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Abstract—Permutation groups arise as important structures
in group theory because many algebraic properties about them
are well-known, which makes modeling natural phenomena by
permutations of practical interest. Usability of the involved
algebraic notions is illustrated by problems such as genome
rearrangement by reversals for which it is well-known that for
the case of unsigned and signed sorting by reversals the time
complexity is, respectively,NP-hard and P . Reversal distance
is a particular metric and in this work more general metrics on
permutation groups are considered emphasizing on the Cayley
distance. In particular, we point out an error in one of the
polynomial reductions applied in Pinch’s approach attempting to
proof that the subgroup distance problem for Cayley distance is
NP-complete and following his approach we present a simplified
and correct proof of this fact. Although, recently a shorter and
more general proof than Pinch’s one was given by Buchheim,
Cameron and Wu, we believe the correction of Pinch’s proof
presented in this paper is of great interest because it correctly
relates the Cayley distance problem with a maximal routing
problem giving an additional perspective in relation to Buchheim
et al. recent proof from which only the usual logical satisfiability
perspective of distance problems is observable.

I. I NTRODUCTION

Among the variety of distance problems on permutation
groups, the subgroup distance problem is of great interest.In
this context, several metrics can be considered.

A metric on the symmetric groupSn is a functiond : Sn×
Sn → R

∗ such that, for everyπ, σ andϕ ∈ Sn, it satisfies:

i) d(π, σ) ≥ 0;
ii) d(π, σ) = 0 if, and only if, π = σ;
iii) d(π, ϕ) ≤ d(π, σ) + d(σ, ϕ).

In the biological context several metrics onSn can be found
giving rise to different instances of the genome rearrangement
problem. Take a class of operations that changes the order of
genes of an organism, without modifying or destroying them.
The genome rearrangement problem consists in finding the
minimum number of these operations necessary to transform
a genome into another one. We can consider the genes order in
an organism represented by a permutationπ ∈ Sn [BP96]. As
a class of operation one can consider, for instance,reversals
that are permutationsρ ∈ Sn presented by permutation cycles
of the form

(i j)(i+ 1 j − 1) . . . (i + ⌊
j − i

2
⌋+ 1 i+ ⌈

j − i

2
⌉+ 1),

for 1 ≤ i < j ≤ n.

The effect of applying a reversal is to invert a piece of
the genome of an organism. The sorting by reversals problem
(MIN-SBR) consists in finding the minimum number of rever-
sals to transform a permutationπ in the permutation identity,
denoted asid. The reversal distance is the minimum number
of reversals for an instance ofMIN-SBR. It is a metric onSn.

Other metrics onSn are well-known, for instance the
Hamming distance,lp distance,l∞ distance, Lee distance,
Kendall’s tau distance, Ulam’s distance and Cayley distance
[AJ08], [BCW09].

The Subgroup Distance Problem(SDP) with respect to a
metric d on Sn is defined as: given a subgroupH ≤ Sn, a
permutationπ ∈ Sn and a numberk ∈ N

∗, determine whether
d(π,H) := minσ∈Hd(π, σ) ≤ k.

Note that, MIN-SBR is an instance ofSDP, just take
H = 〈id〉 and d as the reversal distance. For unsigned
reversals,MIN-SBRis NP-hard [Cap97], whereas for signed
reversals, sorting by reversals is polynomial [BMY01]. Forthe
other metrics mentioned above,SDP is NP-complete [AJ08],
[BCW09].

Given two permutationsπ andσ ∈ Sn, the Cayley distance
is the minimum number of transpositions (cycles of length
two) transformingπ into σ.

In this work a proof is given of the fact thatSDP with
respect to the Cayley distance isNP-complete. The proof
follows Pinch’s approach [Pin07] that is based on two poly-
nomial reductions: from3SAT into the problem of finding a
routing which respects a polarisation, of maximum cardinality,
in a switching circuit and then, from the latter problem
into SDP for the Cayley distance. Although Pinch’s proof
was published in2007, previous drafts were available since
1992. The contribution of this work is to correct the first
reduction presented in Pinch’s proof in two ways: firstly, by
stating correct polarised switching circuits in the reduction
from 3SATto these circuits, specifically for clauses with two
and three variables and secondly, by simplifying the width of
polarisation in the switching circuits used in the first reduction.

