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Motivation
Definition and a Small Example

Motivation

I Matching is a mechanism extensively used in computation for
implementing proof assistants and programming languages.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I Explicit substitutions provide an adequate framework, closer
to implementations, for reason theoretically about operational
aspects of evaluation in the λ-calculus.

I In this work we present algorithms that decide second and
third-order matching problems in the simply typed
λσ-calculus.
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Notation

I Matching equation:
a �? b

where a and b are two λ-terms of the same type under the
same context and b is ground.

I A substitution σ is a solution of the matching equation
a �? b iff aσ =βη b.

I A second-order (third-order, resp.) matching problem is a
finite set of matching equations in which all meta-variables are
at most second-order (third-order, resp.).
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A Simple Example

I append (X 1) (2 · nil) <<? 1 · 1 · 2 · nil
I Solutions:

I X/λy .(1 · 1 · nil)
I X/λy .(1 · y · nil)
I X/λy .(y · 1 · nil)
I X/λy .(y · y · nil)
I Note that there is no more general solution!
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The λσ-calculus

The λσ-calculus

I Developed by M. Abadi, L. Cardelli, P.-L. Curien and
J.J. Lévy in 1991[ACCL91].

I It uses two sorts:
terms: t ::= 1 | X | (t t) | λA.t | t[s], where X ∈ X .
substitutions: s ::= id | ↑ | t · s | s ◦ s

I Properties of the typed λσ-calculus:

1. Confluent.
2. Weakly Terminating.
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The precooking translation

Solutions

Matching rules

Precooking

Precooking

Matching Problem

Matching Problem

Language of the Lambda calculus

Substitution Grafting

Language of the ES calculus

−1
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The precooking translation

Definition (Precooking [DHK00])

Let a ∈ ΛdB(X ) such that Γ ` a : A. To every meta-variable X of
type B in the term a, we associate the type B and the context Γ in
the λσ-calculus. The precooking of a from ΛdB(X ) to the set
Λλσ(X ) of λσ-terms is given by aF = F (a, 0), where F (a, n) is
defined by:

1. F ((λB .a), n) = λB .F (a, n + 1).

2. F (k, n) = 1[↑k−1].

3. F ((a b), n) = (F (a, n) F (b, n)).

4. F (X , n) = X [↑n].
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Remarks on decidability

I Second-Order Matching (SOM) is decidable for the simply
typed λ-calculus [?].

I The method of Dowek, Hardin and Kirchner does not decide
arbitrary second-order λσ-matching problems:

I The counter-example: Consider m ≤ n and A an atomic type.

XA→A·∆
A [(λA.1A·Γ

A ) · ↑nΓ
∆] =?

λσ (mΓ
B1→...→Bq→A b1

Γ
B1 . . . bq

Γ
Bq)
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Exp-App

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Exp-App
P ∧ X [a1 · . . . · ap· ↑n] =?

λσ (m b1 . . . bq)

P ′ ∧
∨

r∈Rp∪Ri

X =?
λσ (r H1 . . .Hk)

if X has an atomic type and is not solved

where P ′ = P ∧ X [a1 · . . . · ap· ↑n] =?
λσ (m b1 . . . bq),

H1, . . . ,Hk are variables of appropriate types, not occurring in
P, with contexts ΓHi

= ΓX , Rp is the subset of {1, . . . , p}
such that (r H1 . . .Hk) has the right type, Ri = if m > n then
{m − n + p} else ∅.
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Replace

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Replace
P ∧ X =?

λσ t

{X 7→ t}(P) ∧ X =?
λσ t

if X ∈ T Var(P),X 6∈ T Var(t) and,

if t is a meta-variable then t ∈ T Var(P).
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Normalise

X [(λ.1) · ↑n] =?
λσ (m b1 . . . bq) →Exp−App

X [(λ.1)· ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1) →Replace

(1 H1)[(λ.1). ↑n] =?
λσ (m b1 . . . bq) ∧ X =?

