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Abstract This work presents a formalization in PVS of the computational the-
ory for a computational model given as a class of partial recursive functions called
PVS0. The model is built over basic operators, which, when restricted to con-
stants, successor, projections, greater-than, and bijections from tuples of naturals
to naturals, results in a proven (formalized) Turing complete model. Complete
formalizations of the Recursion Theorem and Rice’s Theorem are discussed in de-
tail. Other relevant results, such as the Halting Problem’s undecidability and the
Fixed-Point Theorem, were also fully formalized.

Keywords Functional Programming Models, Automating Termination, Com-
putability Theory, Halting Problem, Rice’s Theorem, Theorem Proving, PVS

1 Introduction

It is well-known that all Turing complete models of computation have some ex-
pressiveness limits. Thus, not all kinds of problems can be solved, and programs
over each of these models with the same or different semantics cannot be distin-
guished. One of these limits, for instance, is given by Rice’s Theorem, which says
that it is impossible to build a program that decides a semantic predicate over
other programs unless the predicate is either the set of all programs or the empty
set.

Formalizations of undecidability results developed in the proof assistant PVS
are presented. These results are proved over a computation model called PVS0,
a variant of a first-order functional language. The language includes constants,
only one variable, unary and binary built-in operators, if-then-else instructions,
and recursive calls. PVS0 was designed with the main aim of formalizing the cor-
rectness of mechanisms to automate verification of termination in PVS, which
makes of high interest the exploration of the computability theory of PVS0 as
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a model of computation. Indeed, PVS0 is applied (i.e. used as a model of com-
putation) to formalize the equivalence among different criteria of termination,
including size change principle ([20]) based termination criteria such as Mano-
lios and Vroom’s Calling Context Graphs [21] and Avelar et al Matrix Weighted
Graphs [4], as well as Turing termination [28] (that is indeed the criterion ap-
plied for the PVS specification language), and Dependency Pairs termination (see
e.g., [2][3][1]). The libraries for PVS0, which include equivalence proofs of these
termination criteria, are available as part of the NASA LaRC PVS library at
https://github.com/nasa/pvslib/tree/master/PVS0.

This paper aims to formalize the computational theory of PVS0 as a computa-
tion model that is a second relevant objective to understand the model. In addition
to verification of termination criteria over PVS0, it is essential to formalize com-
putability properties of the model to certify that it is indeed a reasonable and
expressive model of computation. Previous work presented the formalization of
the HaltingProblem’s undecidability for the PVS0 model [7]. In that work, this re-
sult was formalized for a language model different from the one used in the current
paper, which allows only programs that consist of a unique (recursive) function,
called here the single-function PVS0 model. PVS0 is a more realistic model, accept-
ing, similarly to functional specifications, a list of functions such that each function
can call and be called by each other in the list using their indices. This model is
called the multiple-function PVS0 model (or just PVS0 when no confusion arises).
The undecidability of the Halting Problem was fully and directly formalized for
the multiple-function model too. However, this result can also be obtained just as
a corollary of Rice’s theorem’s formalization.

The language PVS0 was designed to be similar to the specification language
of PVS to allow a meta-theoretical study of the properties associated with PVS
itself. The results obtained for the language PVS0 imply, for instance, that PVS
itself is Turing Complete and, under specific restrictions, satisfies all computational
properties formalized in this development. Therefore, this study attempts not only
a better understanding but also eventual improvements to the PVS model. An
essential difference between PVS and the PVS0 model is that the input and output
types of a PVS0 program must be the same since the model works with a unique
input/output type, while this is not required in PVS. Other differences are that
PVS0 allows mutual recursion, while PVS does not; and, that the PVS grammar is
much richer than the PVS0 grammar. The choice of a minimal PVS0 grammar aims
to simplify formalizations; indeed, reducing the number of grammatical elements
also reduces the number of cases to be considered in proofs of properties of the PVS0
model. Additionally, having a unique input/output type facilitates the specification
in PVS of the syntax and operational semantics of PVS0. Nevertheless, the PVS0

grammar is rich enough to implement any PVS function.

The unique input/output type of the PVS0 language model is passed as a pa-
rameter of the PVS development that for the formalized theorems is set as the
type of naturals. The PVS0 theory also requires parameters: lists of basic oper-
ators (PVS functions) and an element of the input/output type to interpret as
false. Keeping these parameters fixed defines a class of partial recursive func-
tions. Basic operators, including successor, greater-than, and projections, provide
a model formalized to be Turing Complete. However, the model may also spec-
ify non-computable functions when basic operators that are non-computable PVS
functions are allowed.

https://github.com/nasa/pvslib/tree/cd139198b4f3f4e89c1169671350cb883893fdcc/PVS0
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The main contributions of this work are formalizations of the following prop-
erties of the multiple-function PVS0 model.

– Turing Completeness. The formalization proves that the class of partial re-
cursive PVS0 programs, built from basic functions and predicates (projections,
successor, constants, greater-than), are closed under the operations of compo-
sition, minimization, and primitive recursion. It follows the lines of proofs such
as the one in [27] that shows λ-definability of partial recursive functions. For
the formalization of this result, some specialized constructions were necessary.
For instance, for composition and primitive recursion, since a PVS0 program
should receive as argument a natural that represents a tuple of naturals result-
ing from applications of several PVS0 programs, it was necessary to construct
bijections from tuples of naturals to naturals.

– Recursion Theorem. This is the most elaborate of all proved theorems. The
formalization is similar to programming a computer virus using a functional
language with one difference: the idea is processing the own Gödel number, as
a quine does, of a partial recursive PVS0 program instead of the own code. The
proof uses a bijective Gödelization of partial recursive PVS0 programs; however,
bijectivity is not required for the Recursion Theorem as it is for the Fixed-Point
Theorem. The Gödelization was implemented based on a Gödelization of PVS0
expressions, and each PVS0 program is mapped into a natural that encodes
the tuple of naturals associated with its expressions. This construction avoids
implementing an elaborated PVS0 program that calculates its Gödel number.
The formalization follows the lines of proof as given in [24].

– Rice’s Theorem. It was formalized as a corollary of the Recursion Theorem used
to build a partial recursive PVS0 program, which processes its Gödel number.
If it is the number of a program that satisfies any semantic property, then
the program behaves as if it does not satisfy the property; otherwise, it be-
haves as if it satisfies it. This formalization follows the classical diagonalization
argumentation as done in [24] for Turing Machines.

– Additional results such as the Halting Problem’s undecidability and the Fixed-
Point Theorem were also formalized. There are two versions of the Theorem
of the Halting Problem’s undecidability. One says that it is undecidable if a
program halts for a specific input (Halting Problem). Another one says that it
is undecidable if a program halts for all inputs (Uniform Halting Problem). The
latter was proved just as a corollary of the Rice’s Theorem. The former was
proved using diagonalization and arbitrary Gödelizations of partial recursive
PVS0 programs, and a bijection from tuples of naturals to naturals to encode
PVS0 programs and inputs. The formalization follows the proof style in [24] for
Turing Machines. The Fixed-Point Theorem was formalized as a consequence
of the fact that it is possible to build the universal PVS0 program. Besides, it
uses a diagonal program whose semantics is receiving two arguments: the first
one is a program that transforms an input program into another one, and the
second one is a value. The diagonal program applies the first argument to itself
and the second argument. This proof is the only one in the development that
uses the bijectivity of the Gödelization of partial recursive PVS0 programs. The
construction follows the proof in [8].

The PVS development of the computability theory for the multiple-function
PVS0 model has its hierarchy synthesized in Figure 1.
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Fig. 1 Hierarchy of the PVS0 theory related with this extension

To prove the Recursion Theorem, a partial recursive PVS0 program that com-
putes its Gödel number is built. The construction is achieved by dividing the
program list of expressions into three parts. The first part is used to build a num-
ber related to the Gödel number that corresponds to a combination of the second
and the third parts. The second part uses the result of the first one to calculate the
Gödel number of the given program. The third part is used to process the result
of the second one. The formalization is based on the proof presented in Sipser’s
textbook ([24]) for Turing Machines, where Turing Machines are used to print
and process their descriptions. In this work, Sipser’s approach is adapted to build
functional programs that output their Gödel number. The main difficulty is that
Sipser’s proof informally describes how to build such Turing Machines, while here,
to have a complete formalization, concrete constructions of such partial recursive
PVS0 program are, of course, required.

Classical proofs of Rice’s Theorem assume the existence of a universal (Turing)
machine and build a reduction from the problem of deciding whether a machine
halts or not to the problem of the separability of machines’ semantic properties.
The main differences between classical proofs and the one given in this work are
that in addition to work with a functional programming model, the proof does
not depend on the Halting Problem’s undecidability, being concluded from the
Recursion Theorem without using any translation to or from other computational
models. Sipser’s textbook [24] includes proof that is similar to the one given here
but providing several informal descriptions and justifications, which are not pos-
sible in the current formalization. In particular, a crucial difference is that here,
the Gödelization is explicitly built.

Straightforward formalizations of the Uniform Halting Problem’s undecidabil-
ity, functional equivalence problem, the existence of fixed points problem, and
self-replication problem are obtained as corollaries of Rice’s Theorem.

In textbooks, assumptions such as the existence of universal machines and
programs, the existence of bijections between inputs, machines, and programs,
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and naturals, as well as Gödelization of machines and programs are intuitively
given without providing complete constructions. Even assumptions such as the
Recursion Theorem and Turing Completeness are accepted without constructive
proofs. To rule out such kinds of assumptions and get complete proofs, specifically
related constructions were fully formalized.

Organization: After giving the semantics of the PVS0 model and the specifi-
cations of computable and partial recursive classes in Sections 2 and 3 (related
with files mf pvs0 expr, mf pvs0 lang and mf pvs0 computable in Figure 1), Sec-
tions 4, 5 and 6 explain respectively the formalizations of Turing Completeness,
Recursion Theorem and of Rice’s Theorem (files mf pvs0 Turing Completeness,

mf pvs0 RecursionTheorem and mf pvs0 Rices Theorem). Section 6 also dis-
cusses crucial results formalized as simple corollaries of Rice’s Theo-
rem including the undecidability of the Uniform Halting Problem (file
mf pvs0 Rices Theorem Corollaries). Then, before concluding and discussing
current and future work in Section 8, Section 7 discusses another impor-
tant theorems included in the development (files mf pvs0 Fixedpoint and
mf pvs0 Halting) and related work. The formalization requires the installation
of the (PVS NASA library W) and is provided as part of this submission, directly
in the (PVS0 theory W) that belongs to this library. The paper uses the symbol
Was hyperlinks to specific files between the PVS0 theory.

2 Semantics of PVS0 Programs

Expressions of the PVS0 functional language have the grammar below.

expr ::= cnst(T ) | vr |
op1(N, expr) | op2(N, expr , expr) |
rec(N, expr) | ite(expr , expr , expr) |

Above, T is an uninterpreted type over which PVS0 expressions are interpreted. The
grammar is implemented as an abstract datatype built from T in the formalization.
This type is the type of input/output used to evaluate expressions (and programs).
Constants of type T are represented by the constructor cnst(T ) and the symbol
vr is the unique symbol of the variable. The main advantage of using such simple
grammar is generating a low number of cases to be analyzed in the proofs. The
grammar is compact but expressive enough, allowing other functional language
structures as “let-in”, “case-of”, and “match-with”, among others. will increment
the proof sizes. op1 and op2 denote respectively unary and binary built-in operators
indexed by naturals. These indices reference positions in lists of unary and binary
PVS functions used to interpret operator symbols. The symbol rec is for function
calls and uses natural indices required to select the function to be called in a
PVS0 program. In the evaluation, the selected function is applied to the result
of the evaluation of the second argument, expr . Finally, ite is the symbol of the
branching instruction, and its evaluation has the same semantics as the instruction
if-then-else.

