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Abstract. This paper shows how a previously specified theory for Abstract Re-
duction Systems (ARSs) in which noetherianity was defined by the notion of well-
foundness over binary relations is used in order to prove results such as the well-
known Newman’s Lemma and the Yokouchi’s Lemma. The former one known as
the diamond lemma and the later which states a property of commutation be-
tween ARSs. Thears theory was specified in the Prototype Verification System
(PVS) for which to the best of our knowledge there are no available theory for
dealing with rewriting techniques in general. In addition to proof techniques
available in PVS the verification of these lemmas implies an elaborated use of
natural as well as noetherian induction.

1. Introduction
A PVS theory built over the PVS prelude libraries for sets and binary relations that is
useful for the treatment of properties of Abstract Reduction Systems (ARS) was reported
in [6]. In that theory basic ARS notions such as reduction, derivation, normal form,
confluence, local confluence, joinability, noetherianity, etc., were adequately specified
in such a way that non elementary proof techniques such as noetherian induction are
possible. In this paper we describe the use of this PVS theory for proving Newman’s
and Yokouchi’s lemmas the later which is of interest because its proof is done by several
applications of natural as well as noetherian induction.

The inductive proof of the Newman’s Lemma given by Huet in [7] is a classical
example of proofs in higher-order logic. Formal proofs of Newman’s Lemma have been
specified in several proof assistants, e.g., ACL2 [17], Coq [8], Isabelle [16], Boyer-Moore
[18], Otter [5] among others.

The novelty of this work in not to present mechanical proofs of ARS theorems in
PVS that were done previously in other proof assistants. Our intention is to give a first
step in the direction of formalizing an elaborated and robust PVS theory for full Term
Rewriting Systems (TRSs) which currently is not available in this proof assistant. The
motivation for doing this work is the fact that rewriting has been applied to the specifi-
cation and synthesis of reconfigurable hardware [2, 10] and that the correction of these
specifications can be carried out by translating these rewriting specifications into the lan-
guage of the PVS proof assistant as logic theories [3]. But robust proof rewriting based
methods are necessary in order to deal efficiently with the correctness of these theories
that come from rewriting based specifications.



Section 2 presents the necessary background on rewriting theory and analitical
proofs of both lemmas. Sections 3 and 4 describe respectively the specification and
verification of both lemmas in PVS, and, before concluding, Section 5 presents some
new PVS strategies created to simplify the proofs. The PVS files of thears the-
ory as well as the proofs of Newman’s, Yokouchi’s and other lemmas are available at
www.mat.unb.br/ ∼ayala/publications.html .

2. Background

We suppose the reader is familiar with rewriting concepts and standard notations such as
presented either in [4] or in [19]. After briefly reviewing notations we start presenting
Newman’s and Yokouchi’s lemmas an sketches of their analytical proofs.

We consider an abstract reduction relation as a binary relationR over a setT ,
denoted also as〈R, T 〉. The relation is identified asR, → R or simply→. R+ and
R∗ respectively denote the transitive and the reflexive transitive closure ofR, denoted in
arrow notation as→+ and→∗, respectively. In the elegant arrow notation, the inverse
relationR−1, its transitive and its reflexive transitive closures are respectively denoted as
←, + ← and ∗ ←. The operator of composition is denoted as usual as◦. An abstract
reduction relation→ overT is said to be:confluentwhenever(∗ ← ◦ →∗) ⊆ (→∗ ◦∗ ←)
and locally confluentwhenever(← ◦ →) ⊆ (→∗ ◦∗ ←). → satisfies thediamond
propertywhenever(← ◦ →) ⊆ (→ ◦ ←). Two elements ofT , sayx, y, are said to be
joinablewhenever∃u.x →∗ u ∗ ← y. → is said to benoetherianwhenever there is no
infinite sequence of the formx1 → x2 → · · · .

Lemma 1 (Newman’s Lemma [13]) Let R be a noetherian relation defined on the set
T . ThenR is confluent if, and only if it is locally confluent.

proof (Sketch). On the one hand, that confluence implies local confluence follows by
their definitions. On the other hand, suppose thatR is noetherian and locally confluent.
Confluence ofR is proved by noetherian induction using the predicate

P (x) = ∀y, z. y ∗← x→∗ z =⇒ y andx joinable

ObviouslyR is confluent ifP (x) holds for allx. Noetherian induction require
us to showP (x) under the assumptionP (t) for all t such thatx →+ t. To proveP (x),
we analyze the divergencey ∗← x →∗ z. If x = y or x = z, y and z are joinable
immediately. Otherwise we havex→ y1 →∗ y andx→ z1 →∗ z as shown in the Figure
1, whereLC abbreviates the application of local confluence hypothesis,Ind of induction,
and as usual dashed arrows stand forexistence.
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Figure 1. Proof of Newman’s Lemma.