λσ (1 H1)

Normalise
P ∧ e1 =?

λσ e2

P ∧ e ′1 =?
λσ e ′2

if e1 or e2 is not in η-long normal form, where

e ′1 (resp. e ′2) is the η-long normal form of e1 (resp. e2) if e1

(resp. e2) is not a solved variable and e1 (resp. e2) otherwise.
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Characterisation of Matching Problems

Theorem
Let M be a second-order matching problem which is in the image
of the precooking translation. Then every flexible term occurring in
M ′ which is in the matching path of M, and of the form
X [a1 · . . . · ap· ↑n], with a1 · . . . · ap· ↑n in σ-normal form, is such
that a1, . . . , ap are of atomic type.

Graphically:

X [ a1 · . . . · ap·︸ ︷︷ ︸ n + 1 · n + 2 · . . .︸ ︷︷ ︸ ]

atomic at most
type 2nd -order type

≡ X [a1 · . . . · ap· ↑n]
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Matching Rules

Decm-λ
〈σ,P ∪ {λA.a <<?

λσ λA.b}〉
〈σ,P ∪ {a <<?

λσ b}〉

Decm-App
〈σ,P ∪ {(n a1 . . . ap) <<?

λσ (n b1 . . . bp)}〉
〈σ,P ∪ {a1 <<?

λσ b1, . . . , ap <<?
λσ bp}〉

Decm-Fail
〈σ,P ∪ {(n a1 . . . ap) <<?

λσ (m b1 . . . bq)}〉
Fail

,

if m 6= n.
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Matching Rules

Imit
〈σ,P ∪ {X [a1 · . . . · ap· ↑n] �?

λσ (m b1 . . . bq)}〉
〈σ′,Pσ′∪{(m−n+p H1. . .Hq)[a1σ′ ·. . .·apσ′·↑n]�?

λσ (mb1. . .bq)}〉
if X has atomic type and m > n, where
σ′ = σ{X 7→ (m−n+p H1 . . .Hq)}, H1, . . . ,Hq are
meta-variables with appropriate type and with contexts
ΓHi

= ΓX (∀1 ≤ i ≤ q), and m-n+p is at most third order.

Proj
〈σ,P ∪ {X [a1 · . . . · ap· ↑n] �?

λσ (m b1 . . . bq)}〉
〈σ{X 7→j}, {P{X 7→j} ∪ {aj{X 7→j} �?

λσ (m b1 . . . bq)}〉
if

X has atomic type, and the j-th element (1 ≤ j ≤ p) of the
explicit substitution [a1 · . . . · ap· ↑n] has the same type of X .
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Termination, Correctness and Completeness

Theorem
Applications of the previous rules to second-order matching
problems, whose terms satisfy the previous theorem, always
terminate.

Theorem
Solved forms of the algorithm derived from the presented
second-order matching rules are in the image of the precooking
translation.

Theorem
The presented second-order matching rules are correct and
complete, in the sense that the set of matchers remains unchanged
by applications of the matching rules.
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λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Third-order Matching via Explicit Substitutions

I Third-order matching is decidable in the simply typed
λ-calculus [Dow94].

I We proved that the Dowek’s decision procedure can be
adapted to the simply typed λσ-calculus.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I The decision procedure is achieved firstly by reducing
matching problems to interpolation problems in the language
of the λσ-calculus.

I After that we show that if an interpolation problem has a
solution then it also has a solution which depends only the
initial matching problem.
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λσ-Böhm Trees
Examples
Accessible Solution
Compact Solution
The Decision Procedure

Third-order Matching via Explicit Substitutions

I Third-order matching is decidable in the simply typed
λ-calculus [Dow94].

I We proved that the Dowek’s decision procedure can be
adapted to the simply typed λσ-calculus.

I This is useful when we consider low-level implementations in
which matching algorithms are to be implemented in the level
of the language itself.

I The decision procedure is achieved firstly by reducing
matching problems to interpolation problems in the language
of the λσ-calculus.

