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Abstract—Sorting permutations by reversals is one of the most
challenging problems related with the analysis of the evolutionary
distance between organisms. Genome rearrangement can be done
through several operations with biological significance, such as
block interchange, transposition and reversal, among others;
but sorting by reversals, that consists in finding the shortest
sequence of reversals to transform one genome into another,
came arise as one of the most challenging problems from the
combinatorial and algebraic points of view. In fact, sorting by
reversal unsigned permutations is a NP-hard problem, for which
the question of NP-completeness remains open for more than
two decades and for which several interesting combinatorial
questions, such as the average number of reversals needed to
sort permutations of the same size, remain without solution.
In contrast to the unsigned case, sorting by reversals signed
permutations belongs to P . In this paper, a standard genetic
algorithm for solving the problem of sorting by reversals unsigned
permutations is proposed. This approach is based on Auyeung
and Abraham’s method which uses exact solutions for the signed
case in order to build approximate solutions for the unsorted one.
Additionally, an improved genetic algorithm is proposed, that
in the initial generations applies reversals that simultaneously
eliminate two breakpoints, a heuristic mechanism used by several
approximation algorithms. As control mechanism for estimating
the precision of the results, a correct implementation of an
1.5-approximation algorithm was developed. Also, the results
were compared with permutations for which exact solutions
are known, such as Gollan’s permutations and their inverses.
Several experiments with randomly generated permutations were
performed and the results showed that in average the precision of
the outputs provided by both the standard and improved genetic
algorithms overcome the results given by the 1.5-approximation
algorithm as well as those results provided by previous known
genetic approaches.

I. INTRODUCTION

Comparison of biological sequences is a relevant problem in
bioinformatics for determining the evolutionary relationships
between organisms. This problem can be addressed using algo-
rithms that take into consideration local mutations (deletions,
insertions and substitutions), such as the classical algorithm
of dynamic programming to align two DNA sequences. But
when one tries to understand how genetic sequences mutate
at the chromosome level, it is necessary to consider global

operations such as reversals, block interchanges and transpo-
sitions. One of the operations that occurs commonly in genome
rearrangements is the reversal of a substring.

The order of genes in a genome can be represented in string
notation as a permutation π = (π1, π2, . . . , πn) of the set
{1, . . . , n}, that is a bijective function from {1, . . . , n} into
itself, where n is the number of genes. Two different types of
permutations have received attention from the biological point
of view: signed and unsigned permutations. On unsigned per-
mutations, genes are abstracted without any orientation, while
on signed permutations, each πi has a positive or negative sign
reflecting its orientation within the genome; either from left
to right or from right to left, denoted respectively as −→πi or ←−πi .

Given two permutations we wish to determine the minimum
number of reversals to transform one permutation into another,
that is the reversal distance between two permutations. By
simple algebraic properties of permutations, this problem
results equivalent to the problem of determining the minimum
number of reversals to transform one permutation into the
identity permutation, denoted as ı (i.e., in string notation, for
the unsigned case, the permutation sorted in increasing order
and for the signed case the permutation sorted in increasing
order and in which each πi has positive orientation, −→πi). This
problem is known as sorting by reversals.

The problem of sorting by reversals has been extensively
studied both in the field of combinatorics of permutations
and in bioinformatics for decades. For the case of sorting
signed permutations by reversals, initially, Kececioglu and
Sankoff [1] conjectured that the problem was NP-hard and
proposed a 2-approximation algorithm. Afterwards, Bafna and
Pevzner [2] improved the approximation ratio to 1.5, by using
the data structure of breakpoint graphs. Finally, Hannenhalli
and Pevzner [3] gave an exact polynomial (O(n4)) algorithm
that computes the reversal distance without providing the
sequence of sorting reversals, by using the data structure of
overlap graph. Further, more efficient algorithms based on
this polynomial algorithm ([3]) have been introduced; among
them, the O(nα(n)) time algorithm proposed by Berman and
Hannenhalli in [4], where α(n) is the inverse of Ackermann



function and, the linear time algorithm proposed by Bader,
Moret and Yang in [5] that uses a new data structure called
overlap forest. Increasing these complexities, these algorithms
can be applied not only to compute the reversal distance, but
also to build a minimal sequence of reversals.