From the specification of this grammar as an abstract datatype, PVS gener-
ates the required basic functions and axioms; for instance, the subterm relation is
generated as below.

https://github.com/nasa/pvslib/tree/52ed5989747e517cd29f2e20dbdc55d314e2ec5e
https://github.com/nasa/pvslib/tree/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0
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subterm(x, y) := x = y ∨
CASES y OF

vr : False;
cnst(v) : False;

rec(j, e1) : subterm(x, e1);
op1(j, e1) : subterm(x, e1);

op2(j, e1, e2) : subterm(x, e1) ∨ subterm(x, e2);
ite(e1, e2, e3) : subterm(x, e1) ∨ subterm(x, e2)∨

subterm(x, e3);

The kernel of a PVS0 program is a non-empty list of PVS0 expressions whose
main expression (the first expression to be evaluated) is the one at the head of
the list. Recursive calls, rec(i, ), are interpreted as evaluations (or function calls)
of the ith PVS0 expression in the list. PVS0 programs also include lists of unary
and binary functions to interpret the symbols of unary and binary operators, and
an element of the input/output type of the programs to be interpreted as false
(for the evaluation of the guards of ite instructions). Thus, PVS0 programs are
4-tuples of the form (O1, O2,⊥, Ef ), where O1 and O2 are the lists of unary and
binary functions (specified in PVS), ⊥ is an element of T , and Ef is the program’s
kernel. PVS supplies other alternative data structures instead of lists such as finite
sequences, sets, and functions that can be used to specify the elements related to
PVS0 programs. The choice of lists is justified because of their simplicity and that
PVS provides a complete game of operators verified over lists. Note that the eval-
uation of the expression given as the first argument of an ite symbol must also be
an element of type T interpreted as a Boolean. Thus, to guarantee that ite has
the semantics of if-then-else instructions, the interpretation of false as a specific
element ⊥ of type T is necessary. Built-in operators (O1 and O2) are necessary be-
cause they allow an adaptation of a PVS0 program to represent any PVS function,
verifying such operators separately. The Recursion and Rice’s Theorems are for-
malized, constraining basic operators only to have computable functions. However,
it is relevant to stress that PVS also allows the specification of non-computable
functions providing to PVS0, in this manner, the required flexibility to formalize
results about oracle programs.

List of n-elements are denoted as [a0, .., an−1]. L(i) denotes the ith element of
the list L, and |L| its length. The tail of a non-empty list L is denoted as cdr(L),
and L1 :: L2 denotes the concatenation of the lists L1 and L2. The mapping of
the list L using the function f is denoted as map(f)(L).

The (eager) evaluation predicate ε (specified as semantic rel expr W in the
PVS0 theory), for PVS0 programs is defined in Table 1.

The predicate ε is specified inductively. Specifying this predicate as a recursive
Boolean is impossible since there is no termination measure for semantic evalua-
tion. This choice enables us to correctly specify the notion of semantic evaluation
without providing a termination measure. Besides that, when the predicate runs
an infinite loop, it means that the evaluated PVS0 program does not answer an
output.

Note that the predicate ε is curried. Currying the first four parameters of ε,
which correspond to a PVS0 program, is convenient to deal with the own evalu-
ation relation associated to each PVS0 program; thus, the relation ε(pvs0 ) is the

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L33-L54
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evaluation relation for the specific program pvs0 . PVS currying feasibility is ap-
plied to several predicates and functions related to operational properties of PVS0
programs.

Table 1 PVS0 program evaluation predicate - pvs0 = (O1, O2,⊥, Ef ) (semantic rel expr W)

ε(pvs0 )(e, vi, vo) := CASES e OF
cnst(v) : vo = v;

vr : vo = vi;
op1(j, e1) : ∃ (v′ : T ) :

ε(pvs0 )(e1, vi, v
′)∧

IF j < |O1| THEN vo = O1(j)(v′);
ELSE vo = ⊥

op2(j, e1, e2) : ∃ (v′, v′′ : T ) :
ε(pvs0 )(e1, vi, v

′) ∧
ε(pvs0 )(e2, vi, v

′′) ∧
IF j < |O2| THEN vo = O2(j)(v′, v′′);
ELSE vo = ⊥

rec(j, e1) : ∃ (v′ : T ) : ε(pvs0 )(e1, vi, v
′) ∧

IF j < |Ef | THEN
ε(pvs0 )(Ef (j), v′, vo)

ELSE vo = ⊥
ite(e1, e2, e3) : ∃ (v′ : T ) : ε(pvs0 )(e1, vi, v

′) ∧
IF v′ 6= ⊥ THEN ε(pvs0 )(e2, vi, vo)
ELSE ε(pvs0 )(e3, vi, vo).

Parameters vi and v0 of the predicate ε are the input and output values,
and the parameter e is the (sub)expression being evaluated of the kernel of the
PVS0 program (O1, O2,⊥, Ef ), for short denoted as pvs0 . When evaluating this
expression, its subexpressions can match expressions that perform operations, such
as the built-in operators or (recursive) function calls. In these cases, the index j
is used either to select the desired operator in the lists of given unary and binary
operators, O1 and O2or the selected function in the list of expressions Ef of the
program pvs0 .

Using the predicate ε, another predicate is defined that holds for PVS0 pro-
grams and correct inputs and outputs, specified as below, where pvs0

′4 denotes
the projection of the fourth element of the 4-tuple pvs0 .

γ(pvs0 )(vi, vo) := ε(pvs0 )(pvs0
′4(0), vi, vo)

Note that γ (semantic rel W) starts the evaluation from the main function of
the program that is pvs0

′4(0), the head of the list of expressions pvs0
′4, the same

as Ef .

Aiming to prove properties related to automation of termination, semantic
termination of PVS0 programs was specified in [7]. Semantic termination is required
to prove completeness and equivalence of practical termination criteria and to

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L33-L54
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L13-L14
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formalize computability results such as undecidability of the Halting Problem and
Rice’s theorem. The semantic termination predicate is specified as below.

Tε(pvs0 , vi) := ∃ (vo : T ) : γ(pvs0 )(vi, vo).

This predicate Tε (determined? W) states that for a given program pvs0 and
input vi, the evaluation terminates with the output value vo. The program pvs0
is total with respect to ε if it satisfies the predicate Tε(pvs0 ) (terminating? W)
specified as below.

Tε(pvs0 ) := ∀ (v : T ) : Tε(pvs0 , v).

Also, the predicate is deterministic (deterministic W), specified as below.

∀(vi, vo, v′o) : γ(pvs0 )(vi, vo) ∧ γ(pvs0 )(vi, v
′
o)⇒ vo = v′o

Both the formalizations of the Halting Problem’s undecidability and Rice’s
Theorem (as given in [7] and in this paper, respectively) require building the
composition of functions and programs, which is used to specify contradictions.
Using the multiple-function PVS0 model in this work, it is possible to specify the
composition of arbitrary PVS0 functions, but for the single-function model used in
[7], it was not the case. The required compositions in [7] were specified manually as
new single-function PVS0 programs, which was possible since the specific functions
to be composed were always terminating.

To compose PVS0 programs sharing the same unary and binary operators and
the same interpretation of false, a fundamental issue is the notion of offset used
to adjust the indices of function calls in program lists. It works like a simplified
version of offset in assembly languages, where instruction labels in some piece of
code are adjusted when they are shifted. For PVS0 programs this is specified as the
function + (offset rec( )( ) W).

e+n := CASES e OF
cnst(v) : cnst(v);

vr : vr;

op1(j, e1) : op1(j, e+n
1 );

op2(j, e1, e2) : op2(j, e+n
1 , e+n

2 );

rec(j, e1) : rec(j + n, e+n
1 );

ite(e1, e2, e3) : ite(e+n
1 , e+n

2 , e+n
3 )

This function adds n to all the rec indices in the expression e. Using the offset
operator, the composition of two PVS0 programs (O1, O2,⊥, A) and (O1, O2,⊥, B),
for short pvs0A and pvs0B , respectively, is expressed by the property:

∀(vi, vo) : ∃(v) : γ(pvs0B)(vi, v) ∧ γ(pvs0A)(v, vo)⇔
γ(O1, O2,⊥, [rec(1, rec(1 + |A|, vr))] ::map( +1)(A) ::

map( +(1+|A|))(B))(vi, vo)

As an example, consider the unitary lists of unary and binary operators below
for predecessor and multiplication on N, and element to interpret as false. The
lambda notation, used below, is a feature of the PVS specification language.

– O1 := [λ(n : N) : IF n = 0 THEN n ELSE n− 1]

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L16-L17
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L10-L11
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L19-L22
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L104-L113
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– O2 := [λ(n,m : N) : n×m]
– ⊥ := 0

Consider now the PVS0 programs built with these operators and the unitary
lists of expressions below specifying respectively the square and the factorial func-
tions, i. e., the 4-tuples (O1, O2,⊥, square) and (O1, O2,⊥, factorial).

square := [op2(0, vr, vr)]
factorial := [ite(vr, op2(0, vr, rec(0, op1(0, vr))), cnst(1))]

The correctness of the composition of factorial and square using the offset
operator, is expressed as the property below.

∀(vi) : γ(O1, O2,⊥,
[rec(1, rec(1 + |factorial |, vr))] ::map( +1)(factorial) ::

map( +(1+|factorial|))(square))(vi, (v
2
i )!)

Where, more concretely map( +1)(factorial) is the expression
ite(vr, op2(0, vr, rec(1, op1(0, vr))), cnst(1)) and map( +(1+|factorial|))(square) is
op2(0, vr, vr); thus, the list of expressions of the composition is:

[rec(1, rec(2, vr))] ::

[ite(vr, op2(0, vr, rec(1, op1(0, vr))), cnst(1))] ::

[op2(0, vr, vr)]

A functional alternative for the semantic evaluation predicate ε should take
into consideration the case in which the evaluation does not return an output.
This issue is solved by adding an element to the working type that is interpreted
as none and denoted by ♦. The new type, T ∪ {♦}, is constructed with the PVS
functor Maybe, specifically as Maybe(T). The evaluation function also includes a
parameter that limits the allowed number of nested recursive calls: when this limit
is reached, the function returns ♦. This is given as the function χ (eval expr W)
in Table 2.

The predicate ε and function χ are proved equivalent in the following sense:

∀(pvs0 , e, vi, vo) : ε(pvs0 )(e, vi, vo)⇔
∃(n) : χ(pvs0 )(n, e, vi) = vo ∧ vo 6= ♦

Necessity and sufficiency are formalized as separated lemmas (respectively,
semantic rel eval expr W and eval expr semantic rel W).

Similarly to [7], a terminating program pvs0 , satisfies ∀(vi) : ∃(vo) :
γ(pvs0 )(vi, vo) or equivalently ∀(vi) : ∃(n) : χ(pvs0 )(n, pvs0

′4(0), vi) 6= ♦.
Two (equivalent) notions of operational semantics for the PVS0 language pro-

vide higher flexibility in the formalization since properties may be checked to
select one of these notions alternatively. In particular, the semantics provided by
the function χ turns clear the measure required in inductive proofs; namely, to
show termination of χ, the measure that decreases in each recursive call is the
lexicographical order on the pair (n, e) build with the orders on naturals and
(sub)expressions. Moreover, this is also the measure used to prove the inductive
properties of such a recursive function.

