
Reusing Formal Proofs Through Isomorphisms∗

Invited Talk

Mauricio Ayala-Rincón
†

Departments of Mathematics and Computer Science
Universidade de Brasília

Brasília D.F., Brazil
ayala@unb.br

ABSTRACT
Formalization of computational objects, software and hard-
ware, is the unique manner to guarantee well-behavior of
computer programs and hardware, at least from the math-
ematical and logical point of view. Several verification and
testing approaches have been proved of great applicability
in this area being their usability made evident through real
applications in the development of critical systems. Reusing
the given correctness proofs of a specification in order to
verify that an improved version of the originally given spec-
ification is also correct requires a great deal of effort and
in several cases simple algorithmical improvements make it
necessary the development of new correctness proofs from
scratch. This paper sketches a methodology based on con-
struction of isomorphisms between data structures that al-
lows reusing correctness proofs for specifications that are
obtained basically changing data structures. The case of
study is a specification of the well-known Dolev-Yao crypto-
graphic model in which the characterization of security was
formalized in the proof assistant PVS. The given formalized
specification was based on the representation of sequences
of cryptographic operators via a data structure of finite se-
quences. The “improvement” consists of a specification in
which lists will be used instead finite sequences.

Categories and Subject Descriptors
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification techniques; F.4.1 [Mathematical
Logic]: Proof theory; D.2.4 [Software/Program Verifi-
cation]: Formal methods

Keywords
Specification and verification, Formalization, Proof assis-
tants - PVS, Reusing formal proofs

∗Research funded by the Brazilian Research Council CNPq
and the District Federal Foundation for Research FAPDF.
†Author partially funded by the Brazilian Research Council
CNPq.

1. INTRODUCTION
Formal methods are of great usability to certify quality of
software and hardware design, but reusing mechanical demon-
strations after the original design is modified, usually re-
quires rebuilding proofs from scratch.

As an example, consider the following specification of a search-
ing function of keys over lists of naturals written in the lan-
guage of the well-known proof assistant PVS1 [3].

search(i : nat, l : list[nat]) : RECURSIVE nat =

IF null?(l) THEN length(l)

ELSIF car(l) = i THEN 0

ELSE 1 + search(i, cdr(l)) ENDIF

MEASURE length(l)

Correctness of this searching method consists in proving that
whenever given as input a natural key i and a list of natural
keys l, the computed output will be

• either the length of the list, if the searched key does
not occurs in the list,

• or a valid index k of the list, that is a natural below the
length of the list, such that i in fact occurs at position
k in the list l.

The positions of l are indexed from 0 to its length minus
one. These correctness constraints can be stablished as the
two lemmas below, respectively.

not_member_gives_length : LEMMA

FORALL(l : list[nat], i : nat):

NOT member(i,l) IMPLIES search(i, l) = l‘length

search_works : LEMMA

FORALL (l : list[nat], k : nat) :

member(k, l) IMPLIES nth(l, search(k, l)) = k

Formalizations of both these lemmas are obtained by induc-
tion on the length of lists after working particular charac-
teristics of the list abstract data type and its primitive

1PVS specification and verification system available at
http://pvs.csl.sri.com/

operators, such as decreasingness of the length of the cdr of
non empty lists and preservation of the contents of the list
after applying cdr, as well as validity of the position com-
puted expressed through a PVS type correctness condition
(TCC):

search_works_TCC1: OBLIGATION

FORALL (l: list[nat], k: nat):

member(k, l) IMPLIES

search(k, l) < length[nat](l);

This TCC is automatically generated by the proof assistant
PVS from the specification of lemma search_works since
the function nth is typed as

nth : [l: list[nat], j: below[l‘length]] -> nat

and search_works uses l and search(k,l) as arguments of
nth.