For unsigned permutations, that are the ones treated in this
paper, the problem was shown to be NP-hard by Caprara [6].
Before the complexity was known, Kececioglu and Sankoff [1]
gave a 2-approximation algorithm, and Bafna and Pevzner[2]
presented an 1.75-approximation algorithm. Later on, the
approximation ratio was improved to 1.5 by Christie [7] and
then to 1.375 by Berman, Hannenhalli and Karpinski [8]. The
latter approximation algorithm is of theoretical interest being
its practical implementation of great difficulty.

Evolutionary techniques like genetic algorithms were pro-
posed to deal with the unsigned case due to the complexity of
the problem. Auyeung and Abraham [9] suggested a genetic
algorithm (GA) approach to solve the problem of sorting un-
signed permutations by reversals based on mapping unsigned
permutations of size n into a subset of the 2n possible signed
versions of each permutation of size n. For a given unsigned
permutation, a set of signed permutations is generated by
randomly assigning either a positive or a negative parity to
each component of the permutation. The exact solution of one
of this signed permutations corresponds to a feasible solution
of the original unsigned permutation. The fitness function
of each signed permutation is given by its exact reversal
distance that is computed by Hannenhalli’s et al polynomial
time algorithm.

Subsequently, modifications to Auyeung and Abraham’s
method were reported in [10], but without changing the central
premisses of this approach. More recently, Ghaffarizadeh,
Ahmadi and Flann [11] proposed a modified version of the
standard GA using individuals of different sizes to reduce
the runtime of the algorithm. All these approaches have been
reported to improve the results obtained applying Christie’s
1.5-approximation algorithm in order to control the precision
of the solutions. But two problem arise in these papers: firstly,
Christie’s approximation algorithm presented some conceptual
problems whose solutions were not reported in [9], [11] or
[10], and secondly, because of the given results, the way in
which permutations were randomly generated in some of these
papers is unclear as we will discuss. In [12], the authors,
presented a simple GA approach that is based on heuristics of
well-known approximation mechanisms (e.g., [7], [8]) focused
in applying in each generation reversals that maximally reduce
the number of breakpoints appearing in each individual. A
fixed version of Christie’s approach was initially reported by
the authors in [12] and used as quality control mechanism,
as is done in this paper too. Additionally, experiments were
performed over random permutations generated in two differ-
ent manners: by direct application of the C language rand
function and by randomly applying reversals to the identity
permutation.

In this paper we propose a GA based on the Auyeung and
Abraham’s method. Firstly, for an approach à la Auyeung and

Abraham in which we established in a precise manner the
parameters of the GA, the experiments gave results that im-
proved the ones previously reported and that are better than the
approximate solutions given by the fixed 1.5-approximation
algorithm. Secondly, a hybrid GA-approximate modification
is proposed in which, initially, the input permutation is sorted
by randomly applying all possible reversals that simultane-
ously eliminate two breakpoints and then, the GA approach
is applied for the obtained permutation. This modification
improves our results when the permutations are large. The
differences between our solutions and the approximated ones
is smaller than the differences previously reported in other
papers, but our comparison is more precise since here a fixed
1.5-approximation algorithm is applied. Finally, experiments
were performed with permutations for which exact solutions
are known such as Gollan’s permutations and their inverses
for which both GA approaches compute exact outputs.

The paper is organized in the following sections: in Section
II, the necessary notations and notions are given; in Section III,
the proposed GA and its modification are presented; in Section
IV, experiments and results are given; in Section V, the method
and the results are discussed and; finally, concluding remarks
and future work are presented in Section VI.

II. BACKGROUND

A. Terminology

Most definitions and terminology presented in this section,
were introduced by Bafna and Pevzner in their seminal paper
[2].

A permutation in the symmetry group Sn is a bijection π
from {1, . . . , n} into itself. A permutation π, denoted in string
notation as π = (π1, π2, . . . , πn) is extend by adding an initial
and a final pivot, π0 = 0 and πn+1 = n+1. A reversal ρi..j of
an interval [i, j], for 1 ≤ i ≤ j ≤ n, transforms the extended
permutation π into

π′ = (π0, . . . , πi−1, πj, . . . , πi, . . . , πn+1)

For example, consider the permutation

π = (0, 3,1,5,2, 4, 6)

The reversal ρ2..4 transforms π into

π′ = (0, 3,2,5,1, 4, 6)

Note that the reversal reverts the interval [2, 4] of π.
Observe that a reversal is also a permutation in Sn:

(ρi..j)k =

{
k, if k < i or k > j;
i+ (j − k), if i ≤ k ≤ j.