To define the classes of partial recursive and computable functions, indices of
the function calls in PVS0 programs are restricted to valid indices:

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L67-L101
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L118-L123
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L145-L149
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Table 2 PVS0 program evaluation function - pvs0 = (O1, O2,⊥, Ef ) (eval expr W)

χ(pvs0 )(n, e, vi) :=
IF n = 0 THEN ♦ ELSE CASES e OF
cnst(v) : v;

vr : vi;
op1(j, e1) : IF j < |O1| THEN

LET v′ = χ(pvs0 )(n, e1, vi) IN
IF v′ = ♦ THEN ♦ ELSE O1(j)(v′)

ELSE ⊥;
op2(j, e1, e2) : IF j < |O2|THEN

LET v′ = χ(pvs0 )(n, e1, vi),
v′′ = χ(pvs0 )(n, e2, vi) IN

IF v′ = ♦ ∨ v′′ = ♦ THEN ♦
ELSE O2(j)(v′, v′′)

ELSE ⊥;
rec(j, e1) : LET v′ = χ(pvs0 )(n, e1, vi) IN

IF v′ = ♦ THEN ♦
ELSIF j < |Ef | THEN

χ(pvs0 )(n− 1, Ef (j), v′)
ELSE ⊥;

ite(e1, e2, e3) : LET v′ = χ(pvs0 )(n, e1, vi) IN
IF v′ = ♦ THEN ♦
ELSIF v′ 6= ⊥ THEN

χ(pvs0 )(n, e2, vi)
ELSE χ(pvs0 )(n, e3, vi).

valid index rec(e, n) :=
∀(i, e1) :

subterm(rec(i, e1), e)⇒ i < n

valid index (Ef ) :=
∀(i < |Ef |) :

valid index rec(Ef (i), |Ef |)

3 PVS0 Computable and Partial Recursive Classes

We fix the input and output type of PVS0 programs as naturals; thus, O1 and
O2, and ⊥ are unary and binary operators over naturals, and a natural number.
Below, a class of partial recursive functions is defined as follows:

partial recursive?(pvs0 ) := pvs0
′1 = O1 ∧ pvs0

′2 = O2 ∧
pvs0

′3 = ⊥ ∧ valid index(pvs0
′4)

In the specifications, O1 and O2 are parameters of the theory
mf pvs0 computable W. Computable partial recursive functions are given as:

computable?(pvs0 ) := partial recursive?(pvs0 ) ∧ Tε(pvs0 )

Given a pvs0 program, if partial recursive?(pvs0 ) holds, pvs0 is of the type
partial recursiveW. If in addition pvs0 is terminating, computable?(pvs0 ) holds,
and it is of the type computable.

The PVS resource that allows building the subtype of a type T associated with
a predicate, Pred? over the type T is used to simplify the specification; indeed the
subtype is specified as Pred : TYPE = (Pred?). Notice that the types computable
and partial recursive above are subtypes of the type of PVS0 programs. When

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L67-L101
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L11
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L27
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one needs to specify properties and operators over objects of such a subtype, it
is only required to refer to such subtypes’ parameters (e.g., x : (Pred?) or x :

Pred). Additionally, PVS allows expanding the properties inherent to a subtype
through the proof command typepred.

To prove Turing completeness and Rice’s Theorem, it is necessary to formalize
some lemmas about shift code. As previously, consider PVS0 programs pvs0A =
(O1, O2,⊥, A) and pvs0B = (O1, O2,⊥, B). The first lemma is:

Lemma 1 (Shift code - add rec list aux W)

∀(O1, O2,⊥, A,B, e, vi, n) : χ(pvs0B)(n, e, vi) =

χ(O1, O2,⊥, A :: map( +|A|)(B))(n, e+|A|, vi)

This lemma means that in an evaluation of the expression e considering the
PVS0 program pvs0B , it is possible to concatenate a list A in front of B with-
out changing the evaluation semantics, adjusting accordingly the indices in rec

expressions contained by e and B.
The second lemma is:

Lemma 2 (Shift code - add rec list aux2 W)

∀(O1, O2,⊥, B, vi, n) :

∀(A | valid index (A)) : ∀(e | valid index rec(e, |A|)) :

χ(pvs0A)(n, e, vi) = χ(O1, O2,⊥, A :: B)(n, e, vi)

This lemma is similar to Lemma 1, but the indices of the rec expressions in
the evaluated expression e and the list A of the PVS0 program pvs0A must be valid
references to a PVS0 expression in A, and the list B of the PVS0 program pvs0B is
concatenated in the end.

Both lemmas are proved by induction on the lexicographical order given by
pairs (n, e), built with the orders on naturals and (sub)expressions. The type
of pair (n, e) is N × PVS0Expr, where PVS0Expr is the type of PVS0 expressions.
Previous lemmas and the equivalence of ε and χ entails both (respectively, lemmas
add rec list W and add rec list2 W):

∀(O1, O2,⊥, A,B, e, vi, vo) : ε(pvs0B)(e, vi, vo)⇔
ε(O1, O2,⊥, A :: map( +|A|)(B))(e+|A|, vi, vo)

and
∀(O1, O2,⊥, B, vi, vo) :

∀(A | valid index (A)) : ∀(e | valid index rec(e, |A|)) :

ε(pvs0A)(e, vi, vo)⇔ ε(O1, O2,⊥, A :: B)(e, vi, vo)

Formalizing Rice’s Theorem also requires a definition of semantic predicate of
programs and a Gödelization of the partial recursive class of PVS0 programs.

The notion of a semantic predicate over PVS0 programs is specified as:

is semantic predicate?(P ) := ∀(pvs0 1, pvs0 2) :

(∀(vi, vo) : γ(pvs0 1)(vi, vo)⇔ γ(pvs0 2)(vi, vo))⇒
(P (pvs0 1)⇔ P (pvs0 2))

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L125-L128
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L138-L142
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L144-L147
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L149-L153
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If is semantic predicate? holds for the predicate P , it is said that P is a
semantic predicate. For the Gödelization, it is necessary to define a bijective func-
tion from each PVS0 expression that works with naturals (thus, the non-interpreted
type for PVS0 expressions would be the type of natural numbers) and a bijective
function from lists of naturals to naturals. The bijection from expressions to natu-
rals (κe) is built over a bijection from pairs of naturals to naturals κ2 (tuple2nat
W) as below.

κ2(m,n) :=
(m+ n+ 1)(m+ n)

2
+ n

κe(len)(e) := CASES e OF
vr : 0;

cnst(v) : v × 5 + 1;
rec(j, e1) : (j + κe(len)(e1)× (len+ 1))× 5 + 2;
op1(j, e1) : κ2(j, κe(len)(e1))× 5 + 3;

op2(j, e1, e2) : κ2(j, κ2(κe(len)(e1), κe(len)(e2)))× 5 + 4;
ite(e1, e2, e3) : κ2(κe(len)(e1), κ2(κe(len)(e2), κe(len)(e3)))× 5 + 5;

In the function κe above (PVS02nat limit W), for all subexpression rec(i, e′)
of the argument expression e, and i is less or equal than len (the length of the
kernel). The reason for this is that the goal is to Gödelize partial recursive

programs, and that each index in the rec subexpression in an expression in the
kernel of the programs must be valid, i. e., be limited by the length of the kernel.

A bijection from lists of naturals to naturals called α was implemented as
below.

rdc(l) := reverse(cdr(reverse(l)))

αaux(l) := IF |l| = 1 THEN l(0);
ELSE κ2(αaux(rdc(l)), l(|l| − 1))

α(l) := IF |l| = 0 THEN 0;
ELSE κ2(|l| − 1, αaux(l)) + 1

Above, l is a list of naturals, reverse reverses lists and rdc deletes the last
element of a non-empty list. Notice that α (listnat2nat W), through applications
of αaux (cons2nat W), transforms recursively the prefix of the input list without
the last element into a natural and applies the bijection κ2 to this natural and
the last element of the list. In the Gödelization, the function αaux receives a non-
empty list of naturals, each representing an expression in a list of PVS0 expressions.
This construction structure becomes similar to the ones previously used and ease
the proof of the Recursion Theorem. In particular, it will be helpful when α is
used in inductive proofs in which PVS0 programs are built, adding to the kernel
a constant that represents a number associated with the Gödelization of a list of
expressions.

Using α, a bijection, from the class of partial recursive functions to naturals,
is given as below.

κp(pvs0 ) := α(map(κe(|pvs0
′4| − 1))(pvs0

′4))− 1

The function κp (p recursive2nat W) Gödelizes the partial recursive PVS0

programs.

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/numbers/tuple2nat.pvs#L4
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L57-L67
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L88-L91
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L82-L86
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_Recursion_Theorem.pvs#L19
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To prove bijectivity of κp, it was necessary to build the inverses of κ2, κe, αaux

(and α) given respectively as κ−1
2 (nat2tupleW), κ−1

e , α−1
aux and α−1 (respectively,

nat2PVS0 limit W, nat2listnat aux W and nat2listnat W). But bijectivity
is only required for the Fixed-Point Theorem. The formalizations of Rice’s and
Recursion theorems as well as undecidability of the Halting Problem use also κp,
but they do not use its bijectivity; any Gödelization function can be used. These
inverses were specified as below.

κ−1
2 (i) := IF i = 0 THEN (0, 0)

ELSIF κ−1
2 (i− 1)′1 = 0 THEN (κ−1

2 (i− 1)′2 + 1, 0);

ELSE (κ−1
2 (i− 1)′1− 1, κ−1

2 (i− 1)′2 + 1)

α−1
aux(len, n) := IF len = 0 THEN [n];

ELSE α−1
aux(len− 1, κ−1

2 (n)′1) :: [κ−1
2 (n)′2]

α−1(n) := IF n = 0 THEN [];

ELSE α−1
aux(κ−1

2 (n− 1)′1, κ−1
2 (n− 1)′2)

κ−1
e (len)(n) :=

IF n = 0 THEN vr

ELSIF (n− 1)|5 THEN cnst(
n− 1

5
)

ELSIF (n− 2)|5 THEN rec(
n− 2

5
%(len+ 1), κ−1

e (len)(b n− 2

5× (len+ 1)
c))

ELSIF (n− 3)|5 THEN op1(κ2
−1(

n− 3

5
)′1, κ−1

e (len)(κ2
−1(

n− 3

5
)′2))

ELSIF (n− 4)|5 THEN op2(κ2
−1(

n− 4

5
)′1,

κ−1
e (len)(κ2

−1(κ2
−1(

n− 4

5
)′2))′1,

κ−1
e (len)(κ2

−1(κ2
−1(

n− 4

5
)′2)′2))

ELSE ite(κ−1
e (len)(κ2

−1(
n− 5

5
)′1),

κ−1
e (len)(κ2

−1(κ2
−1(

n− 5

5
)′2))′1,

κ−1
e (len)(κ2

−1(κ2
−1(

n− 5

5
)′2)′2))

In the function α−1
aux, len is a natural that defines the length (len−1) of the list

of naturals. In the function κ−1
e , the argument len is the length of the indices of

the rec expressions, a%b denotes the remainder of a divided by b, a|b the predicate
a divides b and bac the floor of a.

The function κ−1
e (nat2PVS0 limit W) uses subtype predicates that is an in-

teresting feature of PVS used in the specification of recursive function. The type
of the image of the function κ−1

e is specified as the type of PVS0 expressions whose
recursive subexpressions have indices less than or equal to len. PVS generates a
Type Correctness Condition (TCC) that is a proof obligation stating that this
is indeed the type of outputs computed by the specified function. Having this
property as a proved TCC simplifies further formalizations of properties of κ−1

e

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/numbers/tuple2nat.pvs#L16-L21
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L37-L55
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L93-L97
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L99-L102
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L37-L55
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because typing conditions of the outputs of κ−1
e guarantee Gödelizations of PVS0

expressions that have recursive calls with valid indices.
The inverse of κp is specified as below.

κ−1
p (n) := (O1, O2,⊥,map(κ−1

e (|α−1(n+ 1)| − 1))(α−1(n+ 1)))

These functions are formalized to be right/left inverses according to Lemma 3.