The existence ofu follows by local confluence ofR, the existence ofv andw
follows by induction hypothesis becausex→+ y1 andx→+ z1, respectively. �

Lemma 2 (Yokouchi’s Lemma [21]) let R andS be two relations defined on the same
setT , R being confluent and noetherian, andS having the diamond property. Suppose
moreover that the following diagram holds:
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Then the relationR∗ ◦ S ◦R∗ has the diamond property.

proof (Sketch). The proof starts by generalizing the diagramD of the lemma as the
diagramD′ in the Figure 2. This generalization is proved by noetherian induction using
the predicate

P (x) := ∀y, z. xR∗z ∧ xSy ⇒ ∃u.(yR∗u ∧ zR∗ ◦ S ◦R∗u)
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Figure 2. Generalization of Diagram D as D′

Then, to prove thatR∗ ◦ S ◦ R∗ has the diamond property, one also proceeds by
noetherian induction but this time using the predicate

P ′(x) := ∀y, z. xR∗ ◦S ◦R∗y ∧ xR∗ ◦S ◦R∗z ⇒ ∃u.(yR∗ ◦S ◦R∗u ∧ zR∗ ◦S ◦R∗u)

We conclude, by induction in the length of the derivation of the firstR∗ in xR∗◦S◦
R∗y. In other words, we distinguish between the casesxR◦R∗ ◦S ◦R∗y andxS ◦R∗y as
is shown in the Figure 3, whereC andDP stand for use of confluence ofR and diamond
property ofS hypotheses. �

3. Specification

The PVS theorynewman yokouchi presented in Table 1 specifies Newman’s and
Yokouchi’s lemmas. This theory is parameterized asnewman yokouchi[T] , where
(within thenewman yokouchi theory)T is treated as a fixed uninterpreted type.Rand
S denote rewriting relations overT andx, y, z, w andu elements ofT. =>, <=> and
& are abbreviations forIMPLIES , IFF andAND, respectively.

Newman’s lemma specification is straightforward and based on predicates over
rewriting relations. In the specification of the Yokouchi’s lemmaRTC(R) denotes the
reflexive transitive closure of the relationR, i.e. R∗. The composition of relations is
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Figure 3. Cases xR ◦R∗ ◦ S ◦R∗y and xS ◦R∗y

denoted aso. The first and third lemmas of this theory correspond to the lemmas 1
and 2 respectively. The second lemma,Yokouchi lemma ax1 , corresponds to the
generalizationD′ of the diagramD presented in Figure 2.

The theoriesresults confluence[T] and noetherian[T] , also com-
ponents of the wholears theory, are imported by thenewman yokouchi theory. The
former containing results about confluence and the later the definition of noetherianity
formulated in terms of the notion of well-founded relation as it will be explained.

Specifications of rewriting properties are exemplified by the following ones.

joinable?(R)(x,y): bool = EXISTS z: RTC(R)(x,z) & RTC(R)(y, z)

local_confluent?(R): bool =
FORALL x, y, z: R(x,y) & R(x,z) => joinable?(R)(y,z)

confluent?(R): bool =
FORALL x, y, z: RTC(R)(x,y) & RTC(R)(x,z) => joinable?(R)(y,z)

diamond_property?(R): bool =
FORALL x, y, z: R(x,y) & R(x,z) => EXISTS r: R(y,r) & R(z,r)

In order to make easy the use of natural induction, closures of relations are built
as unions of iterations of their compositions. For instance, the reflexive transitive closure
operatorRTCof a relationR is specified as the union of the iterationsiterate(R, i) ,

for all i ≥ 0, whereiterate(R,i) specifies the relation
R ◦ R · · · ◦ R︸ ︷︷ ︸
i times

available in the

PVS prelude libraries. The PVS prelude operatorsiterate andIUnion are specified
as

iterate(p, i)(x): RECURSIVE T =
IF i = 0 THEN x ELSE p(iterate(p, i-1)(x)) ENDIF
MEASURE i

