V ′, r′〉 isomorphic to G(r) such
that (∂T ′,V ′, r′) ` GT ′ .

18

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

Proof.

(i) The proof is by induction on the derivation ∇ of 〈∂T ,V, r〉 ` GT .
Base Case. ∇ consists of an application of rule (ax).

Therefore, T = ∂T = {τ} where τ is a rooted free edge, then clearly by definition (T , {r}, r) is an
ω-graph, and more, it is a BCI, BCK-graph.
Inductive Step: the proof is by analysing the last rule applied in ∇.
• The rule is (app).

Then, by definition of the rule one has ∂T = ∂T ′ ∪ ∂T ′′ , V = V ′ ∪ (V ′′ \ {r′′} ∪ {r}) and there exist
derivations ∇′ and ∇′′ of 〈∂T ′,V ′, r′〉 ` GT ′(r′) and 〈∂T ′′,V ′′, r′′〉 ` GT ′′(r′′), respectively. By (IH),
GT ′(r′) and GT ′′(r′′) are ω-graphs. Notice that GT (r) is obtained by colliding the roots of GT ′(r′) and
GT ′′(r′′) into vertex r′ and maintaining all other connections and adding a new root vertex r and a new
edge, say τr, connecting r and r′. So degT (r′) = 3 and r′ connects all other vertices in V ′ and V ′′.
Therefore, degT (v) = 2 or 3 for all v ∈ V \ {r} and GT is connected.

It remains to show that all normal forms of 〈T ,V, τr〉 w.r.t. =⇒D are degenerated graphs. First,

notice that no bound whip̃is added. Also, since degT (r′) = 3 one can apply rules (D− app) or (D− abs).
However, 〈T \ {τr},V \ r′, Lv(1)〉 is disconnected, therefore, the rule applied should be (D− app) and
〈T ,V, τr〉 =⇒D 〈Ti,Vi, Lv(i)〉 which corresponds to ω-graphs GT ′ and GT ′′ for i = 1, 2, and their normal
forms w.r.t. =⇒D are degenerated graphs.

• The rule is (abs).
So one has ∇′ proof of (∂T ′,V ′, r′) ` G′T the premise of the last rule in ∇ such as in the abs-rules.

Then, by (IH), (T ′,V ′, r′) is an ω-graph. Note that GT is obtained adding a new root r and a new edge
connecting r and r′. Additionally, according to the abs-rule, either or not an edge τ ′ in the frontier is
connected with r′; thus, all old vertices maintain their degrees, except r′ that might reach degree either
tree or two. whips in T are inherited by T ′.

The other cases are analogous. If ∇ does not use ω-rules then ∇′ and ∇′′ also do not use ω-rules and it
follows, by (IH), that 〈T ′,V ′, r′〉 and 〈T ′′,V ′′, r′′〉 are BCK-graphs and then 〈T ,V, r〉 is also a BCK-graph,
since last rule no adds a whip. In the case ∇ uses only rules (ax), (app) and (abs), then one can conclude
that GT is a BCI-graph reasoning similarly.

(ii) The proof is by induction on the cardinality of V. Let τ be the rooted edge in G(r), i.e., r ∈ ∆τ .
Induction Basis: |V| = 1,

Then V = {r} and T = {τ}, that is, τ is a free edge. Therefore, ({τ}, {r}, r) ` τ is obtained via rule
(ax) and the result follows.
Inductive Step: |V| > 1. Let v ∈ ∆τ be the rooted vertex, There are two subcases:
(a) degT (v) = 2 and Inc(v) = {{τ, γ}}:

For T ′ = T \ {τ} and V ′ = V \ {r}, it follows that G′(v) = 〈T ′,V ′, v〉 is an ω-graph with root v and
γ is the only (free)-edge incident to v in G′.

So, by (IH) there exists a rooted ω-graph 〈T ′′,V ′′, r′′〉 isomorphic to 〈T ′,V ′, v〉 via isomorphism
(φ, ψ) such that (∂T ′′,V ′′, r′′) ` GT ′′ . By applying rule (abs∗) one obtains (∂T ′′,V ′′] {r′}, r′) ` GT ∗
with r′ a new root vertex where T ∗ = T ′′ ∪ {τr′} and τr′ is a new edge such that ∆τr′ = {r′, r′′}.
Define an isomorphism (ϕ̂, ψ̂) as ψ̂(r) := r′, ψ̂|V′′ := ψ, ϕ̂(τr′) := τ and ϕ̂|T ′′ := φ and the result
follows.