Lemma 3 (κe and αaux Inversibility - PVS02nat nat2PVS0 limit

W, nat2PVS0 PVS02nat limit W, nat2listnat aux cons2nat W and
cons2nat nat2listnat aux W)

Left and right inversivility of the operators κe and αaux is formalized as:

1. ∀n, len : κe(len)(κ−1
e (len)(n)) = n and ∀e, len : κ−1

e (len)(κe(len)(e)) = e
2. ∀l : α−1

aux(|l| − 1, αaux(l)) = l and ∀ len, n : αaux(α−1
aux(len, n)) = n

4 Turing Completeness of the Model

In order to achieve a Turing complete model, a class of partial recursive functions
is specified in which the built-in operators include the functions successor, projec-
tions, greater-than and the function κ2. Projections are built using the inverse of
the function κ2 .

The successor and greater-than functions, as well as projections of the elements
of the tuple given by a natural, are given below.

succ(n) := n+ 1
greater(m,n) := IF m > n THEN 1 ELSE 0

π1(n) := ((λ(m,n : N) : m) ◦ κ−1
2 )(n)

π2(n) := ((λ(m,n : N) : n) ◦ κ−1
2 )(n)

The fixed built in operators are: O1 := [succ, π1, π2] and O2 := [greater, κ2],
and ⊥ is interpreted as 0 ∈ N.

For brevity we will use the predicate below (that does not belong to the spec-
ification) for the class of PVS0 programs having O1,O2 and 0 as parameters.

partial recursiveTC (pvs0 ) := pvs0
′1 = O1 ∧ pvs0

′2 = O2 ∧
pvs0

′3 = 0 ∧ valid index(pvs0
′4)

Also, for brevity, any PVS0 program pvs0 that belongs to the above predicate
is said to be of type partial recursiveTC . This type is obtained as a parame-
terization of the type partial recursive. In the specification, to define the type
partial recursiveTC it is enough to pass the above parameters to the theory
mf pvs0 computable. W In order to show Turing completeness of the class of PVS0
programs of such type, it is only necessary to prove that there are implementations
of the constant, successor, and projection functions and that the class is closed un-
der composition, minimization and primitive recurrence. The most difficult cases
in this formalization are those related to the implementation of projection and to
the class’s closedness under composition, minimization, and primitive recurrence.

The n-tuples in PVS are specified as lists of naturals, but encoded as a unique
natural.

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L78-L80
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L74-L76
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L108-L110
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L112-L114
https://github.com/nasa/pvslib/blob/ffc2dbf165803485e0014522ca622323d7fd2bc7/PVS0/mf_pvs0_computable.pvs#L11
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The function nat2list below, transforms uniquely a natural m into a list of
naturals of length n.

nat2list(n,m) :=
IF n = 0 THEN [];
ELSIF n = 1 THEN [m];

ELSE [κ−1
2 (m)′1] :: nat2list(n− 1, κ−1

2 (m)′2);

The following abbreviations are used:

succS(e) := op1(0, e); πS
1 (e) := op1(1, e); πS

2 (e) := op1(2, e);

greaterS(e1, e2) := op2(0, e1, e2);

κS2 (e1, e2) := op2(1, e1, e2).

Since built-in operators and zero (to interpret ⊥) are fixed for any PVS0 pro-
gram pvs0 of type partial recursiveTC , the focus would be on the program
itself, i.e., on pvs0

′4.
The PVS0 partial recursiveTC program equal, specified below, verifies if the

pair of naturals encoded as a unique natural are equal.

LET i = πS
1 (vr), j = πS

2 (vr) IN

equal′4 :=

[ite(greaterS(i, j),
cnst(0),

ite(greaterS(j, i), cnst(0), cnst(1)))]

Some technical PVS0 partial recursiveTC programs were specified to deal
with projections of naturals’ tuples encoded as naturals.

The PVS0 partial recursiveTC program proj aux, specified below, receives
as input a natural that codifies a quadruple of naturals (i, j, k, l), and outputs the
(j− i)-t projection of l. Case k = j the input is seen as a (j− i)tuple, otherwise, it
is sees as a tuple of length greater than (j − i). In this specification, the function
k4 is used to encode a quadruple of naturals as a natural used in the recursive
calls, allowing in this manner the increment of the first element of the quadruple
(i, succS(i), . . .) and advancing by the second projection of the fourth element
(l, πS

2 (l), . . .).

LET i = πS
1 (vr), j = πS

1 (πS
2 (vr)), k = πS

1 (πS
2 (πS

2 (vr))),

l = πS
2 (πS

2 (πS
2 (vr))), k4(x, y, z, w) = κS2 (x, κS2 (y, κS2 (z, w)))IN

proj aux′4 :=
[ite(greater(j, i),

rec(0, k4(succS(i), j, k, πS
2 (l))),

ite(rec(1, κS2 (j, k)), l, πS
1 (l)))] :: map( +1)(equal′4)

The PVS0 partial recursiveTC program proj uses proj aux to receive as
input a natural that codifies a triple of naturals (i, j, k), and outputs the i-th
projection of k (seen k as a j + 1 tuple).

LET i = πS
1 (vr), j = πS

1 (πS
2 (vr)), k = πS

2 (πS
2 (vr)),

k4(x, y, z, w) = κS2 (x, κS2 (y, κS2 (z, w))) IN

proj′4 :=
[rec(1, k4(cnst(0), i, j, k))] :: map( +1)(proj aux′4)
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The correctness of the PVS0 partial recursiveTC program for projection,
proj, is formalized as Lemma 4. The lemma shows that proj projects correctly the
i-th element of any tuple encoded as the natural m (seen as an n+ 1 tuple).

Lemma 4 (Correctness of Projection - proj correctness W)

∀(i,m) : ∀(n | i ≤ n) : γ(proj)(κ2(i, κ2(n,m)),nat2list(n+ 1,m)(i))

The analysis of composition requires the functions exprComp and chainOffset
below. In these functions, l is a non-empty list of say m list of expressions that are
the kernel of PVS0 programs. The idea is to simulate the composition of an m-ary
function with m functions. As can be observed in Section 2, the composition of two
PVS0 programs of the same class of partial recursive functions is straightforward.
Nevertheless, to show Turing completeness, the composition must be specified
between a PVS0 program and an m-tuple of PVS0 programs. To specify an n-tuple
of an arbitrary length, non-empty lists are used.

exprComp(n, l) :=
IF |l| = 1 THEN rec(n, vr);

ELSE κS2 (rec(n, vr), exprComp(n+ |l(0)|, cdr(l)))

chainOffset(n, l) :=
IF |l| = 1 THEN map( +n)(l(0));
ELSE map( +n)(l(0)) :: chainOffset(n+ |l(0)|, cdr(l));

Let F be a PVS0 program, L a non-empty list of PVS0 programs, and l :=
map(λ(x, y, z, w) : w)(L). To specify composition, a new list of PVS0 expressions
is created, where the head of this new list is a recursive expression that calls
the expression f , and the expressions in the tail are given by l. In addition, the
function chainOffset (chain offset W) adjusts the indices of the PVS0 expressions
of F and L in the composition. When evaluating this new list of expressions, i.e.,
the new PVS0 program, the function exprComp (expr comp W) generates a PVS0

expression whose evaluation codifies a list of naturals (which are the results of the
application of the PVS0 programs in L to the input) into a natural. This natural
is then passed as an input parameter to evaluate F .

comp(F ′4, l)′4 := [rec(1, κS2 (cnst(|l|),
exprComp(1 + |F ′4|, l)))] ::

chainOffset(1, [F ′4] :: l))

Finally, the composition lemma also requires a way to represent n-tuples of
naturals (formalized as non empty list of naturals) into naturals:

list2nat(ln) :=
IF |ln| = 1 THEN ln(0);
ELSE κ2(ln(0), list2nat(cdr(ln)));

Now, it is possible to establish the correctness of composition lemma for a PVS0

kernel f and a list of kernels l as follows.

https://github.com/nasa/pvslib/blob/ffc2dbf165803485e0014522ca622323d7fd2bc7/PVS0/mf_pvs0_Turing_Completeness.pvs#L116-L118
https://github.com/nasa/pvslib/blob/ffc2dbf165803485e0014522ca622323d7fd2bc7/PVS0/mf_pvs0_Turing_Completeness.pvs#L126-L131
https://github.com/nasa/pvslib/blob/ffc2dbf165803485e0014522ca622323d7fd2bc7/PVS0/mf_pvs0_Turing_Completeness.pvs#L120-L124
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Lemma 5 (Correctness of Composition - comp is composition W)

∀(f, l | |l| > 0) : ∀(vi, vo) :
γ(comp(f, l))(vi, vo)⇔
∃(ln | |ln| = |l|) :
∀(i | i < |ln|) : γ(O1,O2, 0, l(i))(vi, ln(i)) ∧
γ(O1,O2, 0, f)(κ2(|ln|, list2nat(ln)), vo)

The formalization of correctness of composition (Lemma 5) is by induction
on the length of l. The proof requires some technical lemmas, such as show-
ing that the indices of function calls used by rec, generated by the functions
exprComp and chainOffset, are valid. This guarantees that comp generates a PVS0

partial recursiveTC program indeed.
The lemma on correctness of minimization of partial recursiveTC PVS0 pro-

grams uses the function min aux specified below. This function receives as input
the list of expressions of a PVS0 program f , and gives as output a PVS0 program
that for a given natural that encodes a pair of naturals (i, j) outputs a natural
k such that i ≤ k , and f applied to κ2(k, j) computes zero, and for all naturals
such that i ≤ m < k f applied to κ2(m, j) is defined and greater than zero. It
is necessary to pass as parameter a natural encoding a pair (m, j) because the
minimization deals with n-ary functions, being one of the arguments m, and the
remaining n− 1 arguments encoded by j.

min aux(f ′4)′4 :=
[ite(rec(1, vr),

rec(0, κS2 (succS(πS
1 (vr)), πS

2 (vr))),

πS
1 (vr))] ::

map( +1)(f ′4)

Using min aux, the (list of expressions of the) minimization of f is specified
below.

min(f ′4)′4 := [rec(1, κS2 (cnst(0), vr))] :: map( +1)(min aux(f ′4)′4)

The following lemma states that min is indeed the desired minimization.

Lemma 6 (Correctness of Minimization - min correctness W)

∀(f, j, k) :
γ(min(f ′4))(j, k)⇔
(γ(f)(κ2(k, j), 0)∧
∀(m | m < k) : ∃(vo | vo > 0) : γ(f)(κ2(m, j), vo))

To show correctness of primitive recurrence, cut-off subtraction of a pair of
naturals encoded as a unique natural is specified as:

LET i = πS
1 (vr), j = πS

2 (vr) IN
sub′4 :=

[ite(greaterS(i, j),

succS(rec(0, κS2 (i, succS(j)))),
cnst(0))]

https://github.com/nasa/pvslib/blob/ffc2dbf165803485e0014522ca622323d7fd2bc7/PVS0/mf_pvs0_Turing_Completeness.pvs#L174-L179
https://github.com/nasa/pvslib/blob/ffc2dbf165803485e0014522ca622323d7fd2bc7/PVS0/mf_pvs0_Turing_Completeness.pvs#L237-L241
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Using sub, the cut-off subtraction by 1 is specified:

sub1′4 :=

[rec(1, κS2 (vr, cnst(1)))] :: map( +1)(sub′4)

The primitive recurrence, prim recur, is given by the PVS0 program:

LET i = πS
1 (vr),

j = πS
2 (vr),

less1(x) = rec(1 + |recur′4|+ |final′4|, x),

recur fun(x, y, z) = rec(1, κS2 (x, κS2 (y, z))),
final fun(x) = rec(1 + |recur′4|, x),

recur call(x, y) = rec(0, κS2 (x, y))
IN

prim recur(recur′4, final′4)′4 :=
[ite(i,

recur fun(recur call(less1(i), j), less1(i), j),
final fun(j))] ::

map( +1)(recur′4) :: map( +1 + |recur′4|)(final) ::
map(1 + |recur′4|+ |final′4|)(sub1′4)

The function prim recur receives two kernels of partial recursiveTC pro-
grams, recur ′4 and final ′4, and returns another partial recursiveTC program
that implements primitive recurrence for functions r and f as below.