Lists and searching on lists can be applied in several com-
putational applications, but although all these formaliza-
tions on lists are simple, the use of lists is optional. For
instance, indexation of sequences of large size requires opti-
mal compression of information given by means of bit-code
arrays and even more sophisticated data structures such as
suffix and array trees. Consequently, adopting other data
structure will imply the development of new specialized for-
malizations according to the chosen data structure of the
modified specification.

Here, a formal discipline based on construction of isomor-
phism functors is proposed in order to reuse formalizations
when different data structures are chosen to solve the same
problem. The suggested approach proposes the exploration
and construction of isomorphism functions together with
formalization of their associated homeomorphic properties.
These isomorphisms bijectively map the basic structures,
relational and functional objects involved in the original
given specification, for which it is supposed several formal-
izations were done, and the new selected data structures
and their associated relational and functional objects. In
this way the specifier is able to reuse formalizations previ-
ously constructed for the specification based on the original
data structure.

2. BACKGROUND
Mathematically, isomorphisms are defined as a bijective trans-
formations between algebraic structures which preserve rela-
tions and functions. Thus, an isomorphism ı maps not only
elements of the domain of one structure into the other, but
also functions and relations from one structure into func-
tions and relations of the other one. For instance, exp is an
isomorphism between R and R+, since it is a bijective func-
tion. Notice also that exp(x + y) = exp(x) × exp(y), then
the corresponding operation to + in R+ is × and vice-versa.
Also, the ordering relation > is preserved: x > y if and
only if exp(x) > exp(y). Thus, the relation corresponding
to > in R is also > in R+. Summarizing, one has a transfor-
mation ı form the structure 〈R,+, 0, >〉 into the structure

〈R+,×, 1, >〉 via exp in the following form:

〈R,+, 0, >〉 ı // 〈R+,×, 1, >〉

R
x 7→ ı(x):=exp(x) // R+

+
+ 7→ +ı:=× // ×

0
0 7→ 0ı:=1 // 1

>
> 7→ >ı:=> // >

Since exp is bijective, it is invertible, and one knows its
inverse, denoted as ı, is the function ln. Thus, one has two
useful lemmas:

Lemma (isomorphism 1) ı ◦ ı is the identity in R

Lemma (isomorphism 2) ı ◦ ı is the identity in R+

In fact, one knows that ∀x : R. ln(exp(x)) = x and ∀x :
R+. exp(ln(x)) = x.

Jointly with these isomorphism lemmas, several homeomor-
phic properties related with the preservation of operators
through the isomorphism functor are necessary:

Lemma (preservation of +)
∀x, y : R. ı(x+ y) = ı(x) +ı ı(y)

Lemma (preservation of > 1)
∀x, y : R. x > y ⇔ ı(x) >ı ı(y)

In fact, ∀x, y : R. exp(x + y) = exp(x) × exp(y) and ∀x, y :
R. x > y ⇔ exp(x) > exp(y).

Also, one has homeomorphic properties related with the
preservation of operators through the inverse of the isomor-
phic functor:

Lemma (preservation of ×)
∀x, y : R+. ı(x× y) = ı(x)×ı ı(y)

Lemma (preservation of > 2)
∀x, y : R + . x > y ⇔ ı(x) >ı ı(y)

In fact, ∀x, y : R+. ln(x × y) = ln(x) + ln(y) and ∀x, y :
R+. x > y ⇔ ln(x) > ln(y).

Now, suppose the following equational theorems in which
new operators “−()” and “()−1” are involved, have been
proved in 〈R,+, >〉:

Theorem (additive inverse) ∀x : R. x+ (−x) = 0

Theorem (ln of mult. inverses) ∀x : R+. ln(x−1) = − ln(x)

The proof of this theorem can be reused in order to prove
new theorems in the structure 〈R+,×, >〉, for instance

Theorem (multiplicative inverse) ∀x : R+. x× x−1 = 1

can be proved as follows:

1. x × x−1 = exp ◦ ln(x × x−1), by Lemma isomorphism
2;

2. exp ◦ ln(x× x−1) = exp(ln(x) + ln(x−1)), by preserva-
tion of ×;

3. exp(ln(x) + ln(x−1)) = exp(ln(x) +− ln(x)), by Theo-
rem of ln of mult. inverses;

4. exp(ln(x) +− ln(x)) = exp(0), by Theorem of additive
inverse;

5. exp(0) = 1, by application of the isomorphism exp.