IUnion(A): set[T] = {x | EXISTS i: A(i)(x)}

and using themRTCcan be specified as

RTC(R): reflexive_transitive = IUnion(LAMBDA n: iterate(R, n))

Notice that the type ofRTC is reflexive transitive . This places in the
basis of the system of types the intrinsic characteristics of theRTCconstruction creating



newman_yokouchi[T : TYPE] : THEORY BEGIN

IMPORTING results_confluence[T], noetherian[T]

R, S : VAR PRED[[T, T]]

Newman_lemma: THEOREM
noetherian?(R) => (confluent?(R) <=> local_confluent?(R))

Yokouchi_lemma_ax1: LEMMA
(noetherian?(R) & confluent?(R) &

(FORALL x,y,z: (S(x,y) & R(x,z)) =>
(EXISTS (u:T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))))
=>

(FORALL x,y,z: (S(x,y) & RTC(R)(x,z)) =>
(EXISTS (w:T): RTC(R)(y,w) & (RTC(R) o S o RTC(R))(z,w)))

Yokouchi_lemma: THEOREM
(noetherian?(R) & confluent?(R) & diamond_property?(S) &

(FORALL x,y,z: (S(x,y) & R(x,z)) =>
(EXISTS (u:T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))))
=>

diamond_property?(RTC(R) o S o RTC(R))

END newman_yokouchi

Table 1. newman yokouchi PVS theory

the necessary proofs obligations to be proved (PVS Type Correctness Conditions - TCCs).
This type is specified as follows.

reflexive_transitive?(R): bool = reflexive?(R) & transitive?(R)

reflexive_transitive: TYPE = (reflexive_transitive?)

Noetherianity is defined in terms of well foundness.

noetherian?(R): bool = well_founded?(converse(R))

noetherian: TYPE = (noetherian?)

Noetherian induction is then verified using the lemmawf induction , which
expresses the principle ofwell-founded inductionand can be found in the PVS prelude
theory [14] as well as the notion of well-founded relation.

wf_induction: LEMMA
(FORALL (p: pred[T]):

(FORALL (x: T):
(FORALL (y: T): y<x => p(y))

=> p(x))
=>

(FORALL (x:T): p(x)))



The lemmanoetherian induction presented below corresponds to the
principle of noetherian induction.

noetherian_induction: LEMMA
(FORALL (R: noetherian, P: PRED[T]):

(FORALL x:
(FORALL y: TC(R)(x, y) => P(y))

=> P(x))
=>

(FORALL x: P(x)))

This lemma is specified using the transitive closure operatorTC, that is defined
similarly to RTCby usingIUnion anditerate . Notice that the relationR is of type
noetherian . Its application depends on an adequate instantiation of the predicateP.

4. Verification

A complete proof summary of thears theory including the theorynewman yokouchi
that was obtained by using the PVS tool ProofLite [11] is available in [6] and also can be
generated by downloading the files as reported in the introduction.

The verification of Newman’s and Yokouchi’s Lemmas consists of 1857 lines
(168247 bytes) of proofs. To prove the Newman’s Lemma we used 114 proof steps,
and to prove the Yokouchi’s Lemma we used 225 proof steps. Here we just present the
relevant (small) fragment of the proof tree.

In addition to the standard proof techniques available in PVS we have used some
strategies available in the PVS packages Field [12] and Manip [20] for algebraic manipu-
lation.

4.1. Verification of Newman’s Lemma

When the PVS prover is invoked the proof tree starts off with a root node (sequent) having
no antecedent and as succedent the theorem to be proved.

Newman_lemma :

|-------
{1} FORALL (R: PRED[[T, T]]):

noetherian?(R) => (confluent?(R) <=> local_confluent?(R))

Notice that the rewriting relationR is correctly universally quantified since it is
declared as a variable in the theory.

The first command(skeep) introduces Skolem constants for the universally
quantified variables in the theorem.

Rerunning step: (skeep)

Newman_lemma :

{-1} noetherian?(R)
|-------

{1} (confluent?(R) <=> local_confluent?(R))



Applying the conjunctive splitting command(split) to the goal yields two sub-
goals. The first subgoal,Newmanlemma.1 , is to demonstrate that confluence implies
locally confluence, which is easily proved. The second subgoal,Newmanlemma.2 , is
the truly interesting one.