ρ(r, f)(0, j1, · · · , jm) := f(j1, · · · , jm)
ρ(r, f)(i+ 1, j1, · · · , jm) := r(ρ(r, f)(i, j1, · · · , jm), i, j1, · · · , jm)

The lemma below, states that prim recur is indeed primitive recurrence.

Lemma 7 (Primitive Recurrence Correctness - prim recur correctness

W)

∀(recur,final) : ∀(i, j, ans) :
γ(prim recur(recur′4,final′4))(κ2(i, j), ans) ⇔
∃(ln | i+ 1 = |ln|) : ans = ln(|ln| − 1)∧
γ(final)(j, ln(0))∧
∀(k | k < |ln| − 1) :
γ(recur)(κ2(ln(k), κ2(k, j)), ln(k + 1))

As correctness of composition (Lemma 5), the formalization of correctness of
minimization and primitive recursion (Lemmas 6 and 7) require additional tech-
nical elements such as the inductive predicates below that avoid expansions of the
predicate γ resulting in expansions of the evaluation predicate ε.

min relation(i, j, f, ans) :=
IF γ(f)(κ2(i, j), 0) THEN ans = i;
ELSIF ∃(k) : γ(f)(κ2(i, j), k)
THEN min relation(i+ 1, j, f, ans);
ELSE False.

https://github.com/nasa/pvslib/blob/ffc2dbf165803485e0014522ca622323d7fd2bc7/PVS0/mf_pvs0_Turing_Completeness.pvs#L281-L289
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prim recur relation(recur,final)(i, j)(ans) :=
IF i 6= 0 THEN ∃(z) :
γ(recur)(κ2(z, κ2(i− 1, j)), ans)∧
prim recur relation(recur,final)(i− 1, j)(z);

ELSE γ(final)(j, ans)).

Using these predicates, one avoids exhaustive expansions of the ε predicate and
thus the generation of existential goals that would require concrete instantiations.
In contrast, using the inductive predicates min relation and prim recur relation,
above, PVS will generate inductive schemes, in which no expansion of γ would be
required, simplifying in this manner the formalization.

The sufficiency of the correctness of minimization is formalized using the in-
ductive schema given by the predicate min relation. The necessity is formalized
using the equivalence between the evaluation function χ and the predicate ε. As
discussed in the end of Section 2, the function χ provides the measure to be applied
in inductive proofs like the one performed for formalizing the necessity. Similarly,
the sufficiency of the correctness of the primitive recurrence is formalized using
the predicate prim recur relation, while a straightforward induction on i proves
necessity.

5 The Recursion Theorem

The Recursion Theorem states that for any PVS0 list of expressions Ef there
exists a partial recursive PVS0 program such that they both can be used to build
another partial recursive program that outputs its Gödel number. This means that
there are PVS0 programs that can calculate their own Gödel numbers and process
them according to implementations provided by the programmer. Notice that the
Recursion Theorem holds for any list of expressions Ef without requiring that
valid index(Ef ) holds. In Turing complete models, it is possible to design entities
that print themselves. From this property, depending on the chosen lists of unary
and binary operators, if it is possible to create a partial recursive PVS0 program
from a list of PVS0 expressions such that its output for any evaluation is itself,
then the Rice’s Theorem holds.

The formalization uses the same basic operators for the successor, projection,
greater-than, and the bijection κ2 operators applied to formalize Turing Com-
pleteness for the PVS0 model. We dispose of constructions obtained in the proof
of Turing Completeness such as composition, minimization and primitive recur-
rence. However, in the formalization, we opt for building the required constructions
implementing PVS0 programs directly. These programs are ensembled using simul-
taneously several PVS0 programs simplifying in this manner the constructions. The
result is specified as below.

Theorem 1 (Recursion Theorem - Recursion Theorem W)

∀(Ef ) : ∃(print : partial recursive) :

LET self = (O1,O2, 0, Ef :: map( +|Ef |)(print ′4)) IN

partial recursiveTC (self ) ∧
∀(i) : ε(self )(print ′4(0)+|Ef |, i, κp(self ))

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_Recursion_Theorem.pvs#L64-L70
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Proof To build print, the same idea of programming computing viruses is followed.
A list of expressions to calculate the Gödel number of self is added to Ef . In
this manner one guarantees the desired behavior of self that is to be able to
calculate its own Gödel number, as a quine does, but also to process it accordingly
to the programmers desire. Thus, the kernel of self can be split in three parts:
Ef , a second part A, and [cnst(αaux(map(κe(|Ef :: A|))(Ef :: A)))], such that
self ′4 = Ef :: A :: [cnst(αaux(map(κe(|Ef :: A|))(Ef :: A)))]. The last expression
in the kernel of self contains a constant number associated to the Gödel number
of Ef :: A. The part A calls this last expression and uses this result to calculate
the Gödel number of self . Finally, the part Ef uses the Gödel number of self
accordingly to the programmer desire.

The function αaux was recursively specified from the back to the front to be
adapted to self ’4 (in which a natural, related to the first element, is calculated
before another natural, related to the last element, is calculated). This decision
reduces the effort necessary in the formalization since it allows avoiding the elab-
orated analysis that a recursive specification from the front to the back would
imply. In such an alternative version of self ’4 the last element should represent a
stack of naturals associated to each element in Ef :: A by the function κe. In such
a case, to calculate the Gödel number of the alternative version of self it would
be necessary to add the number associated with its last element to the bottom of
the stack.

The second part of self , A, is defined as below, where δ is the greatest index
of rec found in the list Ef , using the function printA:

A := printA(δ, |Ef |)+|Ef |

The function printA is specified below.

printA(len, len2) :=

[κS2 (cnst(1 + len+ len2 + |mult|), κS2 (rec(|mult|+ len+ 1, vr),

succS(rec(1, κS2 (cnst(5), rec(|mult|+ len+ 1, vr))))))] ::

mult+1 :: [vr]len

Above [vr]len is a list with len repetitions of vr. The list for mult is specified to
receive a natural number as input, apply the bijective function κ−1

2 to obtain a
pair of naturals and multiplying them, as below.

mult :=

[ite(πS
1 (vr),

rec(1, κS2 (πS
2 (vr), rec(0, κS2 (rec(1 + |sum|, πS

1 (vr)), πS
2 (vr))))),

cnst(0))]

:: sum+1 :: sub1′4+1+|sum|

Since in the specification of A above the arguments of printA are δ and |Ef |,
it is warranted that the indices of rec in self are always valid. Thus, self is
partial recursiveTC because the restriction on basic operator is maintained by
construction.

The list mult, used in the specification of printA, multiplies using sum that
adds pairs of naturals encoded as a unique natural by the function κ2 as below.
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sum := [ite(πS
1 (vr),

succ(rec(0, κS2 (rec(1, πS
1 (vr)), πS

2 (vr)))),

πS
2 (vr))]

:: sub1′4+1

Although sum and mult are simple, their codifications as PVS0 programs require
also verifying their correctness. This is achieved proving that these functions are
functionally equivalent to the PVS functions specified as below.

sumf (x, y) = IF x 6= 0 THEN 1 + sumf (x− 1, y) ELSE y

multf (x, y) = IF x 6= 0 THEN y +multf (x− 1, y) ELSE 0

Formalizing correctness ofmult and sum directly is possible, but hard-to-follow
because the semantic evaluation generates a large chain of existential quantifiers.
Thus, the equivalence between the PVS0 specificed code and their associated PVS
functions was formalized equivalent as a simple alternative. Also, the correctness
of the associated PVS functions was showed. Thus, the correctness of mult and
sum are given as corollaries.

The correctness of printA is given as next lemma.

Lemma 8 (Correctness of printA - print correctness W)

∀(i, len, len2, h) :
γ(O1,O2, 0, printA(len, len2) :: [cnst(h)])

(i, κ2(1 + len+ len2 + |mult|, κ2(h, 5× h+ 1)))

To use this lemma, len, len2 and h are instantiated respectively as δ, |Ef |
and αaux(map(κe(|Ef :: A|))(Ef :: A)), where self ′4 := Ef :: A :: [cnst(h)]. This
gives:

∀(i) :
γ(O1,O2, 0, printA(δ, |Ef |) :: [cnst(h)])

(i, κ2(|self ′4| − 1, κ2(h, κe(|self ′4| − 1)(cnst(h)))))

because,
1 + δ + |Ef |+ |mult| = |self ′4| − 1

5× h+ 1 = κe(|self ′4| − 1)(cnst(h))

The expression κ2(h, κe(|self ′4| − 1)(cnst(h))) can be replaced by
αaux(map(κe(|self ′4|−1))(self ′4)) because expanding the definition of map, αaux,
and self , one has:

αaux(map(κe(|self ′4| − 1))(self ′4)) =
αaux(map(κe(|self ′4| − 1))(Ef :: A :: [cnst(h)])) =
αaux(map(κe(|self ′4| − 1))(Ef :: A) :: κe(|self ′4| − 1)(cnst(h))) =
κ2(αaux(map(κe(|self ′4| − 1))(Ef :: A)), κe(|self ′4| − 1)(cnst(h))) =
κ2(h, κe(|self ′4| − 1)(cnst(h)))

The result of this replacement is:

∀(i) :
γ(O1,O2, 0, printA(δ, |Ef |) :: [cnst(h)])

(i, κ2(|self ′4| − 1, αaux(map(κe(|self ′4| − 1))(self ′4))))

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_Recursion_Theorem.pvs#L52-L54
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Then, αaux(map(κe(|self ′4|−1))(self ′4))) can be replaced by κp(self ) because
by definition of κp and α the equalities below hold.

κp(self ) =
α(map(κe(|self ′4| − 1))(self ′4))− 1 =
κ2(|self ′4| − 1, αaux(map(κe(|self ′4| − 1))(self ′4)))

Thus, it can be concluded that:

∀(i) :
γ(O1,O1, 0, printA(δ, |Ef |) :: [cnst(h)])(i, κp(self ))

And finally, by application of the shift code lemmas (Lemmas 1 and 2), ex-
panding γ and adding Ef in front of printA(δ, |Ef |) :: [cnst(h)], one concludes the
proof of the theorem. �

As discussed before Theorem 1, instead of using composition, minimization and
primitive recurrence operators implemented for the proof of Turing Completeness
in Section 4, the formalization approach is based on the direct implementation of
PVS0 programs. This decision allows the analysis of computational properties di-
rectly over the PVS0 model, avoiding using the theory of partial recursive functions.
Of course, the composition, minimization and primitive recurrence operators may
be applied for constructing PVS0 programs such as sum, mult and others (used
in the formalization of Recursion Theorem in Section 5). Notice that this kind
of construction turns difficult to understand the semantics of the programs. For
instance, an alternative implementation of the program sum given in Section 5,
can be done using composition and primitive recurrence as below.

sum := prim recur(comp([succ(vr)], [[comp(proj′4, κS2 (0, κS2 (2, vr)))′4]])′4,

comp(proj′4, [[κS2 (0, κS2 (0, vr))]])′4)

The construction of the specialized Gödelization functions required to build
self is the most difficult part of this formalization. One challenge in the imple-
mentation of κp was to build it in such a manner that it facilitates further steps
of the formalization. An appropriate function αaux was enough to reach this aim.
Specifically for the Recursion Theorem, it is not required κp to be bijective. How-
ever, it was done in this way (in the file mf pvs0 Computable of the theory, see
Figure 1) in order to make it useful for the formalization of other theorems such
as the Fixed-Point Theorem. Ensuring that κp is bijective was technically difficult
since it requires that all necessary auxiliary functions were also bijective. For some
auxiliary components, the formalization was straightforward. However, for other
ones, PVS infers some types such that the application of some lemmas about lists
(of PVS0 expressions, i.e., kernel of PVS0 programs, and naturals) do not work.
Such types came to arise when specific kernels of PVS0 programs were considered,
such as those that included only valid recursive call indices. An example of such
properties on lists is |A :: B| = |A|+ |B|. There is an appropriate lemma for this
property, but considering the types of A,B and A :: B the same. Nevertheless, if
the types of A and B are a subtype of A :: B bein all them inputs of the function
length (| | : [T → nat]), the lemma needs to be specialized and proved separately.
The general, non-provided in PVS, solution is to prove that if S is a subtype of
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T , and A : S, then |A|[T ] = |A|[S]. Several similar type inference problems were
solved when formalizing the Recursion Theorem (in theories that for simplicity
are not included in Figure 1).