As it will be showed, a simpler and more general proof
of the NP-completeness of the SDP which applies also to
the Cayley distance was presented in [BCW09]. This proof
directly reduces satisfiability problems into SDP problems
without the intermediate step which relates routing problems



in switching circuits with SDP problems.
In the second Section, is is proved thatSDPfor the Cayley

distance isNP-complete. In the third Section it is made
explicit the flaw in Pinch’s proof and presented a sketch of
Bucheim’s et al. proof aboutNP-completeness of SDP for
different measures.

II. SDPFOR THECAYLEY DISTANCE IS NP -COMPLETE

We will present a correct and detailed proof of this fact
pointing out the problems in Pinch’s work [Pin07].

Let S ⊂ Sn be a set of permutations of the formγj =
(x1

j y1j ) . . . (x
rj
j y

rj
j ), where allxi

j andyij are different. We
call S Involutions with Disjoint Support (IDS). The width of
an IDS is defined as the maximum number of2-cycles (rj) in
its permutations (γj). The SDPwith the subgroupH := 〈γj〉
generated by the elementsγj of an IDS of widthw is called
the IDSw-Subgroup-Distance.

Additional definitions are necessary. Aswitching circuitis a
directed graphG(V,E) such that for allv ∈ V the cardinality
of input and output edges coincide; for eachv ∈ V , its valency,
denoted as∂(v), is the number of in-edges which equals the
number of out-edges. Each in and out-edge ofv has a different
label in {1, . . . , ∂(v)}. The valency ofG is the maximum
among the valencies of its vertices. For any edge(u, v) ∈ E,
its output label, as an in-edge, and its input label, as an out-
edge are not related. Arouting ρ for a switching circuit is a
choice of a permutationρ(v) ∈ S∂(v), for each vertexv ∈ V .
For an example see Fig. 1. Note that, there is a correspondence
between routings of a switching circuitG and decompositions
of the edge set into directed cycles ofG.
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Fig. 1. The first circuit shows a decomposition in two directed cycles with
routing ρ = id for all vertices; the second circuit shows a decomposition
in three cycles given by the routingρ(u) = ρ(w) = ρ(z) = (1 2) and
ρ(v) = ρ(x) = ρ(y) = id

A polarisation T for a switching circuitG(V,E) is an
equivalence relation over the set of verticesV , such that
vertices belonging to the same class have the same valency.
The pair(G, T ) is called a polarised switching circuit. Note
that vertices having the same valency are not necessarily inthe
same class. A routingρ is said to respect the polarisationT if
ρ(x) = ρ(y), whenever verticesx and y belong to the same
class. Routings in the Fig. 1 respect polarisation with a unique
equivalence class (Fig. 1 to the left) and two equivalence
classes (Fig. 1 to the right). Note that, for distinct labelsand
routings, the decomposition into cycles changes.

The Polarised-Switching-Circuit-Routing(PSCR) is defined
as the problem stated as: given a polarised switching circuit

(G, T ) and a positive integerk, determine the existence of
a routing which respectsT and has at leastk cycles in the
associated decomposition in cycles.

The width of a polarisationT is defined as the maximum
number of vertices in a class ofT . We callWidthw-Valencyn-
RoutingthePSCRwith the width ofT restricted to be at most
w and∂(v) of each vertexv restricted to be at mostn.

The proof thatSDP is NP-complete is made in two steps
following [Pin07] approach, but correcting and improving the
first step, for which the original proposed width was6 instead
4 as presented here:

1) Prove thatWidth4-Valency2-Routingis NP-complete;
2) Show the existence of an equivalence betweenWidthw-

Valency2-Routingand IDSw-Subgroup-Distance.
Applying both these results one obtains that IDS4-

Subgroup-Distance isNP-complete from which one imme-
diately concludes thatSDP is NP-complete as well. In the
following subsections proofs of these results are presented.

A. Width4-Valency2-Routing is NP-complete

The first step in Pinch’s paper is in fact a attempt to prove
that 3SATpolynomially reduces toWidth6-Valency2-Routing,
but one of the circuits presented is incorrect because it does
not satisfy the necessary properties as presented in detailin
III-A. The current proof is in fact an improvement because in
the first step we reduce the width of the routing problem.