Rerunning step: (split) Splitting
conjunctions, this yields 2 subgoals:

Newman_lemma.1 :

[-1] noetherian?(R)
|-------

{1} confluent?(R) => local_confluent?(R)

Newman_lemma.2 :

[-1] noetherian?(R)
|-------

{1} local_confluent?(R) => confluent?(R)

For proving the later subgoal, after disjuntive simplification withflatten ,
one introduces the noetherian induction schemenoetherian induction as an an-
tecedent formula. This gives the sequent:

Rerunning step: (lemma "noetherian_induction")

Newman_lemma.2 :

{-1} FORALL (R: noetherian[T], P: PRED[T]):
(FORALL (x: T):

(FORALL (y: T): TC(R)(x, y) => P(y)) => P(x))
=> (FORALL (x: T): P(x))

[-2] local_confluent?(R)
[-3] noetherian?(R)

|-------
[1] confluent?(R)

Then, the predicate of the induction scheme is adequately instantiated using the
commandinst with the predicate:

(LAMBDA (a:T): (FORALL (b,c:T): RTC(R)(a,b) & RTC(R)(a,c)
=> joinable?(R)(b,c)))

This gives the following sequent.

Newman_lemma.2 :

{-1} (FORALL (x: T):
(FORALL (y: T):

TC(R)(x, y) =>



(FORALL (b, c: T): RTC(R)(y, b) & RTC(R)(y, c)
=> joinable?(R)(b, c)))

=>
(FORALL (b, c: T): RTC(R)(x, b) & RTC(R)(x, c)

=> joinable?(R)(b, c)))
=>

(FORALL (x: T):
FORALL (b, c: T): RTC(R)(x, b) & RTC(R)(x, c)

=> joinable?(R)(b, c))
[-2] local_confluent?(R)
[-3] noetherian?(R)

|-------
[1] confluent?(R)

The subgoalsNewmanlemma.2.1 and Newmanlemma.2.2 presented be-
low are then obtained by applying the command(split) that splits the implication of
the first antecedent. The first subgoal is easily verified by expanding the definition of the
predicateconfluent? by applying the command(expand "confluent?") and
then Skolemnization.

Newman_lemma.2.1 :

{-1} FORALL (x: T):
FORALL (b, c: T):

RTC(R)(x, b) & RTC(R)(x, c) => joinable?(R)(b, c)
[-2] local_confluent?(R)
[-3] noetherian?(R)

|-------
[1] confluent?(R)

The second subgoal requires to proveP(x) under the assumptionP(y) for all y
such thatx→+ y:

Newman_lemma.2.2 :

[-1] local_confluent?(R)
[-2] noetherian?(R)

|-------
{1} FORALL (x: T):

(FORALL (y: T):
TC(R)(x, y) =>

(FORALL (b, c: T): RTC(R)(y, b) & RTC(R)(y, c)
=> joinable?(R)(b, c)))

=>
(FORALL (b, c: T): RTC(R)(x, b) & RTC(R)(x, c)

=> joinable?(R)(b, c))
[2] confluent?(R)

Since formulas in the succedent are connected by disjunction, one needs only
to prove that the antecedents imply the first succedent. Thus the second succe-
dent can be hidden by applying the command(hide 2) and then by applying



the sequence of defined strategies(skeep2) , expand-closure "RTC" -2) and
(expand-closure "RTC" -3) , and(skolem2 "i" "j") one obtains the fol-
lowing sequent.

Newman_lemma.2.2 :

[-1] FORALL (y: T):
TC(R)(x, y) =>

(FORALL (b, c: T):
RTC(R)(y, b) & RTC(R)(y, c)

=> joinable?(R)(b, c))
{-2} iterate(R, i)(x, b)
{-3} iterate(R, j)(x, c)
[-4] local_confluent?(R)
[-5] noetherian?(R)

|-------
[1] joinable?(R)(b, c)

To prove this goal, we analyze the casesx = b or x = c or b 6= x 6= c. To
contemplate these cases one uses the command(case-replace "i = 0") which
replacesi by 0 in the current subgoal and generates a second subgoal for the casex =
b. Similarly, the casex = c is proved. The casex 6= b andx 6= c, i.e.,x→ x1→∗ b and
x → x2 →∗ c corresponds to the following sequent obtained after some simplifications.
Compare with the diagram of Figure 1 (replacing some symbols).