(b) degT (v) = 3 and Inc(v) = {{τ, γ1, γ2}}: this case is similar to the previous one.
There are additional subcases to be considered.

• case γ1 = γ2:
Thus, γ1 is a loop and T = {τ, γ1},V = {r, v} and ∂T = ∅. So, ({τ}, {v}, v) ` τ is an axiom and

applying abs over τ one obtains a proof ∇ of ({τ ′, γ′1}, {r′, v}, r′), where γ′1 is a loop with v as only
vertex and τ ′ is the rooted edge with vertices r′, v, thus, the isomorphism with T is straightforward.

• case γ2 is a bound n+ 1-whip:
Let p ∈ γ2 be the only point in γ2 such that γ2\(∆γ2∪{p}) have (n+1) connected components, we

say Cγ2 is the set of such connected components. Let t ∈ Cγ2 be the connected component such that
t ∪ {p, v} is homeomorphic to [0, 1], and t′ a topological space homeomorphic to [0, 1] such that p is
an extremity of t′, t′ that does not cross any topological edge in T \{γ2} and γ′′2 := γ2 \(t∪{v, p})∪ t′
is a free whip. Then, G1(v) := 〈V \ {r}, T \ {(τr, γ2})∪{γ′′2 }, v〉 is an ω-graph with v as root, because
removing v has the same normal forms than G(r).

By applying the (IH) to G1(v) there is an ω-graph G2(v2) = 〈V2, T2, v2〉 isomorphic to G1(v) such
that (∂T2,V2, v2) ` GT2 , with the isomorphism (ϕ,ψ). So, applying the rule ω-abs in G2(v2) over
ϕ(γ′′2) results in the ω-graph G′(r′) = 〈V2 ∪ {r′}, (T2 \ {ϕ(γ′′2)}) ∪ γ′2, r′〉, where γ′2 is a bounded
(n+ 1)-whipwith ∆γ′2 = ∆ϕ(γ′′2)∪̇{ψ(v)}.

With that, one can build the functions ϕ′ : T 7→ T ′, ψ′ : V 7→ V ′ such that ϕ′(τr) = τr′ , ϕ
′(γ2) = γ′2

19

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

and ϕ′|T \{τr,γ2} = ϕ|T \{τr,γ2}, ψ′(r) = r′ and ψ′|V\{r} = ψ|V\{r}, and then it follows that (ϕ′, ψ′) is
an isomorphism.

• case γ2 is an edge:
There are two possibilities, v is an abs-node or an app-node. The case of being an abs-node is

analogous to the previous case, only considering γ2 an edge and using the abs rule. The case of being
an app-node is also analogous to the previous case, but considering the app rule and ω-app rule.

2

Theorem 4.6 (ω-graph to λ-term) For each ω-graph exists only one λ-term M without variable-clashes,
modulo α-conversion and free variables renaming and a surjective function f : T 7→ Subterms(M) such that
for each v ∈ V\{r} where τ := Lv(0), τ ′ := Lv(1) and (when degT (v) = 3) τ ′′ := Lv(2), the following properties
hold for f :

(i) For each γ, γ′ ∈ ∂T distinct, f(γ), f(γ′) are distinct variables.

(ii) if v is an app-node then, f(τ) = (f(τ ′)f(τ ′′))

(iii) if v is an abs-node and degT (v) = 3 then, f(τ) = λf(τ ′′) · f(τ ′) where f(τ ′′) is a variable.

(iv) if v is an abs-node and degT (v) = 2 then, f(τ) = λxv · f(τ ′), where xv is a variable.

Proof. Will be proved by induction over the G(w) calculus and using the theorem 4.5, so can be assumed that
each ω-graph is a derivation in the G(ω) calculus.
Induction Basis: Suppose that (∂T ,V, r) ` GT by the rule (ax), then T = {τ},V = {r} and ∂T = T so τ is
a free-edge. Let x be a variable and make the function f : τ 7→ {x} such that f(τ) = x, then the result follows
by vacuity because V \ {r} = ∅.
Induction Step: Suppose that (∂T ,V, r) ` GT does not end with the rule (ax).

