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ABSTRACT. We present the system SUBSEXPL used for simulating and comparing explicit sub-
stitutions calculi. The system allows the manipulation of expressions of the λ-calculus and of
three different styles of explicit substitutions: the λσ, the λse and the suspension calculus. A
variation of the suspension calculus, which allows for combination of steps of β-contraction
is included too. Implementations of the η-reduction are provided for each style. Other explicit
substitutions calculi can be easily incorporated into the system due to its modular structure. The
uses of the system include: the visualization of the contractions of the λ-calculus in de Bruijn
notation, and of guided one-step reductions as well as normalization via each of the associ-
ated substitution calculi. Many useful facilities are included: reductions can be easily recorded
as text files, Latex outputs can be generated and several examples for dealing with arithmetic
operations and computational operators such as conditionals and repetitions in the λ-calculus
are available. The system can be executed over Emacs using the x-symbol mode in such a way
that λ-terms and terms of the explicit substitutions calculi are represented in its natural syntax
avoiding the necessity of repeatedly generating Latex outputs. The system has been of great
help for systematically comparing explicit substitutions calculi, as well as for understanding
properties of explicit substitutions such as the Preservation of Strong Normalization. In addi-
tion, it has been used for teaching basic properties of the λ-calculus such as: computational
adequacy, the usefulness of de Bruijn’s notation and of making explicit substitutions in real
implementations.

KEYWORDS: λ-Calculus, Explicit Substitutions, Visualization of β- and η-Contraction and Nor-
malization.
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1. Introduction

In the last decade, a number of explicit substitutions calculi have been developed.
Most of these calculi have been claimed to be useful in practical fields such as in the
implementation of typed functional programming languages and of higher-order proof
assistants. We describe SUBSEXPL, a system developed in Ocaml, a language of the
ML family; the system allows for the manipulation of expressions of the λ-calculus
and of four different calculi of explicit substitutions:

1) λσ [ABA 91] which introduces two different sets of entities: one for ���
�
� �

and
one for

������
�
�
�

�
�
	�� �

.

2) λse [KAM 97] which is based on the philosophy of de Bruijn’s Auto-
math [NED 94] elaborated in the new item notation [KAM 96]. In this framework,
a term is a sequence of items, which can be an application item, an abstraction item, a
substitution item or an updating item. The advantages of building the explicit substitu-
tions calculus in this framework include remaining as close as possible to the familiar
λ-calculus (cf. [KAM 00]).

3) The suspension calculus [NAD 99], which introduces three different sets of en-
tities: ���

�
� �
, �
��������	����

�
�
�
�

and
�����

�
� 	��

�
��������	����

�
�
�
�
.

4) The “combining suspension calculus” [NAD 03, LIA 04], which is a refinement
of the suspension calculus, that allows for combinations of steps of β-contraction.

Each of these different calculi has advantages and disadvantages. Although vari-
ous attempts have been made at comparing these styles (cf. [AYA 05, KAM 00]), a lot
remains to be explained. A better understanding of the similarities and differences of
these styles may lead on the one hand to solving the remaining open questions related
to the various calculi (such as preservation of strong normalization, subject reduction,
etc.), and on the other hand, to a more inclusive calculus and implementations which
combine the advantages in one system. The inclusion of other calculi of explicit sub-
stitutions is also possible and details are given in the documentation provided with the
source code of the system, where all the necessary steps are explained.

Through SUBSEXPL, we attempt to understand the working of the rewrite rules
of these calculi. We developed a full scale Ocaml implementation of the four calculi
where contractions in all these calculi (as well as in the type-free λ-calculus) can be
visualized in a step-wise fashion and where the behavior of the reduction paths can be
analyzed. Especially, we concentrate on the one-step guided reductions and normal-
ization via each of the associated substitution calculi. Although the implementation
of rewriting rules is straightforward in a rewriting based language such as ELAN and
Maude, we prefer to use a language of the ML family because of its natural ability to
control the matching which allows for the selection of redexes before contractions are
carried out.

SUBSEXPL has been successfully used for teaching our students basic proper-
ties of the λ-calculus such as: computational adequacy, the usefulness of de Bruijn’s
notation [BRU 72] for dealing with collisions and clashes avoiding the necessity of α-
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conversion and of making explicit substitutions in real implementations based on the
λ-calculus. SUBSEXPL has also been of great importance for systematically compar-
ing these four calculi of explicit substitutions.

Furthermore, SUBSEXPL includes adequate implementations of the rules of η-
reduction for the three former calculi as well as a clean implementation for the λse-
calculus (cf. [AYA 05]) in the sense that no other rewriting rules than the ones strictly
involved in Eta-contraction1 are included in one-step Eta-contraction. Work on higher-
order unification (HOU) in λσ and λse established the importance of combining
Eta-reduction or contraction (as well as expansion) with explicit substitutions (cf.
[DOW 00, AYA 01]). This has provided extensions of λσ and λse with Eta-reduction
rules also referred to as λσ and λse. Eta reduction as well as expansion is necessary
for working with functions and programs, since one needs to express functional or
extensional equality; i.e., when the application of two λ-terms to the same term yields
the same result, then they should be considered equal. This led to various extensions
of explicit substitutions calculi with an Eta-rule even before this was applied to HOU
[HAR 92, RÍO 93, BRI 95, KES 00].

Input/output of λ-terms in SUBSEXPL is a difficult point because λ-expressions
are difficult to write correctly and after some contractions they may become big very
quickly. Inputs are given to the system in an internal syntax close to the ones of the
λ-calculus in de Bruijn notation; for example, ������� and ����� � ��� stay for abstraction
and application, respectively. Other symbols of the treated explicit substitutions cal-
culi are represented in this internal syntax similarly (see the grammatical description
provided with the system). Outputs are given in the same syntax, except when using
the x-symbol2 mode of the Emacs editor for which translation to symbolic notation is
provided automatically. Also, in order to ease reading the outputs of the system, we
provided Latex outputs which can be generated during any step of the derivations and,
moreover, the generated file can be easily edited according to the user’s requirement.

SUBSEXPL has been used as a tool for understanding properties of explicit sub-
stitutions calculi. Desired properties of an explicit substitutions calculus include:

(a) Simulation of one step β-reduction: whenever a reduces to b in the λ-calculus
using one step β-reduction, we have that a reduces to b in the explicit substitutions
calculus using one step of the explicit β-reduction (starting rule) and the substitution
rules.

(b) Confluence (CR): confluence is the property that establishes that reductions do
not depend on reduction strategies or in other words, that whenever a term can be
reduced in two different ways, the obtained terms can be joined by rewriting into a
common term. CR is considered for two classes of terms:

(b.1) Ground terms: these are the usual terms of the λ-calculus built from variables,
applications and abstractions.

1. We use the Greek letter η to refer only to the “η-rule” of the pure λ-calculus, and its name
“Eta” to refer to the corresponding rules in the explicit substitutions calculi.
2. �
	�	����������������
����� �!��"#�%$'&�	
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(b.2) Open terms: in this case, the language of the explicit substitutions calculus
is expanded with a new class of variables, known as meta-variables. In this setting,
open terms can be seen as contexts and meta-variables as place-holders. Open terms
are essential in higher-order unification and matching algorithms that use explicit sub-
stitutions [DOW 00, AYA 01, MOU 05].

(c) Strong normalization (SN) of the underlying calculus of explicit substitutions:
this is the termination property of the explicit substitutions calculi without the explicit
β-reduction rule; i.e., without the rule that starts the simulation of β-reduction.

(d) Preservation of SN (PSN): whenever all possible reductions starting from a pure
λ-term terminate in the λ-calculus, there are no possible infinite reductions starting
from this term in the explicit substitutions calculus.

Without Eta, λσ satisfies (a), (b.1), (c) and satisfies (b.2) only when the set of open
terms is restricted to those which admit meta-variables of sort ���

�
� �
. Without Eta, λs

satisfies (a)..(d) but not (b.2). However, λs has an extension λse (again without Eta)
for which (a), (b.1) and (b.2) hold, but (d) fails and no answer to (c) is known. The
suspension calculus (which does not have Eta) satisfies (a) and when restricted to well
formed terms it also satisfies (b.1), (b.2) and (c), but (d) is unknown (cf. [KAM 00,
NAD 98]). As a refinement of the suspension calculus, the combining suspension
calculus inherits all its properties allowing, in addition, for the combination of steps
of β-contraction.

SUBSEXPL has been used as a tool for examining the PSN property of two of
the three calculi we consider. The system allows us to follow the counter-examples
of Melliès ([MEL 95]) and Guillaume ([GUI 00]) for proving that neither the λσ- nor
the λse-calculus preserves SN. In addition, important computational properties such
as the possibility of combining β-contractions in λσ and λse have been formalized
with the help of this tool.

In section 2 we describe briefly the implemented calculi of explicit substitutions
in order to give some flavour of the object of study in SUBSEXPL. In section 3 we
briefly describe the system and its usage and, before concluding in section 5, in section
4 we illustrate the applications of the system.

2. Preliminaries

Since the proposal of this work is to describe a tool that deals with explicit sub-
stitutions calculi, we briefly describe the syntax and give some intuition on the imple-
mented calculi. For a more detailed description we refer the reader to the references
given at the beginning of the introduction.