A polarised switching circuit(G, T ) is Boolean if every
vertex has valency at most two. To each classC of the
polarisationT a Boolean variablea(C) is associated, where
a(C) = 0 if, and only if, the permutationρ(v) = id ∈ S2

and a(C) = 1, if, and only if, ρ(v) = (1 2) ∈ S2, for all
v ∈ C. There is a straightforward correspondence between
routing and designation of boolean values to the vertices of
(G, T ). For a negated variablēa we exchange the input labels
1 and2 in all the associated vertices.

The reduction in the first step of the proof is based on
a representation of unary, binary and tertiary clauses in a
formula, instance of3SAT, by corresponding switching circuits
that have a specific number of cycles exactly when the clauses
hold. For Boolean variablesa, b and c, we consider the
switching circuitsI(a), E(a, b), F (a, b) andA(a, b, c) corre-
sponding to unary clauses, equality between variables, binary
and tertiary clauses, respectively. See Figs. 2 and 3.

a b

2 1 1

2
21

2

1

a

b

a

b

1 2

1
2

1

2
1

2

1

1

2

2

1

2

2

1

a

1

2

2

1

Fig. 2. Switching circuitsI(a), E(a, b) and F (a, b) for unary clauses,
equality between variables and binary clauses

Proposition 2.1:Properties of the switching circuitsI, E, F

andA
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Fig. 3. Switching circuitA(a, b, c) for tertiary clauses

1) the number of cycles forI(a) is 2 if a = 1 and 1
otherwise;

2) the number of cycles forE(a, b) is 2 if a = b and 1
otherwise;

3) the number of cycles forF (a, b) is 1 if a = b = 0 and
3 otherwise;

4) the number of cycles forA(a, b, c) is 2 if a = b = c = 0,
4 otherwise.

Proof: We will demonstrate the item4, that uses item2. All
other items are proved similarly by case analysis.

Notice that, according to the item 2, the circuitE(b, c) has
two cycles wheneverb = c and only one otherwise, as depicted
in Fig. 4. The right part of the circuitA(a, b, c) is exactly
E(b, c̄) and consequently this sub circuit will have two cycles
if b 6= c and one ifb = c. In order to conclude the proof of
item 4, we will proof the following:

• the left part ofA(a, b, c) has one circuit ifa = b = c = 0.
Observe this circuit in Fig. 5. Thus,A(a, b, c) has two
circuits in this case.

• the left part ofA(a, b, c) has three circuits ifa 6= b = c

or a = b = c = 1. Observe this case in Fig. 6. Thus
A(a, b, c) has four circuits in this case.

• the left part of A(a, b, c) has two circuits if b 6= c.
Observe this case in Fig. 7. ThusA(a, b, c) will have
four circuits. �
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Fig. 4. Cycles of circuitE(a, b) for a = b anda 6= b

Theorem 2.2:There is a polynomial reduction from3-SAT
to Width4-Valency2-Routing.

Proof: Let ϕ an instance of3-SATthat is a Boolean formula
over variablesx1, . . . , xn, that is a conjunction ofk clauses
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Fig. 5. Cycle of left circuit ofA(a, b, c) for a = b = c = 0

a a

b

1 2

1
2

1

2
1

2

1

1

2

2

1

2

2

1

a = b = c = 1

c

a a

b

1 2

1
2

1

2
1

2

1

1

2

2

1

2

2

1

c

a a

b

1 2

1
2

1

2
1

2

1

1

2

2

1

2

2

1

c

a = 1,  b = c = 0a = 0,  b = c = 1

Fig. 6. Cycles of left circuit ofA(a, b, c) for a 6= b = c anda = b = c = 1
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Fig. 7. Cycles of left circuit ofA(a, b, c) for b 6= c

each of which is a disjunction of at most three variables or
their negations.