• case app-rule: there are two premises (∂T ′,V ′, r′) ` G′T and (∂T ′′,V ′′, r′′) ` G′′T and by (IH) there are two
λ-terms without variable-clash M ′ and M ′′ (with disjoint variables) and two surjective functions f ′ and
f ′′ corresponding to 〈T ′,V ′, r′〉 and 〈T ′′,V ′′, r′′〉, respectively, such that FV (M ′)∩FV (M ′′) = ∅. Then V =
V ′∪̇(V ′′ \ {r′′})∪̇{r}, T = T ′∪̇(T ′′ \ {τr′′})∪̇{γ, τr}, where ∆τr′′ = {vr′′ , r′′}, τr is the rooted edge connecting
r′ to r and γ is an edge connecting v′′r to r′ So, let f : T 7→ Subterms(M ′M ′′) be a function such that
f(τr) = (M ′M ′′), f(γ) := f ′′(τr′′), for each τ ∈ T ′, f(τ) := f ′(τ) and for each τ ∈ T ′′ \ {τr′′}, f(τ) = f ′′(τ).
Is clear that f is a surjective function, because the union of f ′ with f ′′ except for replacing τr′′ by γ in the
domain, but maintaining the images and including τr is different from the others.

Thus, by (IH) the functions f ′ and f ′′ have the properties described before. Then, it is only necessary
to consider the properties of the new vertex r′, and the result follows straightforwardly for because r′ is an
app-node in the ω-graph 〈V, T , r〉 with Lr′(0) = τr, Lr′(1) = τr′ and Lr′(2) = γ.

• case (ω-app)-rule: exactly as for the app-rule, but the free variables of M ′,M ′′ will be renamed until each
pair (τ ′, τ ′′) ∈ ∂T ′ × ∂T ′′ such that τ ′τ ′′ ∈ T has f ′(τ ′) = f ′′(τ ′′). Then FV (M ′) ∩ FV (M ′′) 6= ∅ and for
each x ∈ FV (M ′) ∩ FV (M ′′), τ ′ := f ′−1(x), τ ′′ := f ′′−1(x) are replaced by τ ′τ ′′ in T and f(τ ′τ ′′) := x.

The other rules have similar proof but easier than those described above. 2

Theorem 4.7 (λ-term to ω-graph) For each λ-term M without variable clash there exist an ω-graph G(r) =
〈V, T , r〉 and a surjective function f : T 7→ Subterms(M) such that f has the properties listed in the theorem 4.6
and f(τr) = M .

Proof. Let M be a λ-term without variable-clash, will be proved by induction over the λ-term construction.
Induction Basis: M is a variable x. So just apply the rule (ax) in the G(ω) calculus, then there is 〈V, T , r〉
a ω-graph by theorem 4.5 such that T = {τ},V = {r} and τ is a free edge. Let f : T 7→ {x} a function such
that f(τ) = x, then f is a surjective function and every property listed in the theorem 4.6 is true by vacuity.
Induction Step: Suppose that M is a non-variable λ-term, then theres is two possible cases.

1) Case M = λx ·N : So by (IH) there is a ω-graph GN = 〈V ′, T ′, r′〉 and a function f : T ′ 7→ Subterms(N)
like is described in the statement.
(a) Theres is exactly n > 1 occurrences of x in N : All occurrences of x in N are free because N does not

have variable-clash: Note that f is a surjective function so f−1(x) 6= ∅.
Let τ ′ ∈ f−1(x) the τ ′ could be in ∂T ′ or T ′ \ ∂T ′. Suppose by contradiction that τ ′ belongs to

T ′ \ ∂T ′. τ ′ could be an edge, a loop or a bound m-whip.
• Case τ ′ is a loop: there is v ∈ V ′ such that Lv(1) = Lv(2) = τ ′ and v is an abs-node, so x occurs

bound in N , which is a contradiction.
• Case τ ′ is a bound m-whip: there is v ∈ V ′ such that Lv(2) = τ ′ and v is an abs-node, so x occurs

bound in N , which is a contradiction.