Thus, in postfix notation πρi..j denotes the application of the
reversal ρi..j to the permutation π.

Given two permutations π and σ, the reversal distance
problem is the problem of finding a shortest sequence of
reversals needed to transform π into σ. The reversal distance
between π and σ is the minimum number of reversals required
to transform π into σ.



By simple algebraic properties of symmetry groups, the
reversal distance between π and σ is equal to the reversal
distance between σ−1π and the identity permutation ı. In fact,
notice that if ρ1 . . . ρk, is a sequence of (reversal) permutations
that transforms π into σ, then it holds that πρ1 . . . ρk = σ, if
and only if (σ−1π)ρ1 . . . ρk = σ−1σ = ı. Thus, the problem
of sorting by reversals corresponds to find the reversal distance
between a permutation π and the identity permutation ı, that is
denoted as d(π). Since ı is the sorted permutation, the reversal
distance problem is also known as the problem of sorting by
reversals.

Let i ∼ j denote the property |i − j| = 1. Given two
consecutive elements πi and πj of π, for 0 < i < n + 1
and either j = i− 1 or j = i+ 1,
• they are said to be adjacent if πi ∼ πj and
• they are said to form a breakpoint if πi � πj .
Observe that the identity permutation is the unique permu-

tation without breakpoints. The number of breakpoints in π is
denoted by b(π).

Let ρ be a reversal that transforms π into π′, then it is easy
to observe that b(π)−b(π′) ∈ {−2,−1, 0, 1, 2}. Reversals that
reduce the number of breakpoints by i, are called i-reversals.

Given a permutation π, one defines the cycle graph of
π (also called as breakpoint graph) , G(π) as a undirected
edge-colored graph derived from the adjacency and breakpoint
relations in π with n+2 vertices labeled by 0, 1, . . . , n, n+1.
Two vertices i and j are joined by a black edge if (i, j) is a
breakpoint of π. Two vertices i and j are joined by a gray
edge if i ∼ j and i, j are not consecutive in π. An example
of a cycle graph is shown in Fig.1.

Fig. 1. Cycle graph G(π) for the permutation π = (4, 2, 3, 5, 1, 6)

Note that for all permutations π, G(π) can be completely
decomposed into disjoint cycles of alternated colored edges,
since each node has an equal number of black and gray
incident edges. However, there are probably many different
cycle decompositions of G(π) of alternated colored edges. For
simplicity, cycles of alternating colored edges will be called
either alternating cycles or simply cycles. The graph in Fig.
1 decomposes either in one or two cycles. The maximum
number of cycles in a cycle decomposition of G(π), denoted
as c(π), provides an useful bound for the reversal distance [2]:
d(π) ≥ b(π)− c(π). The observation that this bound is in fact
close to the reversal distance (mostly for signed permutation)
motivated the development of approximation algorithms that
are based on the elimination of breakpoints.

For π = (4, 2, 3, 5, 1, 6), whose cycle graph is presented
in Fig. 1, d(π) ≥ 5 − 2 = 3. Eliminating two breakpoints,

by applying the 2-reversal ρ2..4, one obtains the permutation
π′ = (4, 5, 3, 2, 1, 6), whose cycle graph is presented in Fig.
2, and for which this bound gives d(π′) ≥ 3− 1 = 2.

Fig. 2. Cycle graph G(π′) for the permutation π′ = (4, 5, 3, 2, 1, 6)

Observe that no 2-reversal is applicable to π′. Applying the
1-reversal ρ1..2, one obtains π′′ = (5, 4, 3, 2, 1, 6), for which
the bound gives d(π′′) = 2 − 1 = 1. See Fig. 3. Finally, π′′

can be sorted by applying the 2-reversal ρ1..5.