Explicit substitutions calculi are given in order to make explicit the operation of
substitution, which is traditionally given in the formalization of the λ-calculus as a
meta-operation instead of being an explicitly defined operation. These calculi attempt
to be closer to implementations of the λ-calculus than the λ-calculus itself. SUB-
SEXPL deals with the λσ-calculus, which is historically important as the first calcu-
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lus of this kind; with the suspension calculus which is well-known as the underlying
calculus of λPROLOG; with a simple extension of the later calculus, that allows for
combinations of β-contractions; and with the λse-calculus which has a completely dif-
ferent philosophy from the previous ones introducing arithmetic constraints in order
to propagate substitutions explicitly. The philosophies of the λσ and of the suspension
calculi (and its extension) are similar because these calculi represent substitutions as
lists of terms, which are simultaneously propagated over the body of expressions. For
doing this, these calculi need to introduce in their syntax other sorts of objects than
terms. The λσ introduces a sort of substitutions and the suspension calculus intro-
duces two new sorts of objects: environments and environment-terms. In contrast,
the λse maintains a sole sort of objects (terms) as the λ-calculus does, and uses two
operators together with arithmetic constraints to propagate substitutions.

2.1. The λσ-Calculus

The λσ-calculus, introduced in [ABA 91], is given by a first-order rewriting sys-
tem, which makes substitutions explicit by extending the language with two sorts of
objects: terms and substitutions.

DEFINITION 1. — The syntax of the λσ-calculus is given by:

Terms a, b ::= 1 | (a b) |λa | a[s]
Substitutions s ::= id | ↑ | a · s | s ◦ s

Substitutions are lists of terms: for example, the list a1 · a2 · . . . · an· ↑
n represents

the substitution {1/a1, 2/a2, . . . , n/an} indicating that the de Bruijn index j must be
replaced by the term aj , for j = 1..n. The substitution id, a shorthand for lists of the
form 1 ·2 ·n . . . ↑n, for n ≥ 0, represents the identity substitution. ↑ is the substitution
{i /i + 1 } that increases by one every free de Bruijn index i in the term where it is
applied. s◦s represents the composition of substitutions. Notice that de Bruijn indexes
are codified in the language of the λσ-calculus. In fact, the term 1 [↑n], where n ∈ N

∗,
codifies the de Bruijn index n + 1 . Notice that de Bruijn indexes are discriminated
from naturals by being underlined. The term a[b · id] starts the simulation of the β-
reduction of (λa b) in the λσ-calculus. Thus, in addition to the replacement of the
free occurrences of the index 1 by the corresponding term, free occurrences of indices
should be actualized (decreased) because of the elimination of the abstractor. Table
1 includes the rewriting system of the λσ-calculus augmented with an Eta rule for
η-reduction, as presented in [DOW 00].

This system without (Eta) is equivalent to the one presented in [ABA 91] origin-
ally. The associated substitution calculus, denoted as σ, is the one induced by all the
rules except (Beta) and (Eta), and its equality is denoted as =σ .
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(λa b) −→ a[b · id] (Beta)
(a b)[s] −→ (a[s] b[s]) (App)
1[a · s] −→ a (V arCons)
a[id] −→ a (Id)
(λa)[s] −→ λ(a[1 · (s◦ ↑)]) (Abs)
(a[s])[t] −→ a[s ◦ t] (Clos)
id ◦ s −→ s (IdL)
↑ ◦(a · s) −→ s (ShiftCons)
(s1 ◦ s2) ◦ s3 −→ s1 ◦ (s2 ◦ s3) (AssEnv)
(a · s) ◦ t −→ a[t] · (s ◦ t) (MapEnv)
s ◦ id −→ s (IdR)
1· ↑ −→ id (V arShift)
1[s] · (↑ ◦s) −→ s (Scons)
λ(a 1 ) −→ b if a =σ b[↑] (Eta)

Table 1. The rewriting system for the λσ-calculus

2.2. The λse-Calculus

In contrast to the λσ-calculus, the λse-calculus, introduced in [KAM 97], has a
sole sort of objects maintaining a closer syntax to the λ-calculus. The λse-calculus
introduces two operators σ and ϕ, for substitution and updating, respectively.

DEFINITION 2. — The syntax of the λse-calculus is given by:

Terms a, b ::= n | (a b) |λa | a σib |ϕj
k a, where n, i, j ∈ N

∗ and k ∈ N.

The term a σib represents the term a{i /b}; i.e., the substitution of the free oc-
currences of i in a by b, updating the free variables in a (and in b). The term ϕj

k a

represents j−1 applications of the k-lift to the term a; i.e., a+k(j−1)

. Table 2 contains
the rewriting rules of the λse-calculus augmented with the rule (Eta), as introduced in
[AYA 01]. =se

denotes the equality for the associated substitution calculus, denoted
as se, induced by all the rules except (σ-generation) and (Eta).

2.3. The Suspension Calculus

The suspension calculus [NAD 98, NAD 99] deals with λ-terms as computational
mechanisms. This was motivated by implementational questions related to λProlog,
a logic programming language that uses typed λ-terms as data structures [NAD 88].
The suspension calculus works with three different types of entities:

Terms a, b ::= c | n | λa | (a b) | [[a, i, j, e1]]
Environments e1, e2 ::= nil | et :: e1 | {{e1, i, j, e2}}
Environment Terms et ::= @i | (a, i) | 〈〈et, i, j, e1〉〉
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(λa b) −→ a σ1b (σ-generation)
(λa) σib −→ λ(a σi+1b) (σ-λ-transition)
(a1 a2) σib −→ ((a1 σib) (a2 σib)) (σ-app-transition)

nσib −→







n − 1 if n > i
ϕi

0 b if n = i
n if n < i

(σ-destruction)

ϕi
k (λa) −→ λ(ϕi

k+1 a) (ϕ-λ-transition)
ϕi

k (a1 a2) −→ ((ϕi
k a1) (ϕi

k a2)) (ϕ-app-transition)

ϕi
k n −→

{
n + i − 1 if n > k
n if n ≤ k

(ϕ-destruction)

(a1 σia2) σjb −→ (a1 σj+1b) σi(a2 σj−i+1b) if i ≤ j (σ-σ-transition)
(ϕi

k a) σjb −→ ϕi−1
k a if k < j < k + i (σ-ϕ-transition 1)

(ϕi
k a) σjb −→ ϕi

k (a σj−i+1b) if k + i ≤ j (σ-ϕ-transition 2)
ϕi

k (a σjb) −→ (ϕi
k+1 a) σj(ϕi

k+1−j b) if j ≤ k + 1 (ϕ-σ-transition)
ϕi

k (ϕj
l a) −→ ϕj

l (ϕi
k+1−j a) if l + j ≤ k (ϕ-ϕ-transition 1)

ϕi
k (ϕj

l a) −→ ϕj+i−1
l a if l ≤ k < l + j (ϕ-ϕ-transition 2)

λ(a 1 ) −→ b if a =se
ϕ2

0 b (Eta)

Table 2. The rewriting system of the λse-calculus

where c denotes any constant and i, j are non negative natural numbers.

Rather than performing adjustments at each stage, the suspension calculus per-
forms the adjustments into a substitution term only at the final substitution stage. In-
tuitively, a suspended term of the form [[a, i, j, e1]] means that the first i variables of
the λ-term a must be substituted in a way determined by the environment e1 and its
remaining bound variables must be renumbered according to the fact that a used to
appear within i abstractions but now appears within j of them.

The suspension calculus has a generation rule βs, which initiates the simulation
of a β-reduction (in a similar way to the corresponding rules of λσ and λse, namely,
the Beta and the σ-generation rules) and two sets of rules for handling the suspended
terms. The first set, the r rules, for reading suspensions and the second set, the m
rules, for merging suspensions are given in Table 3 augmented with an Eta rule for the
η-reduction, as presented in [AYA 05] in the so-called λSUSP-calculus.

3. Description of SUBSEXPL

SUBSEXPL is an open source software which runs over GNU/Linux platforms
and is available at:

!
� ��������� � ������� � � � � ������#� ��� ����	�
 ��	� ��������������� ���

In the following subsections we describe the implementation and use of the system.
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(βs) (λa b)−→ [[a, 1, 0, (b, 0) :: nil]]
(r1) [[c, ol, nl, e]]−→c, where c is a constant
(r2) [[i, 0, nl, nil]]−→ i+nl
(r3) [[1, ol, nl, @l :: e]]−→nl-l
(r4) [[1, ol, nl, (a, l) :: e]]−→ [[a, 0, (nl-l), nil]]
(r5) [[i, ol, nl, et :: e]]−→ [[i-1, (ol-1), nl, e]], for i > 1
(r6) [[(a b), ol, nl, e]]−→ ([[a, ol, nl, e]] [[b, ol, nl, e]])
(r7) [[λ a, ol, nl, e]]−→λ [[a, (ol + 1), (nl + 1), @nl :: e]]

(m1) [[[[a, ol1, nl1, e1]], ol2, nl2, e2]]−→ [[a, ol′, nl′, {{e1, nl1, ol2, e2}}]], where
ol′ = ol1 + (ol2

. nl1) and
nl′ = nl2 + (nl1

. ol2)
(m2) {{nil, nl, 0, nil}}−→nil
(m3) {{nil, nl, ol, et :: e}}−→{{nil, (nl-1), (ol-1), e}}, for nl, ol ≥ 1
(m4) {{nil, 0, ol, e}}−→e
(m5) {{et :: e1, nl, ol, e2}}−→〈〈et, nl, ol, e2〉〉 :: {{e1, nl, ol, e2}}
(m6) 〈〈et, nl, 0, nil〉〉−→et
(m7) 〈〈@m, nl, ol, @l :: e〉〉−→@(l + (nl . ol)), for nl = m + 1
(m8) 〈〈@m, nl, ol, (t, l) :: e〉〉−→ (t, (l + (nl . ol))), for nl = m + 1
(m9) 〈〈(a, nl), nl, ol, et :: e〉〉−→ ([[a, ol, l′, et :: e]], m), where

l′ = ind(et) and m = l′ + (nl . ol)
(m10) 〈〈et, nl, ol, et′ :: e〉〉−→〈〈et, (nl-1), (ol-1), e〉〉, for nl 6= ind(et)
(Eta) λ (a 1)−→b, if a =rm [[b, 0, 1, nil]]

Table 3. Rewriting rules of the suspension calculus

3.1. Description of the system: design and implementation

Since in SUBSEXPL we want to provide the user with full control of reduction we
decided to use Ocaml instead a rewriting programming environment such as ELAN
or Maude. This decision was made because during the process of derivation of an
expression in any language of explicit substitutions we want to follow sequentially the
following sub-tasks:

1) detect matches of the rewriting rules of our explicit substitution calculi;

2) allow the user to freely select the desired redex (rule and position) to be applied;

3) contract the expression according to the selection of the user.