Newman_lemma.2.2.2.2.1.1 :

[-1] RTC(R)(x1, b)
[-2] RTC(R)(x2, c)
[-3] FORALL (y: T):

TC(R)(x, y) =>
(FORALL (b_1, c_1: T):

RTC(R)(y, b_1) & RTC(R)(y, c_1) =>
joinable?(R)(b_1, c_1))

[-4] R(x, x1)
[-5] R(x, x2)
[-6] RTC(R)(x1, u)
[-7] RTC(R)(x2, u)
[-8] noetherian?(R)

|-------
[1] j = 0
[2] i = 0
[3] joinable?(R)(b, c)

Firstly, make a copy of the formula-3 by using(copy -3) . The existence
of u follows by expandinglocal confluent? , instantiating withx , x1 andx2 us-
ing (inst ), and applying the defined strategy(join-skolem "u") . Invoking the
lemmaR subset TC, which states that a relation is contained in its transitive closure,
one proves thatx→+ x1 andx→+ x2. So, the existence ofv andw follows by induction
hypothesis that is instantiating[-3] conveniently, and the lemma follows.



4.2. Verification of Yokouchi’s Lemma

The verification starts with the sequent:

Yokouchi_lemma :

|-------
{1} FORALL (R, S: PRED[[T, T]]):

(noetherian?(R) &
confluent?(R) &

diamond_property?(S) &
(FORALL x, y, z:

(S(x, y) & R(x,z)) =>
(EXISTS (u: T):

RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))))
=> diamond_property?(RTC(R) o S o RTC(R))

After Skolemnization and propositional flattening, one introduces the auxiliary
lemma Yokouchi lemma ax1 corresponding to the generalizationD′ in Figure 2.
Then one obtains the new goal:

Rerunning step: (lemma "Yokouchi_lemma_ax1")

Yokouchi_lemma :

{-1} FORALL (R, S: PRED[[T, T]]):
(noetherian?(R) & confluent?(R) &

(FORALL x, y, z:
(S(x,y) & R(x,z)) =>

(EXISTS (u: T):
RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))))

=>
(FORALL x, y, z: (S(x,y) & RTC(R)(x,z)) =>

(EXISTS (w: T):
RTC(R)(y,w) & (RTC(R) o S o RTC(R))(z,w)))

[-2] noetherian?(R)
[-3] confluent?(R)
[-4] diamond_property?(S)
[-5] FORALL x, y, z:

(S(x,y) & R(x,z)) =>
(EXISTS (u: T):

RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))
|-------

[1] diamond_property?(RTC(R) o S o RTC(R))

Notice that the antecedents[-2] , [-3] and[-5] correspond to all the hypothe-
ses of{-1 }. Then, after a suitable instantiation of{-1 } and propositional simplification
with the command(prop) one obtains the goal:

Rerunning step: (prop)



Yokouchi_lemma :

{-1} FORALL x, y, z:
(S(x,y) & RTC(R)(x,z)) =>

(EXISTS (w: T):
RTC(R)(y,w) & (RTC(R) o S o RTC(R))(z,w))

[-2] noetherian?(R)
[-3] confluent?(R)
[-4] diamond_property?(S)
[-5] FORALL x, y, z:

(S(x,y) & R(x,z)) =>
(EXISTS (u: T):

RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))
|-------

[1] diamond_property?(RTC(R) o S o RTC(R))

Then, the definition ofdiamond property? is expanded and the noetherian
induction scheme introduced instantiating its predicate as:

LAMBDA (a:T):(FORALL (b,c:T):
(RTC(R) o S o RTC(R))(a,c) & (RTC(R) o S o RTC(R))(a,b)

=> (EXISTS (d:T):
(RTC(R) o S o RTC(R))(b,d) AND (RTC(R) o S o RTC(R))(c,d)))

After splitting conjunctions, one obtains the following two subgoals:

Yokouchi_lemma.1 :

{-1} FORALL (x: T):
FORALL (b, c: T):

(RTC(R) o S o RTC(R))(x,c) & (RTC(R) o S o RTC(R))(x,b)
=>

(EXISTS (d: T):
(RTC(R) o S o RTC(R))(b,d) & (RTC(R) o S o RTC(R))(c,d))

[-2] FORALL x, y, z: (S(x,y) & RTC(R)(x,z)) =>
(EXISTS (w: T): RTC(R)(y,w) & (RTC(R) o S o RTC(R))(z,w))