In this way, a new proof of a theorem in the structure
〈R,+, 0, >〉 is obtained from proofs in the other structure,
that is 〈R+,×, 1, >〉, by applying isomorphic properties with-
out the need to prove additional algebraic properties in the
original structure.

Of course, this kind of reuse of proofs can be applied in
computational formalizations, but always depending on the
specificities of the objects, functions and relations being
treated.

3. ISOMORPHIC TRANSFORMATION IN
COMPUTATIONAL SPECIFICATIONS

Several additional aspects need special attention when deal-
ing with computational specifications and formalizations;
among them, it deserves consideration the fact that in com-
putation one deals with poly-sorted functions and relations.
Thus, while in mathematics one deals with isomorphisms
from a unique domain into another one (e.g., from R into
R+) in the definition of isomorphism functor in the compu-
tational context, it is necessary to deal with transformations
between a family of sorts and signatures of poly-sorted func-
tions and relations.

A poly-sorted signature is a structure of the form 〈A,F ,R〉,
where A is a finite family of sorts, say {τ1, . . . , τn}; F is a
finite set of functions together with their types, that is, for
each f ∈ F , one has a type description of f : τi1 × · · · ×
τin → τ , where τ and each τij , for 1 ≤ j ≤ n, is a type
in the family of sorts; and, R is a finite set of predicates
together with their types, that is, for each p ∈ R, one has a
type description of p : τk1 × · · · × τkm , where each τkj , for
1 ≤ j ≤ m, is a type in the family of sorts.

This way, it is possible to define poly-sorted functions such
as the element of a list of naturals, nth : index×List[N]→
N, which is intended to take as input a valid index of a list
of naturals and to give as output the natural in this position
of the list.

Now, the definition of isomorphism can be stablished.

Definition (Isomorphisms between poly-sorted signatures)
Let 〈A,F ,R〉 and 〈B,G,P〉 be signatures consisting of fam-
ilies of sets A = {A1, . . . , An} and B = {B1, . . . , Bn}, func-
tions F = {f1, . . . , fk} and G = {g1, . . . , gk} and relations
R = {r1, . . . , rl} and P = {p1, . . . , pl}. An isomorphism
between these structures, ı is a bijective mapping from the

families of sets, and from functions into functions and re-
lations into relations, such that the following homeomorphic
preservation properties hold:

• For all f ∈ F , and m-tuple of well-typed arguments
for f , x1, . . . , xm, supposing f is an m-ary function of
type τi1 × · · · × τin → τ ,

ıτ (f(x1, . . . , xm)) = f ı(ıτi1 (x1), . . . , ıτim (xm));

• For all p ∈ P, and m-tuple of well-typed arguments
for p, x1, . . . , xm, supposing p is an m-ary predicate of
type τi1 × · · · × τin ,

ı(p(x1, . . . , xm)) if and only if pı(ıτi1 (x1), . . . , ıτim (xm)).

For brevity, subscripts of the isomorphic transformation are
omitted, but it should be noticed that this transformation is
in general polymorphic and poly-sorted. The former, since
having several sorts, the equality relation is polymorphic and
it has to be mapped by the isomorphism.

For our structures 〈R,+, >〉, 〈R+,×, >〉, the isomorphism ı
maps x ∈ R as ı(x) = exp(x), +ı is mapped in × and >ı

into >. Thus, ı(x+y) = ı(x)+ı ı(y), that is exp(x)×exp(y).

In general, isomorphisms can be sketched as in Fig. 1.