This work is done in a natural way in Ocaml by pattern matching through the� �
�
��!

_
" �
�
!

structure that allows to match left-hand sides of the rewriting rules
with the current expression in a natural way. Most importantly, when these matches
are detected one can select the desired effect: either simply report on the detection
of the redex (sub-task 1 above) or contract a previously detected redex (sub-task 3
above). With Ocaml we have full control on the reduction process in this natural way.
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In contrast with rewriting computational environments, doing these sub-tasks requires
some additional programming work because the philosophy of rewriting languages
is to detect matches of the left-hand sides of the rules in order to apply the matched
rules immediately. To change this in rewriting based environments, one can use some
alternatives such as logical strategies in ELAN (to control the application of rewriting
rules), but we consider this to be artificial since we would like to provide the user with
full control over derivations.

Then for each calculus included in SUBSEXPL, it is essentially necessary to de-
scribe its syntax, to detect its redexes and to apply the rewriting rules.

The syntax of the terms of λσ, λse and the suspension calculus (and its extension)
are implemented in SUBSEXPL as follows:

1) λσ-terms of the form 1, λa, (a b) and a[s] are respectively represented as � � � ,
� � � � , � � ��� � � and  � � ��� � � ; λσ-substitutions of the form id, ↑, a · s and s ◦ t are
respectively represented as ��� , ��� , � ��� ��� � � and 	�� � � � � � .

2) λse-terms of the form n, λa, (a b), aσib and ϕi
ka, where k ≥ 0 and i ≥ 1 are

respectively represented as
�

, � � � � , ��� ��� � � ,  � � � ��� � � and � � � � ' ��� � .
3) For the suspension calculus, λSUSP-terms of the form n, λa, (a b) and

[[a, i, j, e]] are respectively represented as
�

, ��� � � , � � ���$� � and �� � ��� � ����� � � ; λSUSP-
environments of the form nil, et :: e and {{e1, i, j, e2}} as � ��� , 	 	
� � � � � � � and
	 ' � ��� � � �	��� ��
 � ; λSUSP-environment terms of the form @i, (a, i) and 〈〈et, i, j, e〉〉 are
respectively represented as � � �

, � ��� � � ��� � � and ���� � � � � �	� � � � .
4) Since the combining suspension calculus is a refinement of the suspension cal-

culus, its terms are essentially λSUSP -term as above without environments of the form
{{e1, i, j, e2}} and without environment terms of the form 〈〈et, i, j, e1〉〉.

For example, the λse-term (λ1)σ1(2 3) is represented in the internal language of
SUBSEXPL as  ��� � � ����� � ����
 �	� ��� .

The current structure of the system is intended to allow easy inclusion of new
calculi. The general structure of the system is represented in Figure 1. A stepwise
description on how to include a new calculus can be found in the tutorial (see also the
file

� �� � � 
�� � � � � " � ������� ���� ) distributed with the source code of the system. A more
detailed description of the dependencies of the files in the current implementation is
given in Figure 2.

For each implemented calculus, there are two main parts: matching and reduction.
The matching part is responsible for detecting and reporting all the existing redexes,
for each rewriting rule of the calculus, of the current λ-term and to add the positions
of these redexes into a list. The functions responsible for this work are implemented
in the files

�
�
���
�
��!

2
� � �

, where 2 ranges over
��� � ���

�
� �� �

and
�������	����

for λσ,
λse, the suspension calculus and its extension, respectively. The files responsible for
the reduction part are similarly called

�
�
�
��� 2 � � �

.

As an example of the implementation of matching and reduction, we partially
present in tables 4 and 5 the corresponding functions for the rule (σ-generation) of
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main loop
SUBSEXPL

loop
CALC 1 CALC 2

loop
. . .

rules rules

INTERFACE

CALC 1 CALC 2

Figure 1. General structure of the system SUBSEXPL

Suspcomb

OutputSelexersuscomb Seredsuscomb

CommonInputSematchsusSematchsuscomb

Susp

Selexersus Seredsus

Subsexpl

Pure

Sigma

Sepure

Selexerls Seredls

Sematchls

Setypes

Seredlse

Sematchlse

Lambdase

Selexerlse

Figure 2. File dependencies for the four calculi currently treated by SUBSEXPL

λse. The three parameters of the function
���
�
��! � � 
��
�� � � ��� � ��	�� in Table 4: ����� ��

and � 	�� are for the current expression, the list of positions and the current position
(w.r.t the main expression), respectively. One can observe in Table 4 the use of the� �
�
��!

_
" �
�
!

structure of Ocaml for pattern matching occurrences of the left-hand
side of the σ-generation rule (λe1 e2) −→ e1 σ1e2 that is given in the grammar
of SUBSEXPL by � � ��� ����� � ��
 � . Once the redex is detected, the current position
� 	�� is included in the list of redexes for the rule σ-generation. This list of redexes
is maintained in the parameter

�
. Other possible matches are detected by subsequent

searches inside the structure of the current expression; for instance, when the current
expression is of the form λe1 or equivalently � � ����� , no new redex is detected (the
list

�
remains unchanged) and the search for redexes should follow through the subex-

pression ��� and the current position � 	�� should be modified by following the branch
1 of the term λe1, that corresponds to the sub-term e1:
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� � � � ��! � � 
 �
�� � � ��� � � 	�� ��� � � � ��� � � � ��� � � � � 	���� ��� � � .

� � ��� � � � ����� � � � 	���� ��� � , simply adds � to the current position.

�&�	�� &�� �
	�	������$�������&�$'&���		�����$ &��� � ��� ���
�
	�	�� � &�������	������ � ��� ������! "� &
#�$&%�&�'�$ ��� ��� � ���  ����	 �(	����'&�$�)� �
		����
��$������ &�$
&���	�	����$ &
# � �! ����	#�(	����'&�$�) ��� �+*,#.-/#10$2$� �
		����
��$������ &�$
&���	�	����$ &�'+*30 �! ����	#�(	����'&�$�) �����4*('�0
$�$����� &
#.%�&2'�$ ���  ����	#�(	����'&�$�)� �
		����
��$������ &�$
&���	�	����$ &
# � �! ����	#�(	����'&�$�) ��� �+*,#10
$2$� �
		����
��$������ &�$
&���	�	����$ &�'+*30 �! ����	#�(	����'&�$�) �����4*('�0
$�$�� 5� &
#�$ ��� � �
	�	����
��$������ &�$'&���	�	�����$ &
# � �! ����	#�(	����
&�$�) ��� �4*6#10
$2$� � � �7%�&
#8%�&�'�$ ���  ����	#�!	����'&�$�)� �
		����
��$������ &�$
&���	�	����$ &
# � �! ����	#�(	����'&�$�) ��� �+*,#10
$2$� �
		����
��$������ &�$
&���	�	����$ &�'+*30 �! ����	#�(	����'&�$�) �����4*('�0
$�$��95�;: %3<=% &
#�$ ��� � �
	�	������$�������&�$'&���		�����$ &
# � �3 ����	#�!	����'&�$�) �'� �4*,#10$2$�?> ����	
���&���	 "�	�� �&

Table 4. Implementation of matching for the rule σ-generation of the λse

The reduction part implemented for the σ-generation rule is the function called�
��� �� � �
	�� �
 � � � ��� � � 	
� presented in Table 5. This function needs only two para-

meters: ����� for the expression and � 	�� for the position (given as before as a se-
quence/list of naturals). By recursively applying the

���
�
��!

_
" �
�
!

structure the posi-
tion is deconstructed and simultaneously the corresponding sub-term of the expression
reached. This is achieved when the current position is the empty list (see the subsec-
tion 3.3 for the notation of positions as sequences of naturals). Once the selected
sub-term is reached, it has to be of the form � � ��� ����� � ��
 � (equivalently (λe1 e2))
and then, it is reduced into  � � � ��� � �
 � (or equivalently e1σ

1e2). This works cor-
rectly, because all the matches were detected and the possible selection of redexes
given by the user is restricted to the set of the detected redexes.