20

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

• Case τ ′ is an edge: v1, v2 ∈ V ′ distinct such that τ ′ = Lv1(i1) and τ ′ = Lv2(i2), note that i1, i2 cannot
be 0 otherwise x = f(τ ′) = λy · t or x = f(τ ′) = (tt′), where t, t′ are λ-terms, so i1, i2 ≥ 1.

supposing that i1 = 1: There is a topological edge τ ′′ such that f(τ ′′) = λy · x or f(τ ′′) = (xt)
or f(τ ′′) = (tx), implying that v2 is not a app-node otherwise i2 = 0 because the decomposition rule
statement assures that i2=0, so a contradiction, implying v2 is a (λ)-node and by the same reason of
the app-node, i2 6= 1. following that i2 = 2 so x occurs bound in N , again a contradiction.

Supposing i1 = 2: v2 could not be a abs-node, because x is a free variable and N has no variable-
clash, implying that v1 is app-node and the rest is similar to the previous argument.
Therefore τ ′ ∈ ∂T ′, and it is proved that f−1(x) ⊆ ∂T ′, for this reason cannot exist τ ′′ ∈ f−1(x)

distinct of τ ′, the property (i) assures that for each τ ′, τ ′′ ∈ ∂T ′ distinct, f(τ ′), f(τ ′′) are distinct
variables. So it is proved that f−1(x) = {τ ′}, and because n > 1 exist at least 2 nodes v, v′(they could
be equal, but in this case v is an app-node and Lv(1) = Lv(2) = τ ′) having τ ′ as incident topological
edge and for this reason τ ′ must be a free (n− 1)-whip.

Applying the ω-abs rule over τ ′, there is new ω-graph G := 〈V, T , r〉 = 〈V ′∪̇{r}, (T ′\{τ ′})∪̇{τ, τr}, r〉,
where r is the new root, τr is the rooted edge, r′ the rooted vertex, τ is a bound n-whip connected to r′

and all vertices from ∆τ ′. Now defining the function F : T 7→ Subterms(λx·N) such that F (τr) = λx·N ,
F (τ) = f(τ ′) = x and F |T \{τ,τr} = f |T \{τ,τr}, and the results follows because r′ is an abs-node in G
with the function L over G, Lr′(0) = τr the rooted edge in G, Lr′(1) = τr′ the rooted edge in GN and
Lr′(2) = τ .

(b) There is exactly one occurrence of the variable x in N : Analogous to the previous case, except that τ ′

will be a free edge and the abs-rule will be used.
(c) x does not occur in N : This case is trivial, applying the induction over N getting the function f and

a ω-graph GN = 〈V ′, T ′, r′〉, exactly as the first case, then applying the (abs∗)-rule obtaining the new
ω-graph G := 〈V, T ′, r′〉 = 〈V∪̇{r}, T ∪̇{τr}, r〉, where, r is the root, τr is the rooted edge connected r′.
So Make FT 7→ Subterms(λx ·N) where F (τr) = λx ·N and F |T ′ = f , and the result follows because
degT (r′) = 2, so r′ is an abs-node

2) Case M = (N1N2): By (IH) over M1,M2 exists ω-graphs Gi = 〈Vi, Ti, ri〉 and surjective functions fiTi 7→
Subterms(Mi) for i ∈ {1, 2} with the properties described in the statement, and there is two possibilities
for this case:
(a) Case FV (M1) ∩ FV (M2) = ∅: This case is trivial, just apply the app-rule resulting in a new ω-graph
G := 〈V, T , r〉 = 〈V1∪̇(V2\{r2})∪̇{r}, T1∪̇(T2\{τr2})∪̇{τr, γ}, r〉 where r is the root, τr is the rooted edge
connected to r1, γ is an edge who connects the rooted vertex of G2 to the right side of r1 in G. Then
the function F : T 7→ Subterms(M1M2) is defined by F (γ) = f2(τr2), F (τr) = (M1M2),F |T1 := f1
and F |T2\{τr2} := f2|T2\{τr2}. And the result follows because r1 is an app-node in G with Lr1(0) =

τr, Lr1(1) = τr1 and Lr1(2) = γ.
(b) Case FV (M1) ∩ FV (M2) = {x1, . . . , xm}: Exactly in the previous case except that Will be applied

the ω − app rule with the following list of joined free edges or free whips τ11τ21, . . . , τ1mτ2m where
τij = f−1i (xj), and F (τ1jτ2j) := xj . Them the result follows.