4. CASE-STUDY: LISTS VERSUS SEQUENCES
IN A CRYPTOGRAPHIC FORMALIZA-
TION

In this section, reuse of proofs through isomorphisms in a
simple case of study will be considered. Alternative repre-
sentation of the freely generated monoid representing chains
of cryptographic operators in a formalization of the Dolev-
Yao cascade protocol model ([1]) as presented in [2] and
subsequently in [4] will be considered.

Essentially, a cryptographic protocol in the Dolev-Yao model
is a sequence of alternating chains of cryptographic opera-
tors, which specifies a communication protocol to be obliga-
torily followed by the actors of a communication net. This
is a two party model, but is of great relevance and usability
in a great variety of current (two and multi party) protocols
since it is embedded as part of most of the modern electronic
protocols.

Any user u ∈ U owns encrypt and decrypt keys Eu and Du.
The set {Eu | u ∈ U} ∪ {Du | u ∈ U} is the alphabet of the
language of the protocol and words freely generated by this
alphabet are steps of a protocol. From the algebraic point of
view, this is the freely generated monoid over this alphabet
in which concatenation and empty word, denoted as λ, play
the role of the binary operator and identity of the monoid.
Additionally, one considers the congruences

EuDu = λ DuEu = λ, ∀u ∈ U

Thus, for any message, or plain textM , one has Eu(Du(M)) =
Du(Eu(M)) = M .

Security in this model is characterized by two properties;
namely, existence of encrypt operators in the first step of

〈A,F ,R〉 ı // 〈B,G,P〉

A ∈ A
x 7→ ıA(x) // B ∈ B

f ∈ F
f 7→ fı // f ı ∈ G

ı(f(x1, . . . , xm)) = f ı(ı(x1), . . . , ı(xm))

p ∈ R
p 7→ pı // pı ∈ P

ı(p(x1, . . . , xm))⇔ pı(ı(x1), . . . , ı(xm))

Figure 1: Isomorphism between poly-sorted signatures

the protocol and balancing property in each step of the
protocol. The latter is explained as the existence of en-
crypt operators in any step of the protocol for any user for
which a decrypt operator appears in this step of the proto-
col. Additionally, any malicious user, or intruder, can follow
the protocol as any honest user for starting communication
with any other user or continuing a communication started
by another user, but also he/her can passively observe the
communication between other user and eventually supplant
other users. All this gives as result an admissible language
for the intruder. Security or a protocol means that using
this admissible language, any potential malicious user can-
not extract the message hidden by the protocol. Details can
be studied in the analytical proofs both in [1] and the com-
plete PVS formalization reported in [4] for which 1.651 lines
(80 KB) of specification and 55.300 lines (3.8 MB) of PVS
proof commands where necessary.

The option chosen to represent monoids in [4] is the struc-
ture of finite sequences. A finite sequence is a structure of
the form

(# length : nat, seq : [0..length-1] -> CryOp #)

where length is the length of the sequence and seq is the
access function of the sequence which for any valid index
k, from 0 to length - 1, gives as output the cryptographic
operator (CryOp) at position k of the finite sequence, say s.
This is done through calls of the form s‘seq(k). By the elab-
orated typing discipline of the PVS specification language,
whenever the type of k is different from [0..length-1], the
term s‘seq(k) is ill-typed.

The question of arises, from several algorithmic perspectives
and different programer’s point of views, whether this is
the better style to specify chains of cryptographic opera-
tors. And according to the efficiency necessities (e.g., either
reducing running time or space) and different programming
styles, alternative data structures can be chosen instead fi-
nite sequences. For instance, instead finite sequences, ADTs
as lists of CryOp can be used.

list[CryOp]

In the PVS specification language, as in other functional lan-

guages, lists of objects of type T, lists[T], are built from
the empty list, that is denoted as null and through the con-
structor cons, that is a function of type T, list[T] -> T,
and for an object of type T and a list of type list[T] builds
the list whose first element is the input object and whose tail
is the original list. The type of lists is parameterized and
PVS will automatically generate a variety of ADT lemmas
including as well a correct inductive schema of proofs.