3.2. The implementation of Eta contraction

SUBSEXPL includes implementations of Eta contraction for each of the calculi
of explicit substitutions treated here (the Eta-rule of the suspension calculus and its
refinement coincide). The implementation follows the notion of cleanness as defined
in [AYA 05]. The intuitive idea of a clean Eta implementation is that it does not mix
isolated applications of Eta-reduction with applications of rules of the corresponding
substitution calculi other than the ones strictly involved in Eta-reduction. Clean im-
plementations of Eta allow us to reach good simulations of Eta-contraction, which
implies the possibility of combining steps of Beta and Eta contraction.
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�&�	�� &�� � &�) � ��	�����$��� &�$'&��2	�	�����$ &��� ��� ���
�
	�	�� � ��� � ���	�� * 0 ��� � �	�	���� &������	��� �5�! 5� &
#�$&% &�'�$ ����� � #.%�&
#8%�&�'�$� > � � &���.$� # ��� 	�	���� ��� � �
	�	���� &������	������� &
#.%�&2'�$ ��� �5��� � &�) � ��	�����$���� &�$'&���	�	�����$ &
# 	2	�����$&% &�'�$�� 5� &
#�$ � �  "� � &�) � ��	����$��� &�$'&���	�	�����$ &# 	�	�����$� � � �7%�&
#8%�&�'�$ ����� � �7% � � &�) � ��	�����$��� &�$'&��2	�	�����$ &
# 	�	����$&%�&�'�$��95�;: %3<=% &
#�$ ��� 95�;: %3<=% � � &�) � ��	�����$���� &�$'&���	�	�����$ &
# 	�	�����$2$�?> ��� &����.$� ' ��� 	�	���� ��� � �
	�	���� &������	������� &
#.%�&2'�$ ��� �5� &
#.% � ��&�) � ��	�����$����&�$'&���		�����$ &2' 	�	����$2$� � � �7%�&
#8%�&�'�$ ����� � �7%�&#.% � � &�) � ��	����$��� &�$'&���	�	�����$ &�' 	�	�����$�$�?> ��� &����.$�?> ��� &����

Table 5. Implementation of reduction for the rule σ-generation of the λse

The suspension calculus did not originally have an Eta-rule. In [AYA 05] this
calculus was enlarged with an adequate Eta-rule in the so-called λSUSP-calculus. For
the enlarged calculi λSUSP , λse and λσ we showed that there exists a correspondence
among their Eta-rules which means that, when applied to pure λ-terms, these rules
behave similarly (cf. [AYA 05]).

Neither the suspension calculus nor the λσ-calculus has completely clean imple-
mentations of the Eta-rule. In fact, in these calculi, the implementation of the Eta-rule
requires the application of some rewriting rules, not directly related to Eta contrac-
tion, but which are necessary to normalize some simple terms. Nevertheless, our
implementation of the Eta-rule for λse is clean.

Eta-reduction is important to computational problems that arise in applications of
the λ-calculus. For instance, η-reduction is useful in the treatment of higher-order
unification and matching via explicit substitutions calculi (cf. [DOW 00, AYA 01]).

3.3. Using the system

In this section we briefly describe how SUBSEXPL can be used inside Emacs
with the x-symbol mode, which provides a symbolic representation of λ-expressions.
SUBSEXPL can be run from a shell in Emacs with the TeX macro mode of x-symbol
activated (for details see the README file of the distribution).

As a complete example, we show how to operate with Church’s numerals (cf.
[BAR 84]) whose description can be found in the file � � ��� � � � � distributed with the
source code. Consider the reduction A+C1C1 →6

β C2, which evaluates “1 + 1” in
the λ-calculus, where A+ = λxypq.((x p)((y p) q)) represents the sum operator, and
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C1 = λfx.fx is the Church numeral corresponding to 1. The A+ operator is written
in de Bruijn notation as A+ = λλλλ.((4 2)((3 2) 1)) which is translated to the
SUBSEXPL language as ��� ��� ��� � � � � � � � � 
 � � � � ��� ��� 
 � � �'��� � ��� � .

For discriminating sub-terms, occurrences and redexes in terms, we use the stand-
ard notation from rewriting theory [BAA 98]. In this notation terms are represented as
trees and each sub-term is referenced according to its position given by the sequence
of naturals determining the branches of the tree one needs to follow (starting from the
root of the tree) in order to reach the root node of the selected sub-term. For instance,
the set of valid positions of the λ-term A+ = λxypq.((x p)((y p) q)) is given by {ε
1, 1.1, 1.1.1, 1.1.1.1, 1.1.1.1.1, 1.1.1.1.1.1, 1.1.1.1.1.2, 1.1.1.1.2, 1.1.1.1.2.1,
1.1.1.1.2.1.1, 1.1.1.1.2.1.2, 1.1.1.1.2.2}; its sub-term at root position ε (the empty
sequence) is the term itself, the sub-term at position 1.1.1 is λq.((x p)((y p) q)),
its sub-term at position 1.1.1.1.2.1 is (y p), p occurs at positions 1.1.1.1.1.2 and
1.1.1.1.2.1.2, etc. SUBSEXPL omits the concatenation symbol “ . ”, because the
treated expressions have only operators of arity at most two. Notice that this notation
is also adequate for λ-terms in de Bruijn notation.

Applying the operator A+ to add the Church numeral C1 to itself gives the expres-
sion corresponding to A+C1C1 in the SUBSEXPL grammar:

��� � � ��� ��� ��� � � � � � � � � 
�� � � � � � � � 
�� � ������� ��� � � � � ��� � ��
 � �'� ��� � � ��� ��� � ��
 � �
� ��� �
Figure 3 shows the initial screen of the system where one can either select one of

the available calculi or select the option for a grammatical description of the system.
The example in this figure shows a direct reduction in the pure λ-calculus of the above
term using the leftmost/outermost normalization strategy followed by the history of
the derivation that lists all the intermediate terms obtained during the reduction.

The available options for this example are as follows:
� � � � � � � Enumerates all the positions of the current term in which β-redexes oc-
cur.

 � � � � � Enumerates all the positions of the current term in which η-redexes occur.� � � � � � � 	�� ��� 	
 ��� �
� 	�� � ��	 � ������� ���

�
�
	��

: normalizes the given term choosing
always the leftmost redex.
� ����� 
 ! � ��	�� ��� � ��� � � ��	�� � ��	��
�����������

�
�
	
�

: normalizes the given term choosing
always the rightmost redex.
� � � ��� ' 	��

�
�
� ��� : allows the user to return to the previous step in the current

derivation.
� �  � � ! ���

�
	����

: shows in the current screen the list of all expressions generated
in the current reduction.
� � � � ����� �  ���  � : generates automatically a file with the latex code of the current
reduction and display the .dvi file on the screen3
� �  � � � ������

�
�
�
�
� � �� � � 	�� : allows the user to save the current reduction into

a simple text file, say
��� � � ��� �� � �
	
� . To load this reduction in a further section with

the tool, the user should restart the system giving this file as argument:

3. We assume that the running system has latex and xdvi installed.
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Figure 3. Running an example

� � ������ ����� � �&� � � ��� � � � � �� � � 	�� .� ���
�
�
�
���
�
������

�
�
�
�
��� �� � �
	
� : allows the user to restart the current reduction

from the beginning after asking if the user wants to save the current reduction.
��� ��� � � � � � �  ���������� � : restarts the system after asking if the user wants to save
the current reduction.
��� ���
 �

� : halts the system after asking if the user wants to save the current reduc-
tion.

The generation of the latex output is an important option that is available even dur-
ing the intermediate steps of a derivation. Note that in the latex output, all the reduced
redexes appear underlined (remember that de Bruijn indexes are also underlined, but
it is clear that they are not redexes). In Figure 4 we show the latex output generated
by SUBSEXPL that corresponds to the reduction A+C1C1 →6

β C2.
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(((λ(λ(λ(λ(( 4 2)(( 3 2) 1))))))(λ(λ( 2 1))))(λ(λ( 2 1)))) →β

((λ(λ(λ(((λ(λ( 2 1))) 2)(( 3 2) 1)))))(λ(λ( 2 1)))) →β

((λ(λ(λ((λ( 3 1))(( 3 2) 1)))))(λ(λ( 2 1)))) →β

((λ(λ(λ( 2(( 3 2) 1)))))(λ(λ( 2 1)))) →β

(λ(λ( 2(((λ(λ( 2 1))) 2) 1)))) →β

(λ(λ( 2((λ( 3 1)) 1)))) →β

(λ(λ( 2( 2 1))))

Figure 4. Latex output generated by SUBSEXPL

An interesting exercise is to simulate the derivation of Figure 4 step by step using
λσ, λse or the two versions of the suspension calculus. The current implementation
has two normalization strategies available for simulating one full step of β-reduction
in a explicit substitutions calculi: the leftmost strategy or the strategy according to the
order in which the rules are given on the screen of each calculi (we call this strategy
’random’). An interesting fact is that the first step of β-reduction in this derivation,
when simulated in the λσ-calculus using the random normalization strategy, generates
some huge λσ-terms which exceeds the available memory for the latex compilation.
In fact, the simulation of the first β-reduction in the λσ-calculus using the ’random’
strategy is done in 236 steps, while the same simulation using the leftmost strategy
is performed in only 45 steps! The complete reduction using the leftmost strategy
generated about 3 full pages of latex output with small fonts. In λse as well as in the
suspension calculus, both strategies generate the output within about 2 pages.

Terms with internal operators of the explicit substitutions calculi may be given as
input: as an example, take the λσ-term ((λ1) 1[↑])[1 · id] which is written in SUB-
SEXPL as  � � � � �����'� �  � ��� � � � ��� ��� � � ����� � � � ��� ��� . A partial reduction of this
term is given in Figure 5.