I After that we show that if an interpolation problem has a
solution then it also has a solution which depends only the
initial matching problem.

F.L.C. de Moura Matching via Explicit Substitutions



Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
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From Matching Problems to Interpolation Problems

Definition
Let a �?

λσ b be a matching equation and σ a ground solution to
this equation, i.e., the λσ-normal form of aσ is equal to b. We
define the interpolation problem Φ(a �?

λσ b, σ) inductively over
the number of occurrences of a as follows:

• If a = λA.c then b is also an abstraction of the form λA.d and
then σ is also a solution of c �?

λσ d and we let
Φ(a �?

λσ b, σ) = Φ(c �?
λσ d , σ).

• If a = (k c1 . . . cm) then b is also of the form (k d1 . . . dm)
because a �?

λσ b is solvable and we let

Φ(a �?
λσ b, σ) =

⋃
i

Φ(ci �?
λσ di , σ).
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From Matching Problems to Interpolation Problems

Definition (cont.)

• If a = (X [a1 · . . . · ap· ↑n] c1 . . . cm) then we let
Φ(a �?

λσ b, σ) =

{(X [a1 · . . . · ap· ↑n] c1σ . . . cmσ) �?
λσ b}

⋃
i

Hi , where

Hi =


Φ(ci �?

λσ ciσ, σ), if the dummy symbol � occurs
in the normal form of

(Xσ[a1σ · . . . · apσ· ↑n] c1σ . . . ci−1σ � ci+1σ . . . cmσ);
∅, otherwise.

F.L.C. de Moura Matching via Explicit Substitutions



Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Interpolation Problems
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From Matching Problems to Interpolation Problems

Theorem
Let a �?

λσ b be a matching equation and σ a ground solution to
this equation. Then the substitution σ is a solution to
Φ(a �?

λσ b, σ) and, conversely, if σ′ is a solution to Φ(a �?
λσ b, σ)

then σ′ is also a solution to the matching equation a �?
λσ b.

Definition
Let Ψ be a third-order matching problem and σ be a solution to Ψ.
We let Φ(Ψ, σ) be the following third-order interpolation problem:

Φ(Ψ, σ) =
⋃

a�?
λσb∈Ψ

Φ(a �?
λσ b, σ).
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λσ-Böhm Trees

Definition (λσ-Böhm Trees)

A λσ-Böhm tree is a tree whose nodes are labeled with pairs
〈l , v∆

A 〉 such that l is a positive integer and v∆
A is a λσ-term of

type A under context ∆.
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λσ-Böhm tree of a λσ-term in normal form

Definition (λσ-Böhm tree of a λσ-term in normal form)

Let aΓ
A = λA1 · · ·λAk

.(hΣ
B1→...→Bm→B b1

Σ
B1
· · · bm

Σ
Bm

) be a term in

λσ-nf, where Σ = A1 · . . . · Ak · Γ. The Böhm tree of aΓ
A is

recursively defined as the tree whose root is labeled with the pair
〈k, hΣ

B1→...→Bm→B〉 and whose sons are the λσ-Böhm trees of:

1. b1
Σ
B1

,. . . ,bm
Σ
Bm

, if hΣ
B1→...→Bm→B is a de Bruijn index;

2. a1
Σ
A1

, . . . , ap
Σ
Ap

, b1
Σ
B1

, . . . , bm
Σ
Bm

, if hΣ
B1→...→Bm→B is a

meta-variable of the form X Γ
A[a1

Σ
A1
· . . . · ap

Σ
Ap
· ↑nΣ

∆], where

a1
Σ
A1
· . . . · ap

Σ
Ap
· ↑nΣ

∆ is a substitution in λσ-nf.
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Example

The λσ-Böhm tree of the term λAλAλA.(4Γ
A→A→A X Γ

A 1Γ
A), where

Γ = A · A · A · A → A → A · nil is given by:

〈3, 4Γ
A→A→A〉

〈0,X Γ
A〉

qqqqqqqqqq
〈0, 1Γ

A〉

MMMMMMMMMM
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Another Example

The λσ-Böhm tree of the term
λAλAλA.(4Γ

A→A→A (X∆
A→A[(λA.1A·Γ

A ) · 1Γ
A · ↑2Γ

Γ≥2
] 2Γ

A) 1Γ
A), where

Γ = A ·A ·A ·A → A → A · nil and ∆ = A → A ·A · Γ≥2 is given by:

〈3, 4Γ
A→A→A〉

KKKKKKKKKKK

〈0,X∆
A [(λA.1A·Γ

A ) · 1Γ
A · ↑2Γ

Γ≥2
]〉

kkkkkkkkkkkkkkk

〈0, 1Γ
A〉

〈1, 1A·Γ
A 〉

llllllllllllll
〈0, 1Γ

A〉 〈0, 2Γ
A〉

SSSSSSSSSSSSSSSS
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Accessible Occurrence

Definition
Consider an equation of the form (X [a1 · . . . · ap· ↑n]c1 . . . cq) = b
and the term t = λC1 . . . λCq .u with the same type of X . The set
of occurrences in the λσ-Böhm tree of t accessible w.r.t. the
equation (X [a1 · . . . · ap· ↑n] c1 . . . cq) = b is inductively defined as:

• the root of the λσ-Böhm tree of t is accessible.

• if α is an accessible occurrence labeled with a de Bruijn index
j with 1 ≤ j ≤ p + q and dj is relevant in its r -th argument
then the occurrence α〈r〉 is accessible, where:

dj =

{
aj if q < j ≤ p + q,
cq−i+1 if 1 ≤ j ≤ q.
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Accessible Occurrence

Definition (cont.)

• if α is an accessible occurrence labeled with a de Bruijn index
greater than p + q or with a meta-variable then all the sons of
α are accessible.

• if α is an accessible occurrence labeled with a meta-variable
then each son of α is accessible.
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Accessible term

Definition (Occurrence accessible w.r.t. an interpolation
problem [Dow94])

An occurrence is accessible with respect to an interpolation
problem if it is accessible with respect to one of the equations of
this problem.

Definition (λσ-term accessible w.r.t. to an interpolation
problem)

A λσ-term is accessible with respect to an interpolation problem if
all occurrences of its λσ-Böhm tree which are not leaves are
accessible with respect to this problem.
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Accessible Solution

Definition (Accessible solution built from a solution)

Let Φ be an interpolation problem and let σ be a ground solution
to this problem. For each meta-variable X occurring in the
equations of Φ consider the λσ-term t such that {X 7→ t} ⊆ σ. In
the λσ-Böhm tree of t, we prune all occurrences non accessible
(that are not leaves) with respect to the equations of Φ in which X
has an occurrence and put λσ-Böhm trees of ground terms of
depth 0 of the expected type as leaves. Call t ′ the term whose
λσ-Böhm is obtained this way and σ̂ the resulting substitution.
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Accessible Solution

Theorem
Let Φ be an interpolation problem generated from a precooked
matching problem and let σ be a ground solution to Φ. Then the
accessible solution σ̂, built from σ, is a solution to Φ.
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Compact λσ-term

Definition
λσ-term t = λC1 . . . λCq .u (u atomic) is compact w.r.t. an
interpolation problem Φ if no de Bruijn index j with 1 ≤ j ≤ q
appears free in a path of the λσ-Böhm tree of u more than h + 1
times, where h is the maximum depth in the λσ-Böhm tree of the
right-hand side of the equations of Φ.
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Compact Solution