For illustration, consider reusing the proof of

Theorem(length of empty sequences)
s‘length = 0 IFF s = empty_seq

to prove that the following analogous result over lists.

Theorem(length of null list)
length(l) = 0 IFF l = null

The isomorphism functor from sequences to lists of crypto-
graphic operators includes several transformations, as the
ones presented in Fig. 2.

In order to have the isomorphic engine, all the additional
inexistent necessary operators (such as ı(_‘seq) in Fig. 2)
should be specified as well as all necessary isomorphic prop-
erties should be formalized, explicitly.

In particular, on the one side, sequences are isomorphically
transformed into lists through the following recursive func-
tion.

ı(s : seq[CryOp]) RECURSIVE : list[CryOp] =

IF s‘length = 0 THEN null

ELSE cons(s‘seq(0), ı(s(1, s‘length - 1))

ENDIF

MEASURE seq‘length

Additionally, several homeomorphic properties should be

〈{CryOp, seq[CryOp],N,N, . . .}, {‘length, ‘seq, . . .}, {=seq[CryOp], . . .}〉

ı

��
〈{CryOp, list[CryOp],N,N+, . . .}, {length, ı(‘seq) . . .}, {=list[CryOp], . . .}〉

CryOpt
op 7→ op // CryOpt

seq[CryOpt]
s 7→ ı(s) // list[CryOpt]

N
n 7→ n // N

N(index)
n 7→ n+1 // N+(position)

‘length
s‘length 7→ length(ı(s)) // length()

‘seq
s‘seq 7→ λ(i:[1,length]). nth(i,ı(s)) // ı(‘seq)

...
...

ı //

...
...

Figure 2: Isomorphism between sequences and lists of CryOps

formalized as, for instance:

Lemma A1 ı(s‘length) = length(ı(s))

Lemma A2 ı(s‘seq) = λ(i:[1,s‘length]).nth(i, ı(s))

Lemma A3 ı(s‘seq(k)) = (λ(i:[1,s‘length]).nth(i, ı(s)))ı(k)

Observe, that one has:

(λ(i:[1,s‘length]).nth(i, ı(s)))ı(k) →β

(λ(i:[1,s‘length]).nth(i, ı(s)))(k + 1) →β nth(k + 1, ı(s)),

thus, by lemma A3, ı(s‘seq(k)) = nth(k + 1, ı(s)).

On the other side, lists are isomorphically transformed into
sequences through the following specified function.

ı(l : list[CryOp]) : seq[CryOp] =

(# length = length(l),

seq = λ(i:[0,length(l)−1]).nth(i+1, l) #)

As in the direction from sequences to lists, in this direction
homeomorphic properties should be formalized.

Lemma B1 ı(length(l)) = (ı(l))‘length

Lemma B2 ı(nth(k, l)) = (ı(l))‘seq(ı(k))

Notice that

λ(i:[0,length(l)−1]). nth(i + 1, l))(ı(k)) =
λ(i:[0,length(l)−1]). nth(i + 1, l))(k− 1) →β nth(k, l).

A family of lemmas about isomorphic properties are neces-
sary, among them one has:

Lemma isomorphism 1 ∀s : seq[CryOp]. ı ◦ ı(s) = s

Lemma isomorphism 2 ∀l : list[CryOp]. ı ◦ ı(l) = l

The previous lists of homeomorphism lemmas is not at all
exhaustive, and several other isomorphic transformations
should be built in order to be able to reuse proofs.