6 Rice’s Theorem

The formalization of Rice’s Theorem is a corollary of the Recursion Theorem. It is
proved that if using the basic built-in operators, the Recursion Theorem holds then
Rice’s Theorem for this theory also holds. Notice, that the basic operators used
in theory mf pvs0 Recursion Theorem to guarantee this theorem, and those used
in theory mf pvs0 Turing Completeness to ensure Turing Completeness are the
same. The formalization in this section proves that for all Göedelizations that the
Recursion Theorem holds then also Rice’s Theorem holds. Similarly to standard
demonstrations of the undecidability of the Halting Problem and the uncountabil-
ity of real numbers, the formalization is based on a Cantor’s diagonal argument.
An alternative formalization approach is based on the construction of a univer-
sal program for the PVS0 model. Still, it would increase the complexity of the
formalization. Using such proof strategy, the formalization would require the con-
struction of an elaborated reduction of the Halting Problem to the problem of
separability of semantic properties of PVS0 programs. Thus, the current formaliza-
tion does not use (undecidability of) the Halting Problem and depends only on
the above-mentioned Theorem 1.

6.1 Formalization of Rice’s Theorem

Rice’s theorem states that any semantic predicate can be decided if and only if it
is the set of all PVS0 programs or the empty set, and is specified as below.

Theorem 2 (Rice’s Theorem - Rice theorem for Turing complete pvs0 W)

∀(P : is semantic predicate?(P )) :∃(decider : computable) :
∀(pvs0 : partial recursive) :

(¬γ(decider)(κp(pvs0 ), 0))⇔ P (pvs0 )

 ⇔ (P = fullset ∨ P = ∅)

Proof Necessity: Suppose that P = fullset . Let > be an element different from 0.
The PVS0 program decider = (O1,O2, 0, [cnst(>)]), decides fullset . Now, suppose
that P = ∅. The PVS0 program decider = (O1,O2, 0, [cnst(0)]) decides ∅.
Sufficiency: by contraposition, let assume that (P 6= fullset∧P 6= ∅). This implies
that there exist PVS0 programs, say p and np, such that P (p) and ¬P (np). For
reaching a contradiction, suppose that there exists decider : computable such that:

∀(pvs0 : partial recursive) : ¬γ(decider)(κp(pvs0 ), 0)⇔ P (pvs0 )

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_Rices_Theorem.pvs#L49-L53
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And, consider the program opp with kernel:

opp = [ite(rec(1, rec(1 + |decider ′4|+ |np′4|+ |p′4|, vr)),
rec(1 + |decider ′4|, vr),
rec(1 + |decider ′4|+ |np′4|, vr))] ::
map( +1)(decider ′4) ::
map( +1 + |decider ′4|)(np′4) ::
map( +1 + |decider ′4|+ |np′4|)(p′4)

Using the theorem 1 that there are programs in the model that can print their
own Gödel number, making Ef = opp:

∃(print : partial recursive) :

LET self = (O1,O2, 0, opp :: map( +|opp|)(print′4)) IN

partial recursive?(self ) ∧
∀(i) : ε(self )(print′4(0)+|opp|, i, κp(self ))

To understand how opp and self work, suppose that for each PVS0 program
partial recursive there is a function with the same name that executes the
same as these. For example, for the PVS0 program denoted as “decider”, there
is the corresponding function from naturals to naturals, also represented as “de-
cider”. The same happens to the p and np PVS0 programs. The idea of the proof
is to show a PVS0 program self that performs the same as the function:

self (n) := IF decider(κp(self )) 6= 0 THEN np(n); ELSE p(n);

The proof uses Cantor’s diagonal argument. If decider(κp(self )) 6= 0, then
P (self ), but self behaves as np and thus ¬P (self ) holds, which is a contradiction.
Otherwise, if decider(κp(self )) = 0, then ¬P (self ), but self behaves as p and thus
P (self ) that is a contradiction too. This is the main idea behind the rest of the
explanation of the formalization.

The theorem above 1 implies that there exists an element of the partial recur-
sive class, say print, such that:

LET self = (O1,O2, 0, opp :: map( +|opp|)(print′4) IN

partial recursive?(self ) ∧
∀(i) : ε(self )(print′4(0)+|opp|, i, κp(self ))

Making pvs0 = self it can be concluded that

¬γ(decider)(κp(self ), 0)⇔ P (self )

The proof splits into two sub-cases.
Sub-case 1: P (self ). In this case, ¬γ(decider)(κp(self ), 0) is concluded.

Since P is a semantic predicate, one has:

∀(pvs0 1, pvs0 2) :

(∀(i, o) : γ(pvs0 1)(i, o)⇔ γ(pvs0 2)(i, o))⇒
(P (pvs0 1)⇔ P (pvs0 2))

Thus, choosing pvs0 1 as self and pvs0 2 as np, it gives:
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(∀(i, o) : γ(self )(i, o)⇔ γ(np)(i, o))⇒ (P (self )⇔ P (np))

Assuming ∀(i, o) : γ(self )(i, o) ⇔ γ(np)(i, o), by P (self ), P (np) also holds,
which is a contradiction since ¬P (np).

Consequently, ¬∀(i, o) : γ(self )(i, o)⇔ γ(np)(i, o) should hold.

But this is not possible because self performs the same as np as shown below.

Starting by γ(self )(i, o) and expanding γ, and from ε(self )(self ′4(0), i, o) re-
placing self by its definition, one obtains:

ε(self )(opp :: map( +|opp|)(print‘4)(0), i, o)

That by properties of lists and definition of opp gives ε(self )(opp(0), i, o), and
then:

ε(self )(ite(rec(1, rec(1 + |decider ′4|+ |np′4|+ |p′4|, vr)),
rec(1 + |decider ′4|, vr),
rec(1 + |decider ′4|+ |np′4|, vr), i, o)

Then, by the definition of ε and operational semantics of ite, one has:

∃ (v′) :
ε(self )(rec(1,

rec(1 + |decider ′4|+ |np′4|+ |p′4|, vr)),
i,
v′) ∧

IF v′ 6= ⊥ THEN ε(self )(rec(1 + |decider ′4|, vr), i, o)
ELSE ε(self )(rec(1 + |decider ′4|+ |np′4|, vr), i, o)

Further, by adequate expansions of predicate ε and application of equali-
ties self ′4(1) = decider ′4(0)+1, and self ′4(1 + |decider ′4| + |np′4| + |p′4|) =
print′4(0)+|opp|, one has:

∃ (v′) : ∃ (v′′) : ∃ (v′′′) : i = v′′′ ∧
ε(self )(print′4(0)+|opp|, v′′′, v′′) ∧
ε(self )(decider ′4(0)+1, v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self )(rec(1 + |decider ′4|, vr), i, o)
ELSE ε(self )(rec(1 + |decider ′4|+ |np′4|, vr), i, o)

And then, by Skolemization of the existentially quantified variables one has:

i = v′′′ ∧
ε(self )(print′4(0)+|opp|, v′′′, v′′) ∧
ε(self )(decider ′4(0)+1, v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self )(rec(1 + |decider ′4|, vr), i, o);
ELSE ε(self )(rec(1 + |decider ′4|+ |np′4|, vr), i, o);

By the second part of the aforementioned theorem 1, i.e., ∀(i) :
ε(self )(print′4(0)+|opp|, i, κp(self )), and instantiating i = v′′′ one obtains:
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ε(self )(print′4(0)+|opp|, v′′′, κp(self )) ∧
ε(self )(print′4(0)+|opp|, v′′′, v′′) ∧
ε(self )(decider ′4(0)+1, v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self )(rec(1 + |decider ′4|, vr), i, o)
ELSE ε(self )(rec(1 + |decider ′4|+ |np′4|, vr), i, o)

Since the relation ε (is formalized to be) functional, one has that v′′ = κp(self ).
Thus,

ε(self )(decider ′4(0)+1, κp(self ), v′)∧
IF v′ 6= ⊥ THEN ε(self )(rec(1 + |decider ′4|, vr), i, o)
ELSE ε(self )(rec(1 + |decider ′4|+ |np′4|, vr), i, o)

By using the shift code lemma (Lemma 1),

ε(self )(decider ′4(0)+1, κp(self ), v′)⇔
ε(decider)(decider ′4(0), κp(self ), v′)

Thus one obtains,

ε(decider)(decider ′4(0), κp(self ), v′) ∧
IF v′ 6= ⊥ THEN ε(self )(rec(1 + |decider ′4|, vr), i, o)
ELSE ε(self )(rec(1 + |decider ′4|+ |np′4|, vr), i, o)

By the hypothesis of this case, one has ¬γ(decider)(κp(self ), 0) that means
that v′ 6= 0. Thus,

ε(self )(rec(1 + |decider ′4|, vr), i, o)

By adequate expansions of predicate ε, Skolemization of the obtained existen-
tially quantified variable as v′1 and replacing the necessary variables, one obtains:

ε(self )(np′4(0), i, o)

Applying the shift code lemma (Lemma 2):

ε(np)(np′4(0), i, o)

which is equivalent to γ(np)(i, o). Thus one has that ¬∀(i, o) : γ(self )(i, o) ⇔
γ(np)(i, o) does not hold, which is a contradiction.

Sub-case 2: ¬P (self ). It follows analogously to sub-case 1, except for the sup-
position that P is a semantic predicate where pvs0 1 and pvs0 2 are instantiated
respectively as self and p, which leads to a contradiction.
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6.2 Applications of Rice’s Theorem

The generality of Rice’s Theorem allows simple formalizations of significant un-
decidability results in computability theory. In particular, since our proof does
not depend on the undecidability of the Halting Problem, we obtain it as a direct
consequence.

Corollary 1 (Undecidability of the Uniform Halting Problem -
uniform halting problem undecidability Turing complete W )

¬∃(decider : computable) :
∀(pvs0 : partial recursive) :

(¬γ(decider)(κp(pvs0 ), 0)⇔ Tε(pvs0 ))

Proof The formalization uses Rice’s Theorem instantiating the semantic predi-
cate as Tε. The predicate Tε is a semantic predicate because if two PVS0 pro-
grams perform the same, both are either terminating or not. Since the set Tε
is neither equal to the empty set nor the whole set partial recursive, there
exists no computable decider for this set. To prove this, it is shown that the
partial recursive constant program (O1,O2, 0, [cnst(0)]) belongs to Tε, while a
simple loop partial recursive program specified as (O1,O2, 0, [rec(0, vr)]) does
not.

For the loop above, notice that the input of the recursive call does not change.
Therefore, the execution of the program will repeat the recursive call infinitely.

The PVS theory complementing this paper includes both the formalization of
the corollary above and a direct formalization of the undecidability of the (Specific)
Halting Problem for the multiple-function PVS0 model in the spirit of [7].