Fig. 3. Cycle graph G(π′′) for the permutation π′′ = (5, 4, 3, 2, 1, 6)

III. THE GENETIC ALGORITHM FOR SORTING UNSIGNED
PERMUTATIONS BY REVERSALS

Our method is based on the approach introduced in
[9]. The search space consists of 2n signed permutations,
that are the signed versions of the initial unsigned per-
mutation to be sorted. For example let the initial un-
signed permutation be π = (2, 1), the search space would
be {(−→2 ,−→1 ), (

−→
2 ,
←−
1 ), (
←−
2 ,
−→
1 ), (
←−
2 ,
←−
1 )}. Signed permutations

can be sorted polynomially and one knows that an optimal
solution that solves any signed permutation of the search space
also solves the initial unsigned permutation. So, one of the
optimal solutions of the elements of the search space is an
optimal solution for the initial unsigned permutation. This fact
guides the proposed genetic algorithm.

The standard GA approach is used. Initially, a random
population of signed permutations for the input permutation
is generated; after that, for each generation, the reproduction
is performed in the following manner: two individuals of
the population are taken for which crossover and mutation
operations are applied producing two offspring. Then, the two
new obtained offspring are returned to the population. The GA
finishes after all the generations have been completed.

The developed improvement made over the standard GA ap-
proach consists of applying just to the initial unsigned permu-
tation reversals that eliminate simultaneously two breakpoints,
that is 2-reversals. This is done randomly until no additional 2-
reversals are applicable. Although this is a greedy mechanism
that not necessarily will produce an optimal sorting, giving
priority to the elimination of (2-)breakpoints has been applied
as local optimization method in several approximation algo-
rithms because a high number of 2-reversals tend to be present
in optimal solutions (e.g., [1], [2], [7], [8]).

The four stages of the breeding cycle of the GA are
described below.



The selection is the stage where all the population is
sorted by their fitness value in order to make it easier
to choose individuals for the crossover. It is also here
where we save the best solution found.
The crossover chooses the best individuals of the popu-
lation and makes them breed, producing an offspring.
The mutation is applied over the offspring produced by
the crossover operator. The mutation should not occur
very often because it could alter too much some of the
individuals of the offspring that represent good solutions.
The replacement is the last stage where the offspring must
return to the population, replacing the worst individuals.

The value of the fitness is the optimal number of rever-
sals for sorting the signed permutation that represents each
individual. We use the implementation of the exact algorithm
proposed, and provided by the authors, in [5] to calculate the
fitness of each individual in the population. With his algorithm
the reversal distance of signed permutations is computed in
linear running time.

The fact that the bound d(π) ≥ b(π) − c(π) was ob-
served to be very close to the reversal distance for signed
permutations gave rise to other bounds. In [3] the concept
of hurdles, denoted as h(π) was developed and proved that
b(π) − c(π) + h(π) ≤ d(π) ≤ b(π) − c(π) + h(π) + 1. The
proof of this bound requires additional elaborated notions such
as the ones of fortress and this development, started in [3],
is the basis of the development of polynomial algorithms for
solving the problem of sorting by reversals signed permutation.

The pseudo-code of our proposed genetic algorithms is
shown in Algorithm 1.

Algorithm 1: Sorting by Reversals’ GA with parameter
for applying the GA improved version
Input: An unsigned permutation π, a boolean “improve”

indicating whether or not to apply initially
two-reversals

Output: A number of reversals to sort the permutation π
1 if “improve” then
2 apply 2-reversals until no reversals that eliminate two

breakpoints are applicable updating π;

3 generate an initial population of signed permutations for
π;

4 evaluate fitness for each individual of the initial
population;

5 for i = 2 to number of generations do
6 selection;
7 crossover;
8 mutation;
9 evaluate fitness of offspring;

10 replacement;

Let n be the length of the input permutation. The initial
population size is fixed as n log n. Each individual of the
population was generated from the input permutation in linear

time by randomly assigning a sign to each of its elements.
Thus, generating the initial population takes running time
O(n2 log n).

The algorithm used to sort the population by their fitness, in
the selection stage, is the counting sort that is well-known to
take running time O(n log n) since we have to order n log n
elements.

In the crossover stage, the best individuals of the population
are chosen to be the parents. For each pair of parents the
crossover is done in linear time generating two offspring. So
the total running time for executing the crossover stage is
O(n2 log n).

In the mutation stage, mutation is applied to each offspring
produced by the crossover. For each element of the indi-
viduals in the offspring, it should be checked whether the
mutation occurs or not. The total time taken by the mutation
is O(n2 log n).

Evaluating the fitness values and making the necessary
replacements of individuals take running time O(n2 log n)
each.

The genetic algorithm finishes after n generations, then the
overall time complexity is O(n3 log n).