4. Applications

SUBSEXPL has been successfully used to teach computational notions of the λ-
calculus as well as to compare and understand some properties of explicit substitutions
calculi. In this way, SUBSEXPL can be seen as a tool with both educational and
research purposes. In this section we start by explaining how the system can be used
for educational purposes exploring some computability notions over the λ-calculus.
Afterwards, we explain how it can be used to compare calculi of explicit substitutions
according to the computational effort necessary to simulate one step of β-reduction
and finally we show how SUBSEXPL can be used to follow the counter-examples of
Melliès and Guillaume that establish that the λσ- and the λse-calculus, respectively,
do not preserve strong normalization.
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Figure 5. An example for the λσ-calculus

4.1. Understanding the λ-calculus and its implementations

We have used SUBSEXPL to explain to students questions related to the compu-
tational adequacy of the λ-calculus, the problems which arise from the usual notation
with symbolic variables and the implicit notion of substitution. The main applica-
tion of the tool is for persuading students about the computational advantages of the
mechanics involved in the use of de Bruijn notation [BRU 72] for the treatment of
α-conversion. In fact, it is well-known that the λ-calculus in de Bruijn notation avoids
α-conversion. We consider this is a simple fact to be explained, but an unconvin-
cing one because the λ-calculus per se is notationally complex and this complexity
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increases when indexes rather than variable names are used. Consequently, without
a good explanation students tend to start their implementations using symbolic vari-
ables, which in our opinion is not efficient. For making this point clear, notice that
in implementations of the λ-calculus with names (i.e., with symbolic variables) col-
lisions and clashes are treated by introducing fresh variable names. Because of lim-
itations of the (symbolic) alphabet of programming languages, these new names are
usually introduced by variable names with natural numbers as subscripts that are in-
creased when new fresh variables are needed. This may produce complex intermediate
outputs: Suppose, one has used 254 different fresh variables during a computation and
one needs to β-contract the λ-term with names λy.(λxy.(x y) y), then capture of the
bound variable y is avoided by renaming it with the next available fresh variable and
one obtains a term such as λyy255.(y y255). The computational cost of these renam-
ings is linear in the size of terms and the worst is that this may happen in all steps of
a computation. In de Bruijn notation collisions are automatically avoided: the equi-
valent term in de Bruijn notation is given by λ(λλ(2 1) 1) and it β-contracts to
λλ(2 1) by simple updating of de Bruijn indexes. The notation with de Bruijn indexes
is surely hard to be read by humans, but here we are analyzing implementations of the
λ-calculus.

Other notations different from that of de Bruijn, e.g., notations based on nominal
syntax [URB 04], are also useful for dealing with the previously mentioned problems
in practical contexts. In nominal syntax, names occurring in terms may be captured
within the scope of binders upon substitution by naming explicitly bound entities.
In this way one has a form of substitution that preserves α-equivalence. Also, ap-
proaches based on director strings, which internalize the information needed about
free variables, are useful in this context. Director strings are used to implement closed
reduction [FER 05a], which captures the call-by-value and call-by-name evaluation
strategies in the λ-calculus with names, providing an efficient notion of reduction.
However, in the setting of explicit substitutions, de Bruijn notation is of principal
interest.

By using SUBSEXPL, the computational expressiveness of the λ-calculus can be
illustrated by examples which range from the λ-representation of arithmetic opera-
tions such as addition, multiplication and exponentiation over Church’s numerals to
the λ-representation of basic data structures which include booleans, computational
commands and operators such as if-then-else, iteration and recursion. All this was
done in the spirit of [BAR 84].

As a concrete example, we consider an expression for computing the factorial
function. This simple exercise takes a lot of effort, because students are neither fa-
miliar with the notation nor with the operational semantics of the λ-calculus. But
implementing this class of exercises is necessary because this gives the real flavour
of the computational power of the λ-calculus. By using SUBSEXPL over Emacs we
can very quickly implement these functions: we start creating abbreviations for the
needed operators and inserting the corresponding term in the system; afterwards, we
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compound these operators and functions in order to complete the desired function.
The factorial function is implemented by defining an iteration operator TH given by:

λp.〈S+(p �
��
� ), H(p �

��
� )(p

�������
� )〉

where S+ is the successor function, i.e., S+ = A+C1 and H is a convenient func-
tion that depends on the function to be implemented. The result of applying TH to
〈Ci, Cf(i)〉 is the pair 〈Ci+1, Cf(i+1)〉, where f references the function implemented
by the iteration mechanism, the first component of the pair is a counter for the iteration
step and the second one is the value of the desired function at that step.

4.1.1. Abbreviations

1) The Church numbers are as given before;

2) The booleans �
��
� and

�������
� correspond to the λ-terms ��� � ��
 � � and

� � ��������� , respectively.

3) 〈M, N〉 represents the pair operator which is given, in the language of SUB-
SEXPL, by the λ-term ��� � � � ��� ��� � � � � � . Pairs can be applied to booleans, written
as 〈M, N〉 �

��
� and 〈M, N〉

�������
� and the normal form of these terms are M and N,

respectively.

4) For the case of the factorial function, the adequate operator � is given as TH

above where H is selected as λxy.(A∗ y (S+x)) and A∗ = λxyz.(x(y z)) is the mul-
tiplication operator of Church numerals that corresponds to the term λλλ(3(2 1)) in
de Bruijn notation. It is easy to see that this operator satisfies the property: T〈Ck, Ck!〉
β-reduces to 〈Ck+1, C(k+1)!〉, and so, applying repeatedly this mechanism we are
counting the number of iteration in the first component of the pair and computing the
associated value of the factorial in second one.

In the language of SUBSEXPL, the normal form of the operator � is given by: 5�! "�(�5�!�5� #.%  5�! "�(�5� ' % �5�(���(�5��� %  "�! "� '�$�$2$&%6'�$&% #2$2$2$2$2$ % 5�(�5�(�5��� %  "�! 5� #�$2$2$.%  "�(�5� ' % �5�(���(�5��� %  5�! "� '�$2$�$ %;'�$&%/#2$�$2$2$2$�$2$�$

4.1.2. Checking parts of an implementation

This step is useful for testing the functionality of parts of the intended imple-
mentation which allows inferring the functionality of the whole specification. For
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instance, we can check that T〈C2, C2!〉 reduces to 〈C3, C3!〉. The SUBSEXPL syntax
for T〈C2, C2!〉 is given by:

T〈C2, C2!〉

8

>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

A(

T

8

<

:

L(L(A(A(1, L(L(A(2, A(A(A(4, L(L(2))), 2), 1))))),
L(L(A(A(A(4, L(L(1))), 2), A(A(A(4, L(L(2))),

A(A(4, L(L(1))), 2)), 1)))))))

〈C2, C2!〉

8

>>>>>>>>>>><

>>>>>>>>>>>:

L(A(
A(1,

L(L(A(2, A(2, 1))))
| {z }

C2

),
L(L(A(2, A(2, 1))))
| {z }

C2

))
)

By β-normalization this part of the implementation can be checked. After normaliz-
ation one obtains 〈C3, C3!〉 or equivalently � � � � � � � � ��� � � � ��
 � � ��
 � ����
 � ����� ��� ��� �
� � ��� � �	
 � � ��
 � � ��
 � � �	
 � ����
 � ���	
 � ����� ����� ��� ��� � .

The repetition mechanism is completed by applying n times the iteration operator
starting from the pair 〈C0, C0!〉. This is done by the term:

A(A(Cn, T), 〈C0, C0!〉) (1)

which reduces to 〈Cn, Cn!〉.

The functionality of all the parts of the desired mechanism/function can be checked
by normalization with SUBSEXPL.

4.1.3. Final function

Once enough tests have been run over SUBSEXPL, the factorial function can be
written as:

L(A(A(A(1, T), 〈C0, C0!〉)
︸ ︷︷ ︸

Match with term (1)

, L(L(1))
︸ ︷︷ ︸

false

)

︸ ︷︷ ︸

Selection of the 2nd element of the pair

) (2)

The term (2), when applied to the Church numeral Cn, β-reduces to Cn!. In fact, such
an application will generate a β-redex in the root of the new term. By reducing this
term, one obtains a term with sub-term (1). And this term has already been shown to
reduce to the pair 〈Cn, Cn!〉. To get the desired result we need to select the second
element of this pair which is done by applying it to

�������
� , as previously explained.

In the syntax of SUBSEXPL (which corresponds to that of the λ-calculus) the
expression for factorial is given by (see the file � � ��� � � � � distributed with the source
code of the system):
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 5�(�5�(�5�!�5� #.%  5�! "�(�5�!�5� #.%  5�! "�(�5� ' % �5� �5�!�5��� %  "�3 =� '�$2$2$ % '�$&%/#2$2$�$2$�$&% 5�! "�(�5�!�5�(�5��� %  "�! "� #�$2$2$&% '�$&% �5�!�5�(�5� � %  "�! =� '�$�$�$&%���(�5��� %  "�! "� #�$2$2$&%;'�$2$&%/#�$�$2$2$2$2$�$2$&%  =�(���(�5� #.%  5�( "� #�$2$�$.% 5�! "�(�5� ' %/#�$2$�$2$2$2$&%  "�! "� #�$2$2$2$

Similarly, other functions can be easily implemented. In fact, notice that from this
construction it is easy (also for students) to infer that the sole thing to be changed
in the whole repetition mechanism is the function H in the definition of the iteration
operator TH . For instance, for computing the function

∑n

i=0 i, H should be replaced
by λxy.A+ y (S+x); for computing the function

∑n

i=0 i2, H should be replaced by
λxy.A+y(A∗(S

+x)(S+x)); etc.