Corollary 2 (Undecidability of Existence of Fixed Points -
fixed point existence undecidability Turing complete W)

¬∃(decider : computable) :
∀(pvs0 : partial recursive) :

(¬γ(decider)(κp(pvs0 ), 0)⇔ ∃(p) : γ(pvs0 )(p, p))

Proof The formalization instantiates Rice’s Theorem using the semantic predicate

λ(pvs0 : partial recursive) : ∃(p) : γ(pvs0 )(p, p)

It is a semantic predicate because if two PVS0 programs perform the same either
both contain a fixed point or neither do. The predicate is then shown to be different
from the empty set and from the whole set partial recursive. Indeed, on one
side, the predicate holds for the program (O1,O2, 0, [cnst(0)]), showing that it
is different from empty set. On the other side, it does not hold for the program
(O1,O2, 0, [op2(i, vr, cnst(1))]) that performs the same as λ(n : N) : κ2(n, 1),
concluding that the predicate is not equal to partial recursive.

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_Rices_Theorem_Corollaries.pvs#L23-L25
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_Rices_Theorem_Corollaries.pvs#L27-L30
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Corollary 3 (Undecidability of Self Replication - self replication

undecidability Turing complete W)

¬∃(decider : computable) :
∀(pvs0 : partial recursive) :

(¬γ(decider)(κp(pvs0 ), 0)⇔
∃(p : partial recursive) :
∀(i) : γ(p)(vi, κp(p)) ∧ γ(pvs0 )(vi, κp(p)))

Proof To formalize it, it is necessary to instantiate the predicate in the Rice’s
theorem as

λ(pvs0 : partial recursive) :
∃(p : partial recursive) :
∀(i) : γ(p)(i, κp(p)) ∧ γ(pvs0 )(i, κp(p))

The predicate above is a semantic predicate because if two PVS0 programs
perform the same, either both return a Gödel number of a program that self-
replicates or neither do.

The next step is showing that the predicate is neither the empty set nor the
full partial recursive set. Using the assumption of the Recursion Theorem and
instantiating it with [rec(1, vr)], one shows that the predicate is not empty. On the
other side, the program (O1,O2, 0, [op2(i, cnst(1), vr)]) shows that the predicate
is not the whole partial recursive set.

Corollary 4 (Undecidability of Functional Equivalence - pvs0 program

equivalence undecidability Turing complete W)

¬∃(decider : computable) :
∀(pvs0 0, pvs0 1 : partial recursive) :

(¬γ(decider)(κ2(κp(pvs0 0), κp(pvs0 1)), 0)⇔
( ∀(vi, vo) : γ(pvs0 0)(vi, vo)⇔ γ(pvs0 1)(vi, vo) ) )

Proof Suppose that there exists a computable program decider that decides the
above equivalence between PVS0 partial recursive programs. Then, instantiate
pvs0 0 above as the constant zero program, (O1,O2, 0, [cnst(0)]) simplifying in
this manner the problem to decide whether a program performs the same as the
constant zero program. The next step is instantiating Rice’s Theorem (Theorem
2) with the predicate below.

λ(pvs0 : partial recursive) :
∀(vi, vo) :

γ(O1,O2, 0, [cnst(0)])(vi, vo)⇔ γ(pvs0 )(vi, vo)

Indeed, the predicate above is a semantic predicate because either two PVS0

programs always return zero or not.
To prove that the predicate neither is the empty nor the full

partial recursive set, it is enough to show that the constant zero and
one programs respectively belongs and does not to the predicate. After that,
one uses the assumed program decider to build another program for decid-
ing the equivalence to the constant zero program; this program is built as
(O1,O2, 0, [rec(1, op2(i, κp(O1,O2, 0, [cnst(0)]), vr))] :: decider ‘4), where i is the

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_Rices_Theorem_Corollaries.pvs#L32-L36
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_Rices_Theorem_Corollaries.pvs#L38-L41


Title Suppressed Due to Excessive Length 29

index of the κ2 function. Indeed, by using the shifting code lemmas, this program
can be adapted to decide the equivalence with the constant zero program.

This formalization requires also proving that the program built above is, in fact,
computable. This is a consequence of decider being assumed as a computable pro-
gram and then being terminating too. The proof concludes by applying the shifting
code lemmas and by showing that the program built above is also terminating.

7 Other Formalized Results and Related Work

7.1 Other Formalized Results

As mentioned in the introduction, the development includes proofs of other results,
such as the Undecidability of the Halting Problem. This theorem was formalized
following the classical diagonalization method. The formalization starts supposing
that there exists a partial recursive PVS0 program, called oracle, that decides if
another partial recursive PVS0 program halts for a given input. This assumption
will give rise to a contradiction. The input given to the program oracle is a natural
that encodes a pair consisting of a PVS0 program and a natural. The encoding
assumes an arbitrary Gödelization to transform the PVS0 program into a natural
and the bijection from pairs of naturals to naturals to obtain the natural codifying
the pair. The contradiction comes building a partial recursive PVS0 program, called
liar, such that if oracle returns true for the input pair κ2(n, n), liar executes an
infinite loop; otherwise, it returns the encoded pair. Running liar having the Gödel
number of liar as the input, if oracle returns that liar halts, then it does not halt,
but if oracle returns that it does not halt, then it halts.

Note that above it was only necessary to assume an arbitrary Gödelization; in-
deed, the contradiction to conclude the Halting Problem’s undecidability depends
only on using the Gödel number attributed to the liar program. This assumption
contrasts with the specific Gödelization κp (Section 3) applied in the formalization
of Recursion and Rice’s Theorems. The construction of such a κp was necessary
since in the formalization of the Recursion theorem one needs to implement com-
putations of the Gödelization using PVS0 programs. Besides that, Rice’s Theorem,
as a consequence of the Recursion Theorem, also needs the same PVS0 implemen-
tations.

If the implementation of a specific Gödelization (using a PVS0 program) is
required, then supply specific built-in operators is necessary. In contrast, if one
needs assuming an arbitrary Gödelization only, then there is not required to pro-
vide built-in operators. Here, it is necessary to stress that the class of PVS0 pro-
grams with an empty set of built-in operators does not allow the implementation
of a Gödelization. Also, for this class of PVS0 programs, the Halting Problem is
decidable, but not using the same class of PVS0 programs for the oracles. Thus,
a relevant observation about the Halting Problem happens if the sets of built-in
operators are empty. In this case, the evaluation of op1 and op2 always will result
in ⊥, non terminating PVS0 programs still exist, and as a consequence of our for-
malization of this theorem, the Halting Problem for this class of PVS0 programs
(with themselves) is also undecidable.

The undecidability of the Halting Problem for the multiple-function PVS0

model is specified as the theorem below.
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Theorem 3 (Undecidability of the Halting Problem for PVS0 - mf pvs0

halting problem undecidability W) For all O1, O2, ⊥, and κp, there is no
program oracle of type computable such that for all pvs0 = (O1, O2,⊥, Ef ) of type
partial recursiveand for all n ∈ N,

Tε(pvs0 , n) if and only if ¬γ(oracle)(κ2(κp(pvs0 ), n),⊥).

This specification states the non-existence of an oracle, such that it does not
return ⊥ (i.e., it returns true) for an encoded PVS0 program pvs0 , together with
an arbitrary input natural n if and only if pvs0 halts for n. That means that no
PVS0 program can decide if any pvs0 halts for an input n.

Another exciting result formalized in this development is The Fixed-Point The-
orem. It states that for any program f that transforms a program into another
one, there exists p such that f(p) performs the same as p. In the case of partial
recursive PVS0 programs, the program f receives the Gödel number of p and re-
turns another Gödel number. The PVS theory for the Fixed-Point Theorem has
as arguments basic built-in operators such that, for the formalization, it must be
possible to implement the universal partial recursive PVS0 program. Using these
operators it also must be possible to build a PVS0 program such that it receives
a natural as an argument, and split it into another two arguments, a and b. The
natural a is a Gödel number of a PVS0 program applied to the own a, resulting in
another Gödel number of another program applied to b. This last PVS0 program
is called diagonal. Thus, the formalization consists in building the PVS0 program
p in the following way: the Gödel number of p is a result of the program diagonal
applied to the Gödel number of the program f composed with diagonal. Notice
that in this formalization, transformations of Gödel numbers into programs and
programs into Gödel numbers are required. This implies that the Gödelization
function must have right and left inverses, i. e., it must be bijective.

The specification in PVS of the Fixed-Point Theorem is given below.

Theorem 4 (Fixed-Point Theorem for PVS0 - fixed point W) Assume that
it is possible to build the universal and the diagonal PVS0 programs as described
above using the built-in operators. Then, for all f of type computable, there exists
p of type partial recursive, such that for all vi, vo1 and vo2 , input and outputs,

γ(p)(vi, vo1) ∧ γ(∆(f)(p))(vi, vo2)⇒ vo1 = vo2

where, ∆ is a function that receives the Gödel number of p, applies the PVS0 pro-
gram f resulting in a natural that is transformed in another PVS0 program.

In the specification above, p and ∆(f)(p) compute the same output for a given
input. The chosen p is built as ∆(diagonal)(f ◦ diagonal), where diagonal is as
described in the previous paragraph.

7.2 Related work

Nowadays, mechanical proofs of computability properties are not only of interest
as exercises of formalization but also of great importance to provide formal support
to practical computational models. As mentioned in the introduction, the main
aim of the single- and multiple-function PVS0 models is related to the development

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_halting.pvs#L44-L46
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_Fixedpoint.pvs#L52-L56
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of automation mechanisms to verify termination of PVS programs [1]. In [7], PVS0
programs consist of a single function. Also, they are constrained in inductive levels
such that in the level zero only the basic functions successor, greater-than and pro-
jections were allowed and, in subsequent levels, other computable functions can
be specified allowing calls to functions of the previous level, as operators. Building
composition of such PVS0 programs was not straightforward, which makes the for-
malization of results such as Turing completeness and Rice’s Theorem difficult. As
seen in Section 2, the composition of programs specified in the multiple-function
PVS0 language is straightforwardly achieved by the application of the offset oper-
ator + .

For the single-function PVS0 language, the composition of two (not necessarily
terminating) programs require the construction of a third program that cannot be
specified in a general manner since this depends on the (combinatorial) structure
of the input programs. In the proof of the undecidability of the Halting Problem
in [7], this problem was easily resolved since only very particular composition
constructions (of assumed terminating functions) were necessary. Such difficulties
are solved in the current work using as a model a language which supports the
specification of programs that consist of several functions that can call not only
themselves recursively, but that can also call each other.

The equivalencies between termination criteria were formalized for the single-
function PVS0 model considered in [7]. However, such equivalences have not been
formalized for the current multiple-function PVS0 model. Theoretically, all termi-
nation criteria mentioned in the introduction (references [20], [21], [4], [28], [3])
work for both models. Still, technically, some of the termination criteria require
a re-adaptation to deal simultaneously with static analysis of multiple-function
programs that allow even mutual recursion (which, in particular, is avoided in the
PVS functional specification language).

Computability properties have been formalized since the development of the
first theorem provers and proof assistants. As well-known examples, one can men-
tion, the mechanical proof of the undecidability of the Halting Problem discussed
in [5], where the LISP language is the model of computation. A second example
is the formalization in Agda, of the same undecidability result, reported in [16],
where the used model of computation is built as axioms over the elements of an
abstract type Prog.