[-3] noetherian?(R)
[-4] confluent?(R)
[-5] FORALL (x: T), (y:T), (z: T):

S(x,y) & S(x,z) => (EXISTS (r: T): S(y,r) & S(z,r))
[-6] FORALL x, y, z: (S(x,y) & R(x,z)) =>

(EXISTS (u: T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))
[-7] (RTC(R) o S o RTC(R))(x,y)
[-8] (RTC(R) o S o RTC(R))(x,z)

|-------
[1] EXISTS (r: T):

(RTC(R) o S o RTC(R))(y,r) & (RTC(R) o S o RTC(R))(z,r)

and



Yokouchi_lemma.2 :

[-1] FORALL x, y, z:
(S(x,y) & RTC(R)(x,z)) =>

(EXISTS (w: T): RTC(R)(y,w) & (RTC(R) o S o RTC(R))(z,w))
[-2] noetherian?(R)
[-3] confluent?(R)
[-4] FORALL (x: T), (y: T), (z: T):

S(x,y) & S(x,z) => (EXISTS (r: T): S(y,r) & S(z,r))
[-5] FORALL x, y, z: (S(x,y) & R(x,z)) =>

(EXISTS (u: T): RTC(R)(y,u) & (RTC(R) o S o RTC(R))(z,u))
[-6] (RTC(R) o S o RTC(R))(x,y)
[-7] (RTC(R) o S o RTC(R))(x,z)

|-------
{1} FORALL (x: T):

(FORALL (y: T):
TC(R)(x,y) =>

(FORALL (b, c: T):
(RTC(R) o S o RTC(R))(y,c) & (RTC(R) o S o RTC(R))(y,b)
=>

(EXISTS (d: T):
(RTC(R) o S o RTC(R))(b,d) &

(RTC(R) o S o RTC(R))(c,d))))
=>

(FORALL (b, c: T):
(RTC(R) o S o RTC(R))(x,c) & (RTC(R) o S o RTC(R))(x,b)

=>
(EXISTS (d: T):
(RTC(R) o S o RTC(R))(b,d) & (RTC(R) o S o RTC(R))(c,d)))

[2] EXISTS (r: T):
(RTC(R) o S o RTC(R))(y,r) & (RTC(R) o S o RTC(R))(z,r)

The subgoalYokouchi lemma.1 is easily verified instantiating adequately the
antecedent[-1] and asserting. The subgoalYokouchi lemma.2 is proved following
the scheme in Figure 3 as detailed below.

1. First step: introduce Skolem constants and consider the casesx = z1 and/orx =
y1. The goal below corresponds to the case “and” (second diagram of the Figure 3
renaming some variables).
Yokouchi_lemma.2.1.1 :

{-1} j = 0
[-2] i = 0
[-3] FORALL (y: T):

TC(R)(x!1,y) =>
(FORALL (b, c: T):

(RTC(R) o S o RTC(R))(y,c) &
(RTC(R) o S o RTC(R))(y,b)
=>

(EXISTS (d: T):



(RTC(R) o S o RTC(R))(b,d) &
(RTC(R) o S o RTC(R))(c,d)))

{-4} iterate(R,0)(x!1,z1)
[-5] S(z1,z2)
[-6] RTC(R)(z2,c!1)
[-7] iterate(R,0)(x!1,y1)
[-8] S(y1,y2)
[-9] RTC(R)(y2,b!1)
[-10] FORALL x, y, z:

(S(x,y) & RTC(R)(x,z)) =>
(EXISTS (w: T): RTC(R)(y,w) &
(RTC(R) o S o RTC(R))(z,w))

[-11] noetherian?(R)
[-12] confluent?(R)
[-13] FORALL (x: T), (y: T), (z: T):

S(x,y) & S(x,z) => (EXISTS (r: T): S(y,r) & S(z,r))
[-14] FORALL x, y, z:

(S(x,y) & R(x,z)) =>
(EXISTS (u: T): RTC(R)(y,u) &
(RTC(R) o S o RTC(R))(z,u))

|-------
[1] EXISTS (d: T):

(RTC(R) o S o RTC(R))(b!1,d) &
(RTC(R) o S o RTC(R))(c!1,d)