2

E Proofs of Section 5

For the proof of the following lemma, recall the notion of graph Skeleton introduced in Subsection C.1.

Lemma E.1 (Partial Typing-Function Lemma) Let 〈V, T 〉 and 〈V ′, T ′〉 be CLg-graphs, τ ∈ ∂T , τ ′ ∈ ∂T ′
free edges, E : T −→ Type a partial function and T ′ = PTG(T ′,V ′, τ ′, E) such that 〈V, T 〉 it is not a degenerated
topological graph, (T ,V, τ) =⇒∗D (T ′,V ′, τ ′) and T ′ 6= ∅, FAIL.

(i) If Dom(E) ∩ SkelT ′(τ ′) = ∅ then there exists a type substitution t such that t(E) ⊆ T .

(ii) If Dom(E)∩SkelT ′(τ ′) = ∅ then T ′ = PTG(T ′,V ′, τ ′, E|T ′)∪ t(E|Dom(E)\{T ′}), for some type substitution
t.

Proof.

(i) The proof is by by induction on |T ′|.
Induction Basis: Suppose |T ′| = 1, so V ′ = ∅ because 〈T ′,V ′〉 is a CLg-graph. Then 〈T ′,V ′〉 is a
degenerated topological graph. Since T ′ = PTG(T ′,V ′, τ ′, E), by the algorithm T = E or T = E∪̇{τ ′ 7→
a} where a is an atom. Then, it results straightforward that E ⊆ T , and by defining t as the identity
type substitution, one obtains that t(E) = E ⊆ T .
Induction Step: Suppose that |T ′| > 1.

Then τ ′ ∩ V ′ = {v′} and 〈T ′,V ′〉 is not a degenerated graph. Thus, there are two possible cases:

21

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

(a) v′ is an abs-node:
Then (T ′,V ′, τ ′) =⇒D (T ′′,V ′′, τ ′′), and if 〈T ′′,V ′′〉 is a degenerated topological graph then

for T ′′ := PTG(T ′′,V ′′, τ ′′, E) the induction basis proved that E ⊆ T ′′, but by the algorithm
(T ′,V ′, τ ′, E) =⇒PT G (T ′′,V ′′, τ ′′, E) with the D-abs rule, so T ′ = T ′′ \ {τ ′ 7→ T ′′(τ ′)}{τ ′ 7→ ρ → σ}
implying that E ⊆ T ′ because τ ′ ∈ SkelT ′(τ

′). Then, τ ′ /∈ Dom(E) which implies that E ⊆ T ′′\{τ ′ 7→
T ′′(τ ′)}. Thus, taking t as the identity type substitution will be enough.

Suppose that 〈T ′′,V ′′〉 is not a degenerated topological graph. Then τ ′′ ∈ SkelT ′′(τ
′′) by definition

of Skeleton and by the Lemma C.3, τ ′′ ∈ SkelT ′′(τ
′′) ⊆ SkelT ′(τ

′) ⊆ SkelT (τ), implying that
Dom(E) ∩ SkelT ′′(τ

′′) = ∅ and by (IH) there exists a type substitution t such that t(E) ⊆ T ′′, but
T ′ = T ′′ \ {τ ′ 7→ T ′′(τ ′)} ∪ {τ ′ 7→ ρ→ σ}. Note that τ ′ ∈ SkelT ′(τ

′), then τ ′ /∈ Dom(E) implies that
t(E) ⊆ T ′′ \ {τ ′ 7→ T ′′(τ ′)}. Therefore, t(E) ⊆ T ′.

(b) v′ is an app-node:
Then (T ′,V ′, τ ′) =⇒D (Ti,Vi, τi) for i = 1, 2, where Lv′(i) = τi, T1 := PTG(T1,V1, τi, E) and

T2 := PTG(T2,V2, τ2, T1). Since T ′ 6= ∅, FAIL, Ti 6= ∅, FAIL for i = 1, 2, by analysing the TPG
algorithm. Note that by Lemma C.3 SkelTi(τi) ⊆ SkelT ′(τ

′) then Dom(E)∩ SkelT1(τ1) = ∅, and by
(IH), it follows that there exists a type substitution t1 such that t1(E) ⊆ T1.