Firstly, one transformsϕ into an equivalent formulaϕ′ in
this way: for allxi, replace itsjth occurrence inϕ by a new
variableyji . For allxi include the conjunction of clauses(y1j ≡

y2j )∧. . .∧(y
(ri−1)
j ≡ yrij ) where the variablexj occursri times



in ϕ. For example, ifϕ = (x1∨x̄2∨x3)∧(x2∨x̄3∨x4)∧(x̄1∨
x3) thenϕ′ = (y11∨ ȳ

1
2∨y

1
3)∧(y

2
2∨ ȳ

2
3∨y

1
4)∧(ȳ

2
1∨y

3
3)∧(y

1
1 ≡

y21) ∧ (y12 ≡ y22) ∧ (y13 ≡ y23) ∧ (y23 ≡ y33).
Note that, in fact,ϕ′ is equivalent toϕ. Thus, we have the

same number of satisfying designations. Note also that each
variable occurs at most three times inϕ′, and exactly once
in a disjunction. Therefore, the length ofϕ′ is linear in the
length ofϕ.

Secondly, one will construct a polarised switching circuit
Ψ for the formulaϕ′ as the forest consisting of the following
circuits:

• for each tertiary clause of the form(x ∨ y ∨ z) take a
circuit A(x, y, z);

• for each binary clause of the form(x ∨ y) take a circuit
F (x, y);

• for each unary clause of the form(x) take a circuitI(x)
and;

• for each clause of the form(x ≡ y) take a circuitE(x, y).
The classes in the polarised switching circuitΨ are given

as the sets of vertices labeled by the same variable ofϕ′.
Then, this polarisation will have exactlyn classes, wheren is
the number of variables inϕ′. Observe that each class in this
polarisation is involved in at most a circuit of the formA, F
or I and, in addition, in at most two circuits of the formE.
Therefore each class in the polarised switching circuitΨ has
at most4 vertices. Thus the size ofΨ is at most4n, that is,
the size ofΨ is linear in the length of the formulaϕ′.

Thirdly, denote asa, f, i ande the number of circuits of
typesA, F , I andE in Ψ, respectively. Consider the number
M = 4a + 3f + 2i + 2e. And finally, conclude observing
that according to Proposition 2.1, there exists a routing for
the polarised circuitΨ which gives a decomposition intoM
cycles if, and only if, there exists an assignment of Boolean
values for the variables inϕ′ that satisfiesϕ′. Namely, notice
that a satisfying assignment forϕ′ corresponds to a routing in
Ψ which decomposes intoM cycles and vice-versa. �

B. Widthw-Valency2-Routing problem polynomially reduces
to IDSw-Subgroup-Distance

In Pinch’s work it is proved in fact a polynomial equivalence
between both problems.

Theorem 2.3 ( [Pin07]):There is a polynomial equivalence
between theWidthw-Valency2-Routing and IDSw-Subgroup-
Distanceproblems.

To understand this equivalence, consider(G(V,E), T ), a
polarised switching circuit, where each vertex has valencytwo
and each equivalence class has width at mostw. Let |E| = n

and associate a different number in{1, . . . , n} to each edge.
Construct a permutationπ as follows: for each edgee, let v
be the vertex such thate is an input edge inv and defineπ(e)
as the edgef out of v such that the labels ofe and f as an
input and an output edge ofv are equal. Construct an instance
of the IDS problem fromG as follows: for each equivalence
class inT , Cj = {vij | i = 1, . . . , rj}, let γj be a generator
given as the product of transpositions(f i

j gij), wheref i
j and

gij are the edges out the vertexvij . Notice that the number

of transpositions inγj is at mostw, since each equivalence
class in T has at mostw vertices. Observe that there is
a correspondence between routings in the polarised circuit
and a cycle decomposition ofG(V,E) and the cycles in a
permutationπη, whereη ∈ H = 〈{γj}〉. The correspondence
between the problems is understood, based on the observation
that a transposition can split a cycle permutation at most into
two cycles, from which one can conclude thatπ is within
distanced of the groupH if and only if there is a routingρ
with at leastn− d cycles.

This construction also helps to understand how to build a
corresponding polarized switching circuit from an instance of
the IDSw-Subgroup-Distanceproblem.

To conclude theNP-completeness, it is necessary to prove
that SDPrestricted to the Cayley distance is inNP . For this,
some remarks will be done.

Given two permutationsπ, σ ∈ Sn, if the Cayley distance
between π and σ is k, denoted asd(π, σ) = k, then
there is a sequence ofk transpositionsρ1, . . . , ρk, such that
πρ1 . . . ρk = σ; or equivalently,ρ1 . . . ρk = π−1