2. Second step: invoke the lemmaiterate RTC which states that for alln,
iterate(R,n) ⊆ RTC(R) ; expand the definitions of composition of relations,
confluent? andjoinable? ; hide irrelevant formulas; and then, by applying
disjunctive simplification one obtains the goal:

Yokouchi_lemma.2.2.1.1.2 :

{-1} EXISTS (y_1: T):
(EXISTS (y: T): RTC(R)(w4,y) &

S(y,y_1)) & RTC(R)(y_1,d)
[-2] RTC(R)(c!1,w4)

|-------
{1} EXISTS (y_1: T):

(EXISTS (y: T): RTC(R)(c!1,y) &
S(y,y_1)) & RTC(R)(y_1,d)

3. Third step: conclude applying the auxiliary lemmaYokouchi lemma ax1 , the
confluence ofRand induction hypotheses.

5. PVS Defined Strategies Used in the Proofs

PVS provides a simple language to combine sequences of commonly used proof steps
into strategies [1]. These strategies can then be used as prover commands. To facilitate
and reduce the size of our proofs some commonly used sequences of proof commands
were turned into strategies. Two simple ones are discussed below.



In some proofs, it was necessary to firstly,expand the definition ofjoinable;
afterward, to introduceskolem constants and finally, to apply disjunctive simplification
(flatten ). The strategyjoin-skolem accomplishes this.

(defstep join-skolem (var1 fnum)
(then (expand "joinable?" fnum) (skolem * var1) (flatten))
"Expanding joinable?, Skolemizing, and

Applying disjunctive simplification.")

Another useful defined strategy isexpand-closure , that expands the defini-
tion of closure relation according to inputclosure which can be eitherrtc (Reflexive
Transitive Closure) orec (Equivalence Closure) orrc (Reflexive Closure) orsc (Sym-
metric Closure). This strategy uses another one calledexpand-um which expands the
definitions ofunion andmember.

(defstep expand-closure (closure fnum)
(if (equal closure ‘rtc)

(then (expand "RTC" fnum ) (expand "IUnion" fnum))
(if (equal closure ‘ec)

(then (expand "EC" fnum)
(expand "RTC" fnum)
(expand "IUnion" fnum))

(if (equal closure ‘rc)
(then (expand "RC" fnum) (expand-um fnum))
(if (equal closure ‘sc)

(then (expand "SC" fnum) (expand-um fnum))
(skip)))))

"Expanding the definition of ˜A.")

In the description of the verification of Newman’s and Yokouchi’s lemmas
we have mentioned the application of the defined strategies (expand-closure ,
join-skolem , skeep2 , skolem2 ), which are available together with the files of the
ars theory and proofs atwww.mat.unb.br/ ∼ayala/publications.html .

6. Conclusions and Future Work

This paper illustrates that thears PVS theory previously presented in [6] is in fact ad-
equate for expressing and verifying (well-known) non elementary results of the theory
of ARSs. The verifications of Newman’s and Yokouchi’s lemmas were described focus-
ing on the steps related with the applications of noetherian induction. Also it should be
stressed here that although this work does not advance the state of the art in the formal-
ization of mathematics since specifications of ARSs and even of TRSs are available since
the development of the Rewriting Rule Laboratory (RRL) in the 1980’s [9], it is of prac-
tical interest since the availability of rewriting proving technologies are essential in any
modern proof assistant and to the best of our knowledge neither rewriting theories nor
rewriting libraries are available in PVS currently.

As current work we are developing a more elaborated PVS theory for dealing with
TRSs that is of interest to verify the correction of concrete rewriting based specifications
of computational objects such as reconfigurable hardware as mentioned in the introduc-
tion. By this extension rewriting strategies and new tactic-based proving techniques will



be available in PVS in a natural manner. For this purpose, the type ofterms built over a
signature of function symbols is specified as an abstract data type ( [15]) with the type of
function symbols and the type of variables as its parameters. In thetrs theory the type
terms is the actual parameter of the theoryars[T] . From this point, termpositions
are given as usual by finite sequences of naturals, and useful operations on terms such as
subterm at a given position andreplacement of a subterm at a given position by us-
ing recursive declarations;substitutions are functions from variables intoterms .
All ars definitions and results hold for the reduction relation induced overterms by an
specific TRS which is specified as a binary relation overterms . The induced reduction
relation is given by closing the rewriting one under substitutions and structure of terms
(signature operations) as it is formalized in the standard rewriting literature [4,19].
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