IV. EXPERIMENTS AND RESULTS

In order to validate the proposed GA approaches several
tests were performed. Tests were done for permutations for
which, it is known the reversal distance and for randomly
generated permutations. For the latter ones, test differs in the
way the input permutations were generated, but in general the
tests share the following characteristics.

Hundred permutations were generated for each length i ∈
{10, 20, 30, ..., 150}. For each length i, the average of the
results over the hundred generated permutations for the 1.5-
approximation algorithm was calculated. Also, averages for
the standard GA and the improved GA were calculated. It is
worth mentioning that for a given permutation the standard
and improved GAs were executed ten times and then, the
average of the ten obtained results was calculated. This average
represents the result for each permutation. Moreover, for each
set of hundred permutations of length i, the standard deviation
was calculated, that represents how far the results are from the
average.

The crossover operation was performed with a single point
crossover. The crossover rate used is 0.9 and the mutation rate
used is 0.02. The selection of parents for the crossover was
made over the 60% of the population that represent the best
individuals. The replacement of the offspring was made over
60% of the population that represent the worst individuals.

The 1.5-approximation algorithm and the standard and
improved GAs were implemented in C language and executed
in OS X platforms with Intel core I5, I7 processors and other
similar platforms.

A. Experiments with Gollan’s permutations

This experiment was done as a control mechanism consid-
ering the most difficult unsigned permutations to be sorted by



TABLE I
RESULTS OF THE 1.5-APPROXIMATION ALGORITHM AND THE STANDARD AND IMPROVED GAS FOR GOLLAN’S PERMUTATIONS

n Size of pop. Avg. 1.5-approx. Avg. Standard GA Avg. Improved GA
γn/γ−1

n γn/γ−1
n γn/γ−1

n

10 33 9/11 9/9 9/9
20 86 19/19 19/19 19/19
30 147 29/31 29/29 29/29
40 212 39/39 39/39 39/39
50 282 49/51 49/49 49/49
60 354 59/59 59/59 59/59
70 429 69/71 69/69 69/69
80 505 79/79 79/79 79/79
90 584 89/91 89/89 89/89
100 664 99/99 99/99 99/99
110 745 109/111 109/109 109/109
120 828 119/119 119/119 119/119
130 912 129/131 129/129 129/129
140 998 139/139 139/139 139/139
150 1084 149/151 149/149 149/149

reversals, that are Gollan’s permutations and their inverses. In
[2] it was proved that in the symmetry group Sn, only both
Gollan’s permutation, denoted as γn, and its inverse, γ−1n , need
exactly n− 1 reversals to be sorted. All other permutations in
Sn can be sorted with less than n− 1 reversals.

Gollan’s permutation, in cycle notation, is defined as fol-
lows:

γn =

{
(1 3 5 7...n− 1n...8 6 4 2), for n even,
(1 3 5 7...n n− 1...8 6 4 2), for n odd.

For instance, γ10 = (1 3 5 7 9 10 8 6 4 2) and γ−110 =
(2 4 6 8 10 9 7 5 3 1).

Let i and j be two consecutive elements of Gollan’s permu-
tation γn or its inverse γ−1n in cycle notation, the correspond-
ing permutation in string notation is generated putting the
element i in the position j and, in addition, the last element is
placed in the position given by the first element. For instance,
γ10 in string notation is given by (2, 4, 1, 6, 3, 8, 5, 10, 7, 9)
and its inverse γ−1n by (3, 1, 5, 2, 7, 4, 9, 6, 10, 8).

Since exact solutions are known, we used these permuta-
tions in order to control validity of the outputs provided by
our implementations of the 1.5-approximation algorithm and
the GAs.

The results of this experiment are presented in Table I. The
values before the slash are the results for γn and after, for its
inverse. Observe that all answers given by both the standard
and the improved GA are exact, while the 1.5-approximate
algorithm fails to compute exact solutions for γ−1n , for n =
10, 30, 50, 70, 90, 110, 130 and 150.

B. Experiments with randomly generated permutations

For this experiment we generated permutations of size
n applying repeatedly the function rand available in the
standard library of the language C in the following way: π1
is generated as a random number between 1 and n and then,
for each 1 < i ≤ n, πi is generated as a random number
between 1 and n excluding {π1, . . . , πi−1}. Assuming that in
fact rand generates each random selection independently, this

mechanism generates each possible permutation correctly with
probability 1/n!