We believe that this kind of experiments is necessary and useful for obtaining some
flavor of the computational power of the λ-calculus. A way to speed-up the genera-
tion of non elementary implementations is by using our system jointly with an editor
for creating the necessary abbreviations, cutting, pasting and testing for modular con-
structions of “programs” or functions. In intelligent editors such as Emacs, these
abbreviations can be easily incorporated in new buttons and short-cut keys, which
makes the quick construction of these functions possible. Some of these experiments
are included in the file � � ��� � � � � . In the current distribution, we included the use of
the x-symbol mode, which allows the visualization of λ-expressions graphically over
the Emacs environment directly. This makes the repeated generation and compilation
of the Latex code unnecessary. Of course, there are other possibilities to help students
in the understanding of the computational expressiveness of the λ-calculus, which in-
clude modularity support (e.g., naming, parameterization) in the functionality of the
system itself, but instead, we opt for allowing the modular construction of elaborated
functions explicitly by hand over an intelligent editor in which SUBSEXPL can be
run. Our experience shows that this way more computer science engineering students
are able to take the λ-calculus more seriously as a truly effective computational envir-
onment, rather than as an arid computational model.

The problem of having an implicit notion of substitution involves a complex im-
plementational question because this is not a first-order operation. In fact, in the λ-
calculus one can have variables of functional sort. The comprehension of the necessity
of making substitution an explicit operation is realized only when students are asked
to implement β-contraction. After illustrating the computational adequacy of the λ-
calculus, problems inherent to its implementation may be easily pointed out: colli-
sions, confusion, renaming of variables, etc. Then students realize that substitution
is a meta-operation that must be carefully defined in any correct implementation of
the λ-calculus and are able to truly understand the beauty and usefulness of notational
solutions such as de Bruijn’s indexes and the importance of explicit substitutions cal-
culi.
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4.2. Comparing calculi by the simulation of β-reduction

SUBSEXPL has been implemented with the intention of comparing different styles
of explicit substitutions with respect to the effort necessary to simulate one-step β-
reduction. With the help of this tool we were able to study and compare derivation
examples which allow us to provide proofs of the fact that λse is more efficient than
the suspension calculus and is incomparable to the λσ-calculus in the simulation of
one-step β-reduction [AYA 05]. The efficiency of λse is justified by the fact that the
manipulation of de Bruijn indexes in λse is directly related to a built-in manipula-
tion of natural numbers and arithmetic (which is standard in today’s computational
environments and programming languages) whereas in the other two calculi, this is
done constructively. Of course this comparison is interesting, but not conclusive since
λse is not completely adequate for combining steps of β-reduction, which is more
natural in λSUSP [LIA 02, NAD 02]. The possibility of refining the λσ for combining
β-contractions and the impossibility of doing this in λse was formalized with the help
of SUBSEXPL in [FER 05b] recently. But we believe this has to be investigated more
carefully, since some variations of λse like λt ([KAM 00]), which is a calculus à la
λse but which updates like λσ, may allow this combination in the λσ style.

4.3. Understanding properties of explicit substitutions

SUBSEXPL has been used as a tool for understanding properties of explicit substi-
tutions calculi. This is illustrated by examining the property of Preservation of Strong
Normalization (PSN).

To illustrate the use of SUBSEXPL in understanding properties of explicit sub-
stitution calculi, we explain how one can follow(/check) papers which prove some
properties of these calculi. In particular, we follow the proofs that PSN neither holds
for λσ nor for λse given in [MEL 95] and [GUI 00], respectively. By examining these
counter-examples in SUBSEXPL, firstly, one can animate the generation of an infinite
derivation in the associated substitution calculi starting from a well typed term of the
pure λ-calculus. Secondly, one can try to generate infinite derivations of β-reductions
from these λ-terms, concluding that this is impossible. The latter is performed without
necessarily knowing that there are no infinite (β-)derivations in the λ-calculus starting
from well typed terms. In this way it is possible to simultaneously understand the
importance of the PSN property as well as why it does not hold in these two calculi.

4.3.1. The counter-example of Melliès

Melliès’s counter-example for the λσ-calculus consists of an infinite derivation
starting from the well typed pure λ-term λ((λ(λ1)((λ1)1))((λ1)1)). The correspond-
ing term in the language of SUBSEXPL is given by:

��� � � ��� ��� ������� � � � � ����� � �'� ��� � ��� � ���
� � �'����� �
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The infinite reduction is generated by applying an adequate strategy which mixes
rules of the associated calculus σ with the rule Beta which initiates the simulation
of one step β-reduction. The whole derivation, with the usual grammar of the λσ-
calculus, is given at the end of this subsection according to the numbering of steps
given in the following tables. In this derivation, the key sub-terms, which give rise to
the infinite derivation, are labeled with under-brackets.

STEP RULE POSITION STEP RULE POSITION

1 1 111 3 4 1
2 1 1 4 8 12

The term ���  � ��� � 	�� ��� � � � � � � ��� � �
� � ��� � � � � � ��� � ���
� � �'� � � ��� ����� , in the in-
ternal notation of SUBSEXPL, or equivalently (λ1[((((λ1)1)·id)◦(((λ1)1)·id))]), in
the language of the λσ, is obtained after the third step.

Let us define recursively:

s1 � 9 	 �(�5�! "� #�$&%/#�$.% � )
$ �
≡ (((λ1)1)·id) $

s2 ����� ��� �=% 9 	 � ��� � #.% s1 $&% � )
$2$ �
≡ (↑◦(1[(((λ1)1)·id)]·id)) $

����� ��� �=% 9 	 � ��� � #.% 9 	 �!�5�! "� #�$&%/#�$&% � )8$2$&% � )$2$
s3 ����� ��� �=% 9 	 � ��� � #.% s2 $&% � )
$2$����� ��� �=% 9 	 � ��� � #.%���� ��� �=% 9 	 � ��� � #8% 9 	 �(�5�( 5� #�$&%1#�$.% � )
$2$&% � )
$2$2$&% � )
$2$�

≡ (↑◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)) $
�����

si ����� ��� �=% 9 	 � ��� � #.% si−1 $2$.% � )
$2$
With this definition, we can write the current term as ���  � � � � 	�� � s1

�
s1 � ��� . No-

tice that si works as an abbreviation instead of an actual input to the system. But
in SUBSEXPL it is always possible to deal with variable names without any prob-
lem. At this point, applying the Map transition at position 12, the sub-term s1 is
duplicated. And we get ���  � ��� � � � �  � � � � ��� ��� � ��� � s1 � � 	�� � � � � s1 � � � � (or equi-
valently, (λ1[(((λ1)1)[(((λ1)1) · id)] · (id◦ (((λ1)1) · id)))])). Note that the second
occurrence of s1 is vacuous, in the sense that it can be easily eliminated by the rule
VarCons. The key idea of Melliès is to maintain this second occurrence of s1 and to
propagate the first occurrence as follows:

STEP RULE POSITION STEP RULE POSITION

5 2 121 7 3 1211
6 9 122

One reaches (λ1[(((λ1[(1·((((λ1)1)·id)◦↑))])1[(((λ1)1)·id)])·(((λ1)1)·id))]), or
equivalently

 "� ��� � #.% 9 	 �!�5�! "� ��� � #.% 9 	 � #.%���� � s1 % � �.$2$2$2$.%;��� � #8% s1 $2$.% s1 $2$2$ , and again
we can apply the Beta rule and then compose the two substitutions:

STEP RULE POSITION STEP RULE POSITION

8 1 121 9 4 121
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The next 3 steps duplicate the sub-term � � �  � ��� � � � � � � � � ��� � ��� � � � � � � ��� � and
generate the term s2 � 	�� � ��� � � ���  � ��� � � ��� � � ��� ��� � ��� � � � ��� � ��� ��� which have
inside an occurrence of s1 (see the under-bracketed terms in the derivation at the end
of this subsection):

STEP RULE POSITION STEP RULE POSITION

10 8 1212 12 7 12122
11 5 12121

At this point,
� �  � ��� � � � �  � ��� � � � �  � � � � s1 � � 	�� � s1

�
s2 � � � � s1 � � � , or

(λ1[(1[(1[(((λ1)1) ·id)] ·((((λ1)1)·id)
︸ ︷︷ ︸

s1

◦(↑◦(1[(((λ1)1)·id)]·id))
︸ ︷︷ ︸

s2

))] ·(((λ1)1) ·id))])

becomes the current term. It contains an occurrence of 	�� � s1
�
s2 � . By repeating the

same sequence of rules we get a term with the sub-term 	�� � s2
�
s3 � .

STEP RULE POSITION STEP RULE POSITION

13 8 12122 18 4 121221
14 2 121221 19 8 1212212
15 9 121222 20 5 12122121
16 3 1212211 21 7 12122122
17 1 121221

Here, it is easy (at least easier than following the proof with paper and pencil!)
to see how an infinite reduction can be built from the initial well typed term in the
λσ calculus of explicit substitutions. The mechanism of this cyclicity may not be
completely evident after the 21 steps presented here, but with SUBSEXPL the reader
can further expand this infinite derivation until it is clarified. In Table 6, we give the
corresponding reduction generated in Latex format by SUBSEXPL.

The steps presented in this example are stored in the file
�
�
�����

�
�

distributed with
the source code of SUBSEXPL and can be executed automatically with the command:� � ������ ����� � �&� � � � � ����� � � .

In this case, the output dvi file automatically generated is
�
�
�����

�
� � ���%� � ��� . Note

that the notation s1, s2, s3 and the numeration of the steps are used here for ease of
reading but is not automatically generated in the above � � � file. The latex code of the
output can be found in the file

�
�
�����

�
� � ��� .