Coming back to the example of reusing the proof of The-
orem s‘length = 0 IFF s = empty_seq to prove Theorem
length(l) = 0 IFF l = null, one can follow the sketch be-
low:

length(l) = 0⇔ appl. of isomorphism operator

ı(length(l) = 0)⇔ isomorphism properties

ı(length(l)) = ı(0)⇔ isomorphism properties

ı(length(l)) = 0⇔ isomorphism properties

ı(l)‘length = 0 IFF reuse of Theorem

ı(l) = empty seq⇔ application of isomorphism

ı(ı(l) = empty seq)⇔ isomorphism properties

ı(ı(l)) = ı(empty seq)⇔ isomorphism properties

l = ı(empty seq)⇔ isomorphism properties

l = null 2

To summarize, the approach to reuse formalizations through
isomorphic transformations involves two main steps:

1. Construction and formalization of isomorphisms:

(a) Construction of isomorphic transformations be-
tween data structures, functions and relations;

(b) Formalization of isomorphic and homeomorphic
properties;

2. Reuse of proofs.

Once the first step is completed, proofs by reusing formal-
izations of equational and relational theorems follow the
sketches in Fig. 3 and 4, respectively.

f(x1, . . . , xn)KS

ı ı

��

isomorphisms

fı(ı(x1), . . . , ı(xn))

= Theorem

g(y1, . . . , ym)KS

ı ı

��

isomorphisms

gı(ı(y1), . . . , ı(ym))

Theorem f(x1, . . . , xn) = gı(ı(y1), . . . , ı(ym))

Figure 3: General sketch of reusing equational
proofs by isomorphisms

• Reusing proofs is not straightforward.

• Building poly-sorted isomorphisms works well, but is
an exhaustive task.

• Although this, after specifying isomorphism operators
and having proved all mundane isomorphic properties
complex proofs can be reused.

p(x1, . . . , xn)KS

ı ı

��

isomorphisms

pı(ı(x1), . . . , ı(xn)) Theorem

Theorem p(x1, . . . , xn)

Figure 4: General sketch for reusing relational
proofs by isomorphisms

5. DISCUSSIONS
Although the proposed proof reusing methodology is illus-
trated with very simple properties over lists and sequences, it
is necessary to remark that after having developed a full PVS
theory for isomorphisms between both finite sequences and
lists, that includes formalizations for homeomorphic prop-
erties for functions and relations over sequences and lists,
it will be possible to reuse highly elaborated formalizations
of theorems of the theory of characterization of security of
the Dolev-Yao model for cascade protocols. In this way, one
avoids development from scratch of formalizations for the
specification of the Dolev-Yao model over lists.

In general, the availability in a proof assistant of several
libraries about isomorphisms between different alternative
data structures is of great usability in order to adapt specifi-
cations to other data structures, different from the originally
chosen, by reusing formalizations through isomorphisms. Lists
and sequences are very similar, except for the inductive
schemas to be adapted to deal with recursive definitions;
consequently, proofs in one context are very similar to proofs
in the other one. But the proposed general methodology
is of great interest and usability when dealing with more
elaborated data structures used for the treatment of simi-
lar solutions. For instance, elaborated data structures such
as suffix trees and suffix arrays are highly explored in com-
plex algorithmic solutions of combinatorial questions over
strings, which makes of interest having isomorphic relations
between them.

6. REFERENCES
[1] D. Dolev and A. C. Yao. On the Security of Public Key

Protocols. IEEE. T. on Information Theory,
29(2):198–208, 1983.

[2] R. Nogueira, F. de Moura, A. Nascimento, and
M. Ayala-Rincón. Formalization Of Security Proofs
Using PVS in the Dolev-Yao Model. In Computability
in Europe CiE 2010 (Booklet), 2010.

[3] S. Owre, J. M. Rushby, and N. Shankar. PVS: A
Prototype Verification System. In D. Kapur, editor,
11thInt. Conf. on Automated Deduction (CADE),
volume 607 of LNAI, pages 748–752, 1992. Springer.

[4] Y. Rêgo and M. Ayala-Rincón. Formalization in pvs of
balancing properties necessary for the security of the
dolev-yao cascade protocol model. Technical
Report www.mat.unb.br/∼ayala, Universidade de
Braśılia, March 2012.