Here, the focus is on recent works in which computability results have been
formalized over such computational models related to lambda calculus and pro-
gramming languages. In [12], Forster and Smolka used as a model of computation
call-by-value lambda calculus, which is a Turing Complete model of computation,
where beta-reduction can be applied only to a beta-redex that is not below an
abstraction, and whose argument is an abstraction. For this model, the authors
formalized several computational properties includes Rice’s Theorem; indeed, they
formalized that semantic predicates such that there are elements both in them and
in their complements are not recognizable. This property is called Rice’s Lemma
by the authors, and it is used to conclude Rice’s Theorem. Also, Norrish formal-
ized in [22], using HOL4, Rice’s Theorem for the model of lambda calculus, among
others properties such as the existence of universal machines and an instance of
the s-m-n Theorem. Rice’s Theorem was also formalized by Carneiro in Lean [6]
using partial recursive functions as a model of computation. And, the proof uses
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the Fixed-Point Theorem to conclude Rice’s Theorem as a corollary; also, in this
work, the undecidability of the Uniform Halting Problem is obtained as a corollary.

Notice that a difference among Carneiro’s [6], Norrish’s [22], Forster and
Smolka’s [12] works and the current work is the model of computation. The re-
sources given by the lambda-calculus allow a more straightforward formalization
of Rice’s Theorem because it facilitates the implementation of operators neces-
sary for the proof, for example, a fixed-point operator. In the formalization of
Rice’s Theorem for the PVS0 model, the Recursion Theorem plays the fixed point
construction role. Besides that, lambda-calculus does not need the Gödelization
technique as required for the PVS0 model. Also, using partial recursive functions or
a concrete functional language model such as PVS0 programs allows formalizations
of properties of functional programs such as those related to their complexity and
termination criteria, the latter objective that motivated the specification of the
PVS0 language.

As previously discussed, the targetted computation model influences the selec-
tion of problems used to build reductions and the formalizations’ complexity. For
example, the formalization of the Word Problem’s undecidability over monoids
seems natural using Turing Machines as in the classical Post’s approach ([23]).
It builds a reduction from the Halting Problem (over Turing Machines to the
Word Problem). Related formalization approaches have been reported by several
authors for other word problems such as PCP (e.g., [9], [14]). Post’s approach
represents Turing Machines’ configurations as words and the action of transitions
as reductions by a semi-Thue system. Atomicity of Turing Machine transitions
allows representing each transition as a rewriting rule. Proving the Word Problem
over the PVS0 model is much more elaborated since reducing the Halting Prob-
lem of PVS0 programs to the Word Problem is not straightforward. Nonatomic-
ity of the evaluation steps of PVS0 programs makes difficult the construction of
such a reduction. For example, the different “configurations” in the evaluation of
κS2 (cnst(4), cnst(7)), using the built-in operators fixed in Section 3 would require
a representation of the constants and, the symbol κS2 as a word (over some alpha-
bet). Besides that, it requires a semi-Thue system that simulates the evaluation
of κ2, which involves evaluating other operators as addition, multiplications, and
division by two. In general, the complexity of proofs of undecidability properties
depends on the selected computational model. The unique such choice in our for-
malization refers to the reduction from the Recursion to Rice’s Theorem. Despite
the fact that there are well-known properties used in textbooks’ proofs, such as
the assumption of the existence of a universal machine or the undecidability of
the universal language (e.g., [24], [15]), to be best of our knowledge, complete
formalizations of computational properties do not follow from such constructions.
Instead, other strategies are followed, such as reductions from the Fixed-Point The-
orem in [6], the Rice’s Lemma in [12] and the Recursion Theorem in the current
work.

For the PVS0 model, the most straightforward manner to formalize the Rice’s
Theorem was as a corollary of the Recursion Theorem using as basic built-in
operators κ2, successor, the projections composed to κ−1

2 and greater-than. But
note that for a Turing complete model as PVS0, the Fixed-Point and Recursion
Theorem are equivalent being possible to prove each one from the other.

There are other exciting computability results formalized over linguistic com-
putational models. In [10], Forster, Kirsk, and Smolka formalized undecidability of
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validity, satisfiability, and provability of first-order formulas following a synthetic
approach based on the computation native to Coq’s constructive type theory. In
[11], Forster and Larchey-Wendling formalized in Coq the reduction of the Post
Correspondence Problem (PCP), via binary stack machines and Minsky machines,
to provability of intuitionistic linear logic. They started with the PCP, and built a
chain of reductions: passing through binary PCP, binary PCP with indices, binary
stack machines, Minsky machines, and finally, provability of intuitionistic linear
logic. In [18], Larchey-Wendling formalized that the type Nk → N in Coq con-
tains every k-ary recursive function which can be proved total in Coq; this set of
functions includes the class of primitive recursive functions. Trying to represent-
ing the class of partial recursive functions in Coq, for instance, using the type
Nk → option N would not work. The PVS version of the functor option is the op-
erator Maybe used to add ♦ to the working type in the definition of the function of
semantic evaluation χ (see Table 2). The attempt to use the type Nk → option N
to represent non-necessarily total functions in Coq fails because decidability of
totality will contradict the undecidability of the Halting Problem. Therefore, the
way to deal with this issue in Coq would be similar to the one used by the function
χ of semantic evaluation of PVS0 programs, i.e., representing the partial recursive
functions by a predicate of type Nk → N→ Prop.

Functional types in PVS allow specification of non-recursive functions.
For example, the PVS function non comp(n) below has type N → N.
non comp(n) := max({vo : N | γ(κ−1

e (κ−1
2 (n)′1))(κ−1

2 (n)′2, vo)} ∪ {−1}) + 1. The
function receives a natural n that represents a PVS0 program and an input (respec-
tively, κ−1

e (κ−1
2 (n)′1)) and κ−1

2 (n)′2). The function is well-defined in PVS since
maximum of finite sets is well-defined, and by the determinism of γ (see Section
2) the set {vo : N | γ(κ−1

e (κ−1
2 (n)′1))(κ−1

2 (n)′2, vo)} is either empty or unitary.
This is the reason why the built-in operators of the PVS0 model must be ade-
quately fixed. This restriction avoids having a model over a set of non-recursive
operators that will trivially be Turing Complete but also allow the specification
of non-computable functions.

Recently in [19], the Larchey-Wendling and Forest formalized the undecid-
ability of Hilbert’s Tenth Problem using a chain of reductions of problems: Halt-
ing Problem for TMs, PCP, a specialized Halting Problem for Minsky Machines,
FRACTAN (a language model that deals with register machines) termination, and
solvability of Diophantine logic and Diophantine equations.

More recently, Spies and Forster ([25]), and Kirst and Larchey-Wendling ([17])
added two interesting results to the Coq library of synthetic undecidability proofs;
namely, the formalization of the undecidability of higher-order unification, and
the undecidability of first-order satisfiability by finite models (FSAT). The former
formalizes Goldfarb’s proof of the undecidability of second-order unification by
a reduction from Hilbert’s Tenth problem [13], from which the general result for
higher-order unification is a corollary. The latter result is known as Trakhtenbrot’s
Theorem, originally proved by a reduction from the Halting Problem for Turing
machines [26]. The formalization in [17] is obtained by a reduction from PCP. It
includes a sharper version of the undecidability of FSAT for signatures that contain
either an at least binary relation symbol or a unary relation symbol together with
an at least binary function symbol.
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8 Conclusions and Future Work

The functional language PVS0 is formally studied as a model of computation. Tur-
ing completeness of PVS0 was formalized in the proof assistant PVS for a subclass
of so-called partial recursive PVS0 programs over the type of naturals and built
from basic operators for successor, projection, and greater-than functions and bi-
jective operators to encode tuples from naturals and vice versa. The proof consists
of formalizations of the correctness of PVS0 implementations of these functions and
operators for composition, primitive recurrence, and minimization.

Additionally, Rice’s Theorem is formalized in PVS for the PVS0 model. The
proof uses the Recursion Theorem and a Gödelization of PVS0 programs and fol-
lows Cantor’s diagonal argument to build a contradiction arising from the exis-
tence of a PVS0 program that can decide semantic predicates about PVS0 programs.
Applications of Rice’s Theorem include formalizations of corollaries such as unde-
cidability of the uniform Halting Problem, the functional equivalence problem, the
existence of fixed points problem, and self-replication. The development also in-
cludes formalizations of the undecidability of the Halting Problem and Fixed-Point
Theorem for PVS0.

This part of the PVS0 development added 273 proved lemmas from which 177
are Type Correctness Conditions (TCCs) that are proof obligations automatically
generated (but not necessarily proved) by PVS. The quantitative data of the files
of proofs in Figure 1, is given in Table 3. Data of other auxiliary theories that did
not require a substantial amount of work (in the totals above) are not included in
the table.

Table 3 Relevant quantitative data

PVS theory
Lines of Code (loc) Proved Proved

and Size of proof files formulas TCCs
mf pvs0 Rices Theorem 5206 loc - 594K 2 2
mf pvs0 Recursion Theorem 6754 loc - 572K 7 14
mf pvs0 Turing Completeness 17677 loc - 1,5M 27 32
mf pvs0 Fixedpoint 4712 loc - 68K 1 4
mf pvs0 Halting 1704 loc - 149K 2 3
mf pvs0 Rices Theorem Corollaries 1786 loc - 100K 5 0
mf pvs0 basic programs 4879 loc - 319K 9 10
mf pvs0 computable 6586 loc - 310K 9 50
mf pvs0 lang 2817 loc - 122K 20 13
mf pvs0 expr 3418 loc - 166K 7 47

Although the size of proofs for Turing Completeness doubles the size of proofs
of the Recursion Theorem, the former formalization is simpler; indeed, several
auxiliary proofs that are applied to formalize Turing Completeness are related to
technical and simple issues for which semantic evaluation is required (i.e., expan-
sions of the definition of the predicate ε) and simple instantiations of premises
existentially quantified. Also, some of the auxiliary theories require a substan-
tial number of lemmas; indeed, the theories mf pvs0 expr and mf pvs0 lang in-
clude several proofs related to the correctness of the operational semantics of the
multiple-function PVS0 language and, the theory mf pvs0 computable includes all
results related with Gödelizations.
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Other results of interest to be formalized for the PVS0 language model are the
s-m-n theorem, the undecidability of PCP, Post’s Theorem, the existence of a uni-
versal machine, the existence of self-replicating machines, linear speedup theorem,
tape compression theorem, time hierarchy theorem, space hierarchy theorem, etc.
The main difficulty, but also the interesting aspect of such formal developments
in PVS0, is that the classical proofs of these theorems are performed over specific
models such as lambda-calculus and Turing-machines. Even more interesting will
be the formalization of other undecidability results outside the context of proper-
ties of computational models such as the Word Problem for algebraic structures
([23]) and Hilbert’s Tenth Problem [19].

Recent examples of related developments include the formalizations in Coq of
the Post’s theorem for weak call-by-value lambda-calculus [12] and of the unde-
cidability of the PCP via reduction of the Halting Problem for Turing machines
[9]. Despite the existence of correspondences between the functional model PVS0,
lambda-calculus and Turing machines, which may be explored for the formalization
of such theorems for PVS0 programs, obvious difficulties are that these formaliza-
tions are strongly related to the respective computational model and that formally
building the required translations is not straightforward.

Current work includes the formalization of the undecidability of PCP. This
is important to deal with the undecidability of problems outside of the field of
computability such as the Word Problem over algebraic structures and, SAT (as
done in [17] for FSAT). Also, as mentioned in the section on related work, providing
translations from the multiple- to the single-function PVS0 language would be of
great interest to check termination properties of multiple-function PVS0 programs.
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URL http://repositorio.unb.br/handle/10482/18069. In Portuguese

5. Boyer, R.S., Moore, J.S.: A Mechanical Proof of the Unsolvability of the Halting Problem.
Journal of the Association for Computing Machinery 31(3), 441–458 (1984). URL https:
//doi.org/10.1145/828.1882

6. Carneiro, M.: Formalizing Computability Theory via Partial Recursive Functions. In: 10th
International Conference on Interactive Theorem Proving ITP, LIPIcs, vol. 141, pp. 12:1–
12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). URL https://doi.org/
10.4230/LIPIcs.ITP.2019.12
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