4.3.2. The counter example of Guillaume

In [GUI 00], Guillaume showed that the λse-calculus does not preserve strong
normalization. This is realized by an infinite derivation starting from the well typed
pure λ-term in de Bruijn’s notation:
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0 (λ((λ((λ1)((λ1)1)))((λ1)1)))→Beta

1 (λ((λ1[(((λ1)1)·id)])((λ1)1)))→Beta

2 (λ1[(((λ1)1)·id)][(((λ1)1)·id)])→Clos

3 (λ1[((((λ1)1)·id)
| {z }

s1

◦(((λ1)1)·id)
| {z }

s1

)])→Map

4 (λ1[(((λ1)1)[(((λ1)1)·id)]·(id◦(((λ1)1)·id)))])→App

5 (λ1[(((λ1)[(((λ1)1)·id)]1[(((λ1)1)·id)])·(id◦(((λ1)1)·id)))])→IdL

6 (λ1[(((λ1)[(((λ1)1)·id)]1[(((λ1)1)·id)])·(((λ1)1)·id))])→Abs

7 (λ1[(((λ1[(1·((((λ1)1)·id)◦↑))])1[(((λ1)1)·id)])·(((λ1)1)·id))])→Beta

8 (λ1[(1[(1·((((λ1)1)·id)◦↑))][(1[(((λ1)1)·id)]·id)] ·(((λ1)1)·id))])→Clos

9 (λ1[(1[((1·((((λ1)1)·id)◦↑))◦(1[(((λ1)1)·id)]·id))]·(((λ1)1)·id))])→Map

10 (λ1[(1[(1[(1[(((λ1)1)·id)]·id)]·(((((λ1)1)·id)◦↑)◦(1[(((λ1)1)·id)]·id)))]·(((λ1)1)·id))])

→V arCons

11 (λ1[(1[(1[(((λ1)1)·id)]·(((((λ1)1)·id)◦↑)◦(1[(((λ1)1)·id)]·id)))]·(((λ1)1)·id))])→Assoc

12 (λ1[(1[(1[(((λ1)1)·id)]·((((λ1)1)·id)
| {z }

s1

◦(↑◦(1[(((λ1)1)·id)]·id))
| {z }

s2

))]·(((λ1)1)·id))])→Map

13 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1)1)[(↑◦(1[(((λ1)1)·id)]·id))]·

(id◦(↑◦(1[(((λ1)1)·id)]·id)))))]·(((λ1)1)·id))])→App

14 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1)[(↑◦(1[(((λ1)1)·id)]·id))]1[(↑◦(1[(((λ1)1)·id)]·id))])·
(id◦(↑◦(1[(((λ1)1)·id)]·id)))))]·(((λ1)1)·id))])→IdL

15 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1)[(↑◦(1[(((λ1)1)·id)]·id))]1[(↑◦(1[(((λ1)1)·id)]·id))])·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Abs

16 (λ1[(1[(1[(((λ1)1)·id)]·(((λ1[(1·((↑◦(1[(((λ1)1)·id)]·id))◦↑))])1[(↑◦(1[(((λ1)1)·id)]·id))])·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Beta

17 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1·((↑◦(1[(((λ1)1)·id)]·id))◦↑))][(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Clos

18 (λ1[(1[(1[(((λ1)1)·id)]·(1[((1·((↑◦(1[(((λ1)1)·id)]·id))◦↑))◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id))]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Map

19 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1[(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)]·

(((↑◦(1[(((λ1)1)·id)]·id))◦↑)◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)))]·
(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→V arCons

20 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1[(↑◦(1[(((λ1)1)·id)]·id))]·
(((↑◦(1[(((λ1)1)·id)]·id))◦↑)◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id)))]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])→Assoc

21 (λ1[(1[(1[(((λ1)1)·id)]·(1[(1[(↑◦(1[(((λ1)1)·id)]·id))]·
((↑◦(1[(((λ1)1)·id)]·id))

| {z }

s2

◦(↑◦(1[(↑◦(1[(((λ1)1)·id)]·id))]·id))
| {z }

s3

))]·

(↑◦(1[(((λ1)1)·id)]·id))))]·(((λ1)1)·id))])

Table 6. The counter-example of Melliès

λ((λ((λ((λ2)3))2))(λ((λ2)2))1)

which is written in the SUBSEXPL system as

��� � � � � � � ��� � � ����
 � ��� � � � 
 � � � � � ��� � � � ��
�� � 
 � � � �'� ���

The steps of the infinite derivation, written in the usual grammar of the λse-
calculus, are given at the end of this subsection according to the numbering of these
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steps. The key sub-terms originating the infinite derivation are under-bracketed. The
initial steps are given by:

STEP RULE POSITION STEP RULE POSITION

1 1 1 4 2 111
2 1 11 5 3 1
3 3 11 6 2 11

Here, the derivation gives the sub-term  ��� �  � � �	��� 
�� � � � ��� ��� � ��
 � � 
���� � �
� �
which is denoted as u0, and so u0 := (3σ12)σ1((λ((λ2)2))1). We recursively define
the following: un+1 :=  ��� �  � � � � ��
 � � � 
 � � ���	
 � � � ����� � un � if n ≥ 0.

The following steps are:

STEP RULE POSITION STEP RULE POSITION

7 1 1 10 11 11
8 4 111 11 8 1
9 10 11

The current term,

���  � � �  ��
 � � ��
 � � � 
 � � u0 � �  ��� � � ��
 � � � � � ��� ��� � ��
 � � 
�� � � ����� � u0 � ���

has the term  ��� � � �	
 � � � ��� ��� � � ���	
�� � 
 � � � �'��� � u0 � as a sub-term, which is writ-
ten as (ϕ2

0((λ((λ2)2))1)σ1u0) in the language of the λse-calculus. This sub-term is
important in the characterization of the infinite reduction.

The following steps are given in the next table:

STEP RULE POSITION STEP RULE POSITION

12 6 121 20 3 12
13 5 1211 21 2 121
14 6 12111 22 1 12
15 5 121111 23 4 1211
16 7 1211111 24 10 121
17 1 121 25 11 121
18 3 121 26 8 12
19 2 1211

The current term contains the sub-term  ��� � � �	
 � � � u0 � � u1 � which can be re-
duced to  ��� � � ��
 � � � � � ��� � � ����
 � � 
 ��� � �'� � � u1 � according to the table:

STEP RULE POSITION STEP RULE POSITION

27 11 1221 28 8 122
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The current term contains  ��� � � �	
 � � � ��� ��� � � � ��
�� � 
 � � � �'��� � u1 � as a sub-term
which completes the first cycle of our infinite reduction. Note that we do not have a
loop in these reductions because the original term is never reached again. In fact, the
adequate combination of the associated calculus, named se, with the σ-generation rule
permits one to start new simulations of β-reduction without finishing previous started
simulations of β-reduction which suggests a kind of cycle. The same happens in the
λσ-calculus.

When the sub-term  ��� � � ��
 � � � � � � � ��� � ��
 � � 
�� � � ����� � u2 � is generated, then
the next cycle is completed. This is done by repeating the same steps from 12 to 26
in adequate positions. Additional applications of the rules 11 and 8 (in this order) will
be necessary to rewrite terms of the form  ��� � � �	
 � � � um � � un � as terms containing
sub-terms of the form  ��� � ����
 � � � � � ��� ��� � ��
 � � 
 � � � �
� � � un � , for n, m ≥ 0 (cf.
[GUI 00]). The next table presents the necessary steps to complete the second cycle:

STEP RULE POSITION STEP RULE POSITION

29 6 12221 37 3 1222
30 5 122211 38 2 12221
31 6 1222111 39 1 1222
32 5 12221111 40 4 122211
33 7 122211111 41 10 12221
34 1 12221 42 11 12221
35 3 12221 43 8 1222
36 2 122211

Now we need to reduce the sub-term  ��� � � ��
 � � � u1 � � u2 � to a new term having
 ��� � � �	
 � � � u0 � � u2 � as a sub-term, from which we get the sub-term
 ��� � � �	
 � � � ��� ��� � � ���	
�� � 
 ��� � �'� � � u2 � . The next table includes this reduction:

STEP RULE POSITION STEP RULE POSITION

44 11 122221 46 11 1222221
45 8 12222 47 8 122222

Note that here, two applications of rules 11 and 8 (in this order) were necessary
as is shown in the previous table. To continue the derivation and generate the sub-
term  ��� � � �	
 � � � ��� ��� � � � ��
�� � 
 � � � �'��� � u3 � repeat steps 29 to 47 on the adequate
positions. Do not forget that additional applications of rules 11 and 8 will be necessary.
Observing the under-bracketed sub-terms in the derivation, the shape of the infinite
derivation can be written as

λ((λ((λ((λ2)3))2))(λ((λ2)2))1) ;

(ϕ2
0((λ((λ2)2))1)σ1u0) ;

(ϕ2
0((λ((λ2)2))1)σ1u1) ;

(ϕ2
0((λ((λ2)2))1)σ1u2) ; · · ·

where ; means “leads to a term containing the following expression as a sub-term”.

The latex output of the first 28 steps of the infinite derivation can be automatically
generated. To do so, type the prompt shell command:
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� � ���� � ����� ����� � � 
  ���������� �

where 
  ����� ���� � is a file distributed with the source code of SUBSEXPL. The sys-
tem will generate the 
  ����� ���� � � ��� � � � � � file. The result is shown in Table 7 which
includes the number of the steps and some subscripts for ease of reading, such as
u0 and u1, that do not appear in the latex output generated by the system SUB-
SEXPL. In this example, the latex code of the output can be found in the file called

  �������
�� � � ��� � .