The results of this experiment are shown in Table II
Additional experiments were performed with permutations

of size n generated starting from the identity permutation
and then, applying n random reversals. This was done in
order to obtain additional information to compare our results
with related ones. The results of this experiment are shown
in Table III. The motivation to perform this experiment is
that the average number of reversals to sort by reversals
permutations of length n is unknown and related works have
used permutations as inputs that provide results that suggest
different averages.

V. DISCUSSION AND COMPARISON WITH RELATED WORK

As previously mentioned from Table I we can see that the
results given by both the standard and improved GAs are exact
for Gollan permutations and their inverses, in contrast to a few
inexact results obtained by the 1.5-approximation algorithm.
The unique previous work that reports outputs for specific
permutations was [10] in which the permutation in S36

(12, 31, 34, 28, 26, 17, 29, 4, 9, 36, 18, 35, 19, 1, 16, 14, 32, 33,
22, 15, 11, 27, 5, 20, 13, 30, 23, 10, 6, 3, 24, 21, 8, 25, 2, 7)

was sorted with 26 reversals as it was also done by both our
GA approaches.

A few considerations are necessary before discussing our
results for randomly generated permutations. Here it is relevant
to stress that not much information is know about the form
of solutions of this problem. In fact, several properties of the
outputs that are known for other sorting operations different
from reversals are unknown; for instance, the average number
of reversals to sort unsigned permutations of Sn is an interest-
ing open question, while this number is known, for example,
for the problem of sorting by block interchange [13].

Surprisingly, previous related works report contrasting re-
sults on randomly generated permutations. From the obtained
results in [9], [10] and [11], respectively the following percents
of number of reversals over the length of permutations needed



TABLE II
RESULTS OF THE 1.5-APPROXIMATION AND THE STANDARD AND IMPROVED GAS WITH RANDOM PERMUTATIONS

n Size of pop. Avg. 1.5-approx. Avg. Std GA Avg. Improved GA Std Deviation
10 33 5.84 5.83 5.98 0.0685
20 86 13.69 13.28 13.36 0.1775
30 147 21.88 21.08 21.07 0.3795
40 212 30.27 29.05 29.08 0.5682
50 282 39.64 37.53 37.46 1.0116
60 354 48.45 45.75 45.67 1.2921
70 429 57.56 54.28 54.17 1.5728
80 505 66.66 62.72 62.59 1.8887
90 584 75.86 71.65 71.54 2.0110

100 664 85.93 80.82 80.78 2.4184
110 745 94.03 88.91 88.87 2.4231
120 828 104.37 98.59 98.52 2.7414
130 912 113.38 107.46 107.37 2.8122
140 998 123.15 117 116.92 2.9182
150 1084 132.76 126.53 126.51 2.9416

TABLE III
RESULTS OF THE 1.5-APPROXIMATION AND THE GAS WITH PERMUTATIONS OBTAINED BY APPLYING n RANDOM REVERSALS TO ı

n Size of pop. Avg. 1.5-approx. Avg. Std GA Avg. Improved GA Std Deviation
10 33 5.3 5.27 5.34 0.0287
20 86 12.01 11.72 11.77 0.1266
30 147 19.37 18.51 18.57 0.3920
40 212 27.2 25.82 25.85 0.6436
50 282 33.96 32.39 32.39 0.7401
60 354 42.12 39.72 39.69 1.1385
70 429 49.75 46.65 46.62 1.4685
80 505 57.3 53.95 53.88 1.5960
90 584 65.85 61.79 61.71 1.9330

100 664 73.64 69.26 69.11 2.1010
110 745 81.8 76.58 76.54 2.4702
120 828 89.34 84.23 84.15 2.4280
130 912 98.26 92.5 92.37 2.7464
140 998 105.49 99.8 99.72 2.7013
150 1084 114.04 108.04 107.98 2.8427

to sort permutations of medium sizes (lengths between 50 and
150) are suggested: ∼ 83%,∼ 46% and ∼ 80%. Namely, the
manner in which input random permutations are generated in
[10] was not reported in that paper, but because of the results
from the other works, including the current one, the average
number of reversals needed to sort permutations of length n
is much greater than n/2, which suggest us the authors of
that work have applied a very peculiar mechanism for the
generation of input permutations.