Suppose by contradiction that there exists a τ̂ ∈ Dom(T1) ∩ SkelT2(τ2), so by Lemma C.4 τ̂ is an
edge of 〈T2,V2〉 or τ̂ = τ2, but if τ̂ = τ2 then τ̂ /∈ T1. But by the secondary hypothesis τ̂ ∈ Dom(T1)
one has that τ2 ∈ Dom(E), which is a contradiction of the primary hypothesis. So, τ̂ is an edge of
〈T2,V2〉. Note that τ̂ ∈ SkelT2(τ2) implies τ̂ /∈ Dom(E) and τ̂ ∈ Dom(T1) with τ̂ /∈ Dom(E), and
this implies that τ̂ ∈ T1. So there is a contradiction in the assertion that V1 ∩ V2 = ∅ because τ̂ ∈ τi
implies τ̂ ∩Vi 6= ∅ for i = 1, 2. Therefore, Dom(T1)∩ SkelT2(τ2) = ∅. Then by (IH) there should exist
a type substitution t2 such that t(T1) ⊆ E2 and therefore t2(t1(E)) ⊆ T2.

Suppose that T1(τ1) is an atom, then by the algorithm t3 = Unify(a, T2(τ2) → b) 6= FAIL because
T ′ 6= ∅. On the other side, if T1(τ1) = ρ→ σ then t3 = Unify(ρ, T2(τ2)) 6= FAIL by the same reason.
So there exists T ′ = t3(T2 \ {τ ′ 7→ T2(τ ′)} ∪ {τ ′ 7→ t3(σ̂)} where σ̂ = σ or the fresh atom b.

Note that t3 ◦ t2 ◦ t1(E) ⊆ t3(T2 \ {τ ′ 7→ T2(τ ′)}) because τ ′ ∈ SkelT ′(τ
′) then the result follows.

(ii) The proof is a direct adaptation of item (i).
2

Lemma E.2 Let 〈V, T 〉 be a CLg-graph, τ ∈ ∂T a free edge, E : T 7→ Type a partial function such that E(τ̂)
is an atom for each τ̂ ∈ Dom(E). Then,

T1 := PTG(T ,V, τ, ∅) 6= ∅, FAIL iff T2 := PTG(T ,V, τ, E) 6= ∅, FAIL,

and also T1 =α T2, i,e, T1 differs from T2 only by a swap of atoms in their image.

Proof. It is straightforward from the algorithm, because every τ ′ ∈ Dom(E)∩SkelT (τ), E(τ ′) will be replaced
by a proper type, and if τ ′ ∈ Dom(E) ∩ T \ SkelT (τ), τ ′ will be a normal form of (T ,V, τ). So, the atom
E(τ ′) will be preserved and used in the algorithm. 2

Lemma E.3 Let 〈V, T 〉 be a CLg-graph, τ ∈ ∂T a free edge, E,E′ : T 7→ Types partial functions such that
Dom(E′) = Dom(E) and E′(τ̂) is a fresh atom for each τ̂ ∈ Dom(E′). If PTG(T ,V, τ, E) 6= ∅, FAIL then
PTG(T ,V, τ, E′) 6= ∅, FAIL

Proof. It is enough to prove the counter positive of this lemma. Suppose that PTG(T ,V, τ, E′) 6= FAIL and
PTG(T ,V, τ, E′) = ∅, so take t a type substitution such that t(E′) = E. It exists because Dom(E′) = Dom(E)
and E′(τ ′) is fresh and atomic for all τ ′ ∈ Dom(E′). Note that PTG(T ,V, τ, E) 6= FAIL because this only
depends on =⇒D. So, take the first instance of the execution tree of PTG(T ,V, τ, E′) such that it returns ∅. By
the algorithm such that instance represents an app-node and a failed unification. Then, apply t to all successor
instances and now there are instances of PTG(T ,V, τ, E) and the unification fails too. This happens because if
ρ =? σ is not unifiable then for all type substitution π, π(ρ) =? π(σ) it is not unifiable, in particular for t. 2

Lemma E.4 Let 〈V, T 〉 be a CLg-graph, τ ∈ ∂T a free edge, E : T 7→ Type a partial function and T =
PTG(T ,V, τ, ∅) 6= FAIL. If (〈V, T 〉, E) is a typed graph with respect to τ then E = PTG(T ,V, τ, E).