The animated generation of the initial steps of these infinite derivations inside each
calculus gives an easy-to-understand and more intuitive insight as to why the PSN
property fails. In fact, for understanding these counter-examples (and their import-
ance) directly from the related papers ([MEL 95, GUI 00]), the reader needs to follow
a sequence of inductively proved lemmas and theorems. This is of course necessary
for an adequate formalization of this fact. But when this approach is followed, one
presumes previous knowledge of the reader about what PSN means. And we believe
that following this course of reasoning the reader may lose the focus about the mech-
anics of these infinite derivations in the associated substitution calculi. Even worse,
the reader may miss a very important aspect: namely, the meaning and the implica-
tions of losing PSN in these calculi. Consequently, we believe that SUBSEXPL is an
adequate and useful tool for intuitively understanding the details and difficulties con-
cerned with this and other general properties of the λ-calculus as well as of explicit
substitutions calculi.

In [NAD 99, LIA 02] it has been conjectured that PSN holds in λSUSP . But until
now, there is neither a formal proof nor a counter-example of this conjecture. We
believe that SUBSEXPL may act as an adequate tool for reasoning about open ques-
tions like this, since every reduction (either from a pure or a non pure λ-term) can be
simulated in an easy, fast and sure way in this system.

5. Conclusions and future work

We presented the system SUBSEXPL which is an Ocaml implementation of the
rewriting rules of the λσ, the λse, the suspension and the combining suspension calculi
of explicit substitutions, although according to the current structure the inclusion of
other explicit substitutions calculi can be easily done.

We showed how the system has been applied both to educational and research
purposes. Its educational uses include:

– the visualization of the mechanics of de Bruijn notation;

– the visualization of the computational adequacy of the λ-calculus via specifica-
tion of numerals, numerical functions and programming operators;

– the visualization of (non trivial) properties of the λ-calculus such as non termin-
ation and the normalization theorem;
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0 (λ((λ((λ((λ2)3))2))((λ((λ2)2))1))) →σ-gen

1 (λ(((λ((λ2)3))2)σ1((λ((λ2)2))1))) →σ-gen

2 (λ((((λ2)3)σ1
2)σ1((λ((λ2)2))1))) →σ-app

3 (λ((((λ2)σ1
2)(3σ1

2))σ1((λ((λ2)2))1))) →σλ

4 (λ(((λ(2σ2
2))(3σ1

2))σ1((λ((λ2)2))1))) →σ-app

5 (λ(((λ(2σ2
2))σ1((λ((λ2)2))1)) ((3σ

1
2)σ

1
((λ((λ2)2))1))

| {z }

u0

)) →σλ

6 (λ((λ((2σ2
2)σ2((λ((λ2)2))1)))((3σ1

2)σ1((λ((λ2)2))1)))) →σ-gen

7 (λ(((2σ2
2)σ2((λ((λ2)2))1))σ1((3σ1

2)σ1((λ((λ2)2))1)))) →
σ-des

8 (λ((ϕ2
0(2)σ2((λ((λ2)2))1))σ1((3σ1

2)σ1((λ((λ2)2))1)))) →σϕ2

9 (λ(ϕ2
0((2σ1((λ((λ2)2))1)))σ1((3σ1

2)σ1((λ((λ2)2))1)))) →ϕσ

10 (λ((ϕ2
1(2)σ1ϕ2

0(((λ((λ2)2))1)))σ1((3σ1
2)σ1((λ((λ2)2))1)))) →σσ

11 (λ((ϕ2
1(2)σ2((3σ

1
2)σ

1
((λ((λ2)2))1))

| {z }

u0

)σ1(ϕ2
0(((λ((λ2)2))1))σ1((3σ

1
2)σ

1
((λ((λ2)2))1))

| {z }

u0

))) →ϕ-app

12 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1((ϕ2
0((λ((λ2)2)))ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1))))) →ϕλ

13 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1(((λϕ2
1(((λ2)2)))ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1))))) →ϕ-app

14 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1(((λ(ϕ2
1((λ2))ϕ2

1(2)))ϕ2
0(1))σ1((3σ1

2)σ1((λ((λ2)2))1))))) →ϕλ

15 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1(((λ((λϕ2
2(2))ϕ2

1(2)))ϕ2
0(1))σ1((3σ1

2)σ1((λ((λ2)2))1))))) →
ϕ-des

16 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1(((λ((λ2)ϕ2
1(2)))ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1))))) →σ-gen

17 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1((((λ2)ϕ2
1(2))σ1ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1))))) →σ-app

18 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1((((λ2)σ1ϕ2
0(1))(ϕ2

1(2)σ1ϕ2
0(1)))σ1((3σ1

2)σ1((λ((λ2)2))1))))) →σλ

19 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1(((λ(2σ2ϕ2
0(1)))(ϕ2

1(2)σ1ϕ2
0(1)))σ1((3σ1

2)σ1((λ((λ2)2))1))))) →σ-app

20 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1(((λ(2σ2ϕ2
0(1)))σ1((3σ1

2)σ1((λ((λ2)2))1)))

((ϕ2
1(2)σ1ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1)))))) →σλ

21 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1

((λ((2σ2ϕ2
0(1))σ2((3σ1

2)σ1((λ((λ2)2))1))))((ϕ2
1 (2)σ1ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1)))))) →σ-gen

22 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1(((2σ2ϕ2
0(1))σ2((3σ1

2)σ1

((λ((λ2)2))1)))σ1((ϕ2
1(2)σ1ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1)))))) →

σ-des

23 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1((ϕ2
0(ϕ2

0(1))σ2((3σ1
2)σ1((λ((λ2)2))1)))σ1

((ϕ2
1(2)σ1ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1)))))) →σϕ2

24 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1(ϕ2
0((ϕ2

0(1)σ1((3σ1
2)σ1((λ((λ2)2))1))))σ1

((ϕ2
1(2)σ1ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1)))))) →ϕσ

25 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1

((ϕ2
1(ϕ2

0(1))σ1ϕ2
0(((3σ1

2)σ1((λ((λ2)2))1))))σ1((ϕ2
1(2)σ1ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1)))))) →σσ

26 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1((ϕ2
1(ϕ2

0(1))σ2((ϕ2
1(2)σ1ϕ2

0(1))σ1((3σ1
2)σ1

((λ((λ2)2))1))))σ1(ϕ2
0(((3σ

1
2)σ

1
((λ((λ2)2))1))

| {z }

u0

)σ1((ϕ
2
1(2)σ

1
ϕ
2
0(1))σ

1
((3σ

1
2)σ

1
((λ((λ2)2))1)))

| {z }

u1

)))) →ϕσ

27 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1((ϕ2
1(ϕ2

0(1))σ2((ϕ2
1(2)σ1ϕ2

0(1))σ1((3σ1
2)σ1

((λ((λ2)2))1))))σ1((ϕ2
1((3σ1

2))σ1ϕ2
0(((λ((λ2)2))1)))σ1((ϕ2

1(2)σ1ϕ2
0(1))σ1((3σ1

2)σ1((λ((λ2)2))1))))))) →σσ

28 (λ((ϕ2
1(2)σ2((3σ1

2)σ1((λ((λ2)2))1)))σ1((ϕ2
1(ϕ2

0(1))σ2((ϕ2
1(2)σ1ϕ2

0(1))σ1((3σ1
2)σ1

((λ((λ2)2))1))))σ1((ϕ2
1((3σ1

2))σ2((ϕ2
1(2)σ1ϕ2

0(1))σ1((3σ1
2)σ1((λ((λ2)2))1))))σ1ϕ2

0(((λ((λ2)2))1))σ1

((ϕ
2
1(2)σ

1
ϕ
2
0(1))σ

1
((3σ

1
2)σ

1
((λ((λ2)2))1)))

| {z }

u1

))))

Table 7. The counter-example of Guillaume
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– the illustration of the problem of implicitness of the substitution operator and
how this is resolved in real implementations by explicit substitutions calculi; etc.

In particular, the second use was exemplified in Subsection 4.1, where we show how
elaborated computational operations such as iteration are implemented in the language
of SUBSEXPL and how computations of simple recursive functions are simulated.
Additional simulations can be done with other functions available in the companion
file of examples. Illustration of relevant non trivial properties of the λ-calculus such
as the normalization theorem can be given by presenting simulations of left-most re-
duction for any weak normalizing λ-term from which infinite derivations are possible
as well.

The research applications of SUBSEXPL include:

– assisting the analysis of non trivial properties of explicit substitutions calculi;

– comparing calculi of explicit substitutions.

The former was illustrated by showing that one can check the proofs of Melliès and
Guillaume (included in the tutorial distributed with the source code of the system) of
the fact that neither λσ nor λse preserve strong normalization using the system. The
latter by showing how the system assisted us in the proof that λse is more efficient than
the suspension calculus and is incomparable to the λσ-calculus in the simulation of
one-step β-reduction [AYA 05] and in formalizing the possibility and impossibility of
building refinements of λσ and λse, which combine β-contractions as the combining
suspension calculus does [FER 05b].

Furthermore, SUBSEXPL gives correct implementations of η-reduction for each
of the four explicit substitutions calculi following the principles given in [AYA 05].
For the λse-calculus this implementation is also clean, but for λσ and λSUSP (and by
the nature of these calculi), the simulation of one-step η-reduction requires the use of
rewriting rules that are not strictly related to this one-step simulation.

Other authors have presented tools that manipulate λ-expressions with symbolic
variables in a similar way; for example Huet presented a tool and illustrated how
this can be applied for assisting in the understanding of non trivial properties of the λ-
calculus such as Böhm’s theorem [HUE 93]. The novelty of SUBSEXPL with relation
to these applications is that it follows the de Bruijn’s philosophy of avoiding names,
which makes our tool also adequate for assisting in the reasoning about properties of
explicit substitution calculi.

SUBSEXPL is in constant development and new features should be included in
future versions. Among these features, we can point out the development of the in-
terface of the system, inclusion of new modules for dealing with the simply typed
λ-terms and the λ-calculus with names.
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