Additionally, as previously mentioned, previous works com-
pare GA results with implementations of approximation algo-
rithms without reporting problems in Christie’s original 1.5
approximation ratio proposal [7], initially fixed in [12]. For
example, the approximate outputs in [9] for permutation of
medium sizes (lengths between 50 and 150) suggest a number
of reversals of ∼94% for sorting permutations of size n, while
the fixed 1.5-algorithm used in this paper (as well as in [12])
of ∼ 87%, allowing in this way a fair analysis of the real
improvement over the approximation algorithm obtained with
the corresponding GA approaches.

The results for randomly generated permutations in the table
II can be compared with the ones obtained by the simple GA
in [12] and are illustrated in the bars Fig.4. Results reported
in [12] are close to the ones provided by the fixed 1.5-

approximation algorithm and both the standard and improved
GA approaches proposed in this paper provide better results
than the 1.5-approximation algorithm.

The results for permutations obtained by applying random
reversal to the identity presented in the table III can only be
compared with precision with those presented in [9], because
it is the only work that presents a table with numeric results.
Comparisons with results in [11] are presented, but they
are imprecise because instead numeric values, the authors
presented only a graphic image (restricted to permutations of
length less than or equal to 110) from which approximate
numerical values were extracted and included in the figure 5.
In this figure, graphs are built for the approximate mechanism
applied in [9] and [11] and Auyeung’s GA approach using nu-
merical results taken directly from [9]. It can be observed that
all approaches perform better than the approximate method
presented in [9] and [11], but only the results of the (standard)
and improved GA approaches presented in this paper are
better than the results provided by the fixed 1.5-approximation
algorithm. In this point we observe that the crossover and
mutation rates used here are 0.9 and 0.02, respectively, while
in [9] these rates are respectively 0.3 and 0.8. A very small
crossover rate and very high mutation rate affects directly the
results in the experiment.



Fig. 4. Comparison of results for the 1.5-approximate algorithm (1.5AA),
the simple GA in [12] (dGA) and the standard and improved GAs (sGA and
iGA)

Fig. 5. Comparison of results for the 1.5-approximate algorithm (1.5AA),
the improved GA (iGA), the approximate algorithm (AA[9], [11])and GA in
[9] and the GA in [11]

The standard deviation of the results was also included
in tables II and III. It can be seen that when the length of
the permutation grows the standard deviation also grows, this
indicates that the results are far from the average. This also
indicates that the results provided by the GAs are more distant
from the results obtained by the approximation algorithm,
since we always have better results we can say that our results
overcome the results by the fixed 1.5-approximation algorithm.

In summary, from the experiments, one can conclude that
both the standard and improved GAs compute better results on
average than the ones obtained by the fixed 1.5-approximation
algorithm. These results are better than the ones reported
previously by the authors in [12] for the simple GA based
purely on elimination of breakpoints in each generation. Also,

the standard and improved proposed GAs outperform the GA
approaches presented in [9] and in [11]. Finally, it can be
observed that for permutations o length greater than or equal
to 50, the improved GA outperforms the standard GA.

VI. CONCLUSION

A standard genetic algorithm based on the Auyeung’s et
al method ([9]) for solving the problem of sorting by re-
versals was proposed and subsequently improved including
the heuristic of eliminating breakpoints usually applied in
approximation algorithms ([2], [3]). In addition to the main
distinguishing feature that is the hybrid application of a fitness
mechanism based on the computation of exact solutions for
signed permutations, through the linear time algorithm in [5],
and the elimination of breakpoints in the early generations,
in the proposed approaches the parameters of the GA were
adequately established and comparison were precisely done
with a fixed 1.5-approximation algorithm. The experiments
shows that results obtained by both the standard and the
improved GAs overcome the results obtained by the 1.5
approximation algorithm as well as the ones presented by
previous related works.

It is necessary to stress here, that the fitness calculation
is restricted to the reversal distance without computing the
sequence of necessary reversals to sort a permutation. From
the biological point of view this is not a drawback, since it
unnecessary for phylogenetic reconstruction and, moreover,
it is usually meaningless because there are many different
optimal sorting sequences. From the combinatorial point of
view, construction of optimal sequences may be of great
interest and it is an interesting future work. In order to
obtain the sequences, one might apply sub-quadratic algorithm
presented by Swenson et al [14] that works in O(n log n) time
for almost the majority of signed permutations.
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