Proof. Note that in the execution tree of the algorithm for PTG(T ,V, τ, ∅) no new atom will be created because
E(τ ′) is defined for each τ ′ ∈ T and for each v ∈ V such that v is an app-node, E(Lv(1)) is a composite type.
On the other side, all unifications are trivial, i.e., for each instance t is the identity. 2

Lemma E.5 Let 〈V, T 〉 be a CLg-graph, τ ∈ ∂T a free edge, E : T 7→ Type a partial function and T =
PTG(T ,V, τ, ∅) 6= FAIL. If (〈V, T 〉, E) is a typed graph w.r.t τ then PTG(T ,V, τ, ∅) 6= ∅

22

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

Proof. The proof follows from the previous lemmas. 2

Theorem 5.5 (Soundness and Completeness of PTG) Let 〈V, T 〉 be a CLg-graph, τ ∈ ∂T a free-edge,
T : T 7→ Type a partial function

(i) (Soundness) If E = PTG(T ,V, τ, T) 6= ∅ and E 6= FAIL then (〈V, T 〉, E) is a typed CLg-graph w.r.t. τ .

(ii) (Completeness) If E = PTG(T ,V, τ, ∅) 6= FAIL and (〈V, T 〉, T) is a typed graph w.r.t. τ then there exists a
type substitution t such that T (τ) = t(E(τ)).

Proof.

(i) Considering E = PTG(T ,V, τ, T) the current instance of PTG, the proof is by induction on |T |.
Induction Basis: Suppose |T | = 1, then 〈V, T , τ〉 is a degenerated graph and if τ /∈ T T then PTG returns
τ into a fresh atom (lines 4)

if it is undefined in the current T , otherwise it is preserved (lines 4 to 6).
Inductive Step: Suppose that V 6= ∅ and ∆τ = {v}. The proof follows by analysing the vertex v.
(a) v is an abs-node (line 11, algorithm PTG):

In this case, (T ,V, τ, T) =⇒PTG (T ′,V ′, τ ′, T) where (T ,V, τ) =⇒D (T ′,V ′, τ ′). By Theorem 3.9,
〈V ′, T ′〉 is a CLg-graph and τ ′ ∈ ∂T ′. By (IH) (〈V ′, T ′〉, E′) is a typed graph w.r.t. τ ′ and E′ =
PTG(T ′,V ′, τ ′, T). Notice that E = (E′ \ {τ 7→ T (τ)}) ∪ {τ 7→ ρ → σ}, where σ = E′(Lv(1)). Notice
also that ρ is a fresh atom, if degT (v) = 2 (line 17) and, ρ = E′(Lv(2)), when degT (v) = 3 (line 19).

(b) v is an app-node (line 20):
This case is analogous to the previous one, but PTG splits into two instances (lines 22 and 26),

resulting in E1 = PTG(T1,V1, τ1, T) and E2 = PTG(T2,V2, τ2, E1) where (T ,V, τ) =⇒D (Ti,Vi, τi), i =
1, 2. By (IH) one has that (〈Vi, Ti〉, Ei), i = 1, 2 are typed graphs w.r.t τi. Since E 6= ∅, the unification
does not fail hence the result follows.

(ii) The proof is by induction on |T | in a more general result that includes the statement of theorem.
Induction Hypothesis: Suppose (〈V, T 〉, T) is a typed graph w.r.t. τ then there exists a type substitu-
tion t such that T (τ) = t(E(τ)) and T (γ) = t(E(γ)), for each γ ∈ ∂T .
Induction Basis: if |T | = 1 then 〈V, T 〉 is a degenerated topological graph, then E = {τ 7→ a} and a is
an atom. The result is straightforward: just use the type substitution t := {a 7→ T (τ)}.
Inductive Step: if |T | > 1 then ∆τ = {v} and since E 6= FAIL, by Lemma C.1, v is an app-node or an
abs-node.

By hypothesis, (〈V, T 〉, T) is a typed graph, then by Lemma E.5, E 6= ∅. Therefore, by Theorem 5.5(i),
E is a function from T to Types and (〈V, T 〉, E) is a typed graph.
• Case 1: v is an app-node.