Definition
Let Φ be an interpolation problem, σ̂ be an accessible solution to
this problem and h be the maximum depth in the λσ-Böhm tree of
the right-hand side of the equations of Φ. The grafting σ̂ is a
compact accessible solution built from an accessible solution to Φ
if, for all meta-variable X occurring in Φ, the term
t = X σ̂ = λC1 . . . λCq .u (u atomic) is such that there is no path in
the λσ-Böhm tree of u containing more than h + 1 occurrences
labeled with the de Bruijn index j (1 ≤ j ≤ q). If there exists a
path in the λσ-Böhm tree of u that has more than h + 1 free
occurrences of the de Bruijn index j (1 ≤ j ≤ q) then the compact
accessible solution σ′ is built as follows: we replace all these
occurrences of j by λB1 . . . λBp .r.
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Compact Solution

Theorem
Let Φ be an interpolation problem, σ a solution to Φ, σ̂ be the
accessible solution built from σ and σ′ be the compact accessible
solution built from σ̂. Then σ′ is also a solution to Φ.
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Compact Solution

Theorem
Let Φ be an interpolation problem, σ be a solution to Φ, σ̂ be the
accessible solution built from σ and σ′ be the compact accessible
solution built from σ̂. If h is the maximum depth in the λσ-Böhm
tree of the right-hand side of the equations of Φ, then for every
meta-variable X of arity q, the depth of the λσ-Böhm tree of
Xσ′ = λC1 . . . λCq .u

′ is less than or equal to (q + 1)(h + 1)− 1.
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Compact Solution

Corollary

Let Φ be a third-order interpolation problem, σ be a solution to Φ,
σ̂ be the accessible solution built from σ and σ′ be the compact
accessible solution built from σ̂. If h is the maximum depth in the
λσ-Böhm tree of the right-hand side of the equations of Φ, then for
every meta-variable X of arity q, the depth of the λσ-Böhm tree of
Xσ′ = λC1 . . . λCq .u

′ is less than or equal to (q + 1)(h + 1)− 1.
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The Decision Procedure

Theorem
The class of third-order λσ-matching problems that come from the
simply typed λ-calculus is decidable.

Proof.
Let Ψ be a third-order matching problem in the λσ-calculus.
Enumerate all ground substitutions for the meta-variables occurring
in the equations of the form (X [a1 · . . . · ap· ↑n] c1 . . . cq) �?

λσ b of
Ψ, such that the terms to be substituted for X have depth less
than or equal to (q + 1)(h + 1)− 1, where h is the depth of the
λσ-Böhm tree of b. If none of these substitutions is a solution Φ
then Φ is not solvable. Otherwise, it is solvable.

F.L.C. de Moura Matching via Explicit Substitutions



Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Conclusion
Future Work

Conclusion

I We presented a second-order matching algorithm which uses
an adequate notation that does not mix graftings with
matching equations.

I This algorithm decides all second-order matching problems
that are originated in the simply typed λ-calculus.

I We adapted the Dowek’s decision procedure for third-order
matching in the simply-typed λσ-calculus.

I To do so, we defined the notion of λσ-Böhm tree, which
extends the usual notion of Böhm tree for the λσ-calculus.

I This work is important for considering low-level
implementations of languages based on the simply typed
λ-calculus in which matching algorithms are to be
implemented in the level of the language itself.
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Future Work

I Extension of this work to other styles of explicit substitutions.

I Implementation of the algorithms to evaluate performance.

F.L.C. de Moura Matching via Explicit Substitutions



Introduction
Explicit Substitutions

Second-Order Matching via Explicit Substitutions
Third-order Matching via Explicit Substitutions

Conclusion and Future Work

Conclusion
Future Work

M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy.
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Solved Forms

Definition
A unification problem P is in λσ-solved form if all its
meta-variables are of atomic type and it is a conjunction of
nontrivial equations of the following forms:

I Solved: X =?
λσ a where the meta-variable X does not appear

anywhere else in P and a is in η-long normal form. Such an
equation is said to be solved in P and the variable X is also
said to be solved.

I Flexible-flexible: X [a1 · . . . · ap· ↑n] =?
λσ Y [b1 · . . . · bq· ↑m],

where X [a1 · . . . · ap· ↑n] and Y [b1 · . . . · bq· ↑m] are λσ-terms
in η-long normal form and the equation is not solved.

return
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