There are triplets (Ti,Vi, τi) with i = 1, 2 such that (T ,V, τ) =⇒D (Ti,Vi, τi). Let E1 =
PTG(T1,V1, τ1, ∅) and E2 := PTG(T2,V2, τ2, E1) since E 6= ∅ and E 6=FAIL, by the PTG algorithm it
follows that Ei 6= ∅ and Ei 6= FAIL for i = 1, 2.

By Lemma E.1 there exists a type substitution t12 such that t12(E1) ⊆ E2. Suppose w.l.o.g. that
E1(τ1) = ρ′ → σ′ is a composite type, then E2(τ1) = t12(E1(τ1)) = ρ → σ is a composite type.
Note that (〈V1, T1〉, T |T1) is a typed graph, so by (IH) there exists a type substitution t1 such that
T |T1(τ1) = t1(E1(τ1)) and for each γ ∈ ∂T1, T (γ) = t1(E(γ)).

Let be E′2 = PTG(T2,V2, τ2, ∅), since E2 6= ∅ and E2 6= FAIL, E′2 6= FAIL because in both running they
have the same decomposition, and applying the Lemma E.5 E′2 6= ∅. Hence it is possible to apply the (IH)
since (〈V2, T2〉, T |T2), (〈V2, T2〉, E2|T2) are typed graphs, implying that exists type substitutions t2, t

′
2 such

that T (τ2) = t2(E′2(τ2)), E2(τ2) = t′2(E′2(τ2)) and for all γ ∈ T2, T (γ) = t2(E′2(γ)), E2(γ) = t′2(E′2(γ)).
By the algorithm PTG, π := Unify(ρ,E2(τ2)) 6= FAIL, i.e, π is the mgu of ρ and E2(τ2) and T =

π(E2 \ {τ 7→ E2(τ)})∪{τ 7→ π(σ)} and E′2 has only fresh atoms in the image, so t′2(E2) = E2, implying
that t′2 ◦ t12(E1) = t12(E1) and t12(E′2) = E′2.

For the main result it is enough to prove that t1 = t ◦ π ◦ t12, for some type substitution t. Defining
H := {(E1(γ), E′2(γ)) | γ ∈ ∂T1 ∩ ∂T2}, is the set of all pairs of types attributions to the same whip
belonging to both T1,T2. In the one hand, for all γ ∈ T1 ∩T2 then t′2 ◦ t12(E1(γ) = t12(E1(γ) = E2(γ) =
t′2(E′2(γ)) = t′2 ◦ t12(E′2(γ)), then t′2 ◦ t12 unifies H and more over, it is a mgu of H. In the other hand,
ρ′′ → σ′′ = T (τ1) = t1(E(τ1) = t1(ρ′ → σ′) and ρ′′ = T (τ2) = t2(E′2(τ2)) then t2 ◦ t1 unifies ρ′, E′2(τ2)
and by the same argument t2 ◦ t1 also unifies H.

Remember that t′2 ◦ t12(E1(τ1)) = t′2(E2(τ1)) = E2(τ1) = ρ→ σ and t′2 ◦ t12(E′2(τ2)) = t′2(E′2(τ2)) =
E2(τ2), this implies that π is an mgu of t2 ◦ t12(E′2(τ2)) and t2 ◦ t12(ρ′), hence π ◦ t′2 ◦ t12 is a mgu for
(ρ′, E′2(τ2)) and H.

Because π ◦ t′2 ◦ t12 is an mgu of (ρ′, E′2(τ2)) and H, there exists π′ such that π′ ◦ π ◦ t′2 ◦ t12 = t2 ◦ t1
and considering only atoms occurring in E1, E2, E and T , there is π ◦ t′2 ◦ t12 = π ◦ t12 and removing all
unnecessary atoms from the domain of π′ obtaining t such that t ◦ π ◦ t12 = t1.

23

de Assis Delboni, Ayala-Rincón, and Nantes-Sobrinho

• v is an abs-node: This is straightforward from (IH).
2

24

	Introduction
	Background
	Combinators
	Topological Graphs

	Combinatorial Graphs
	Generalised CL-graphs
	Graph Decomposition and -graph

	Operations on combinatorial graphs
	PTG: a typing algorithm for graphs
	Conclusion
	References
	General Topology: basic concepts
	Examples of the decomposition process
	Proofs of Section 3
	Graph Skeleton

	Proofs of Section 4
	Proofs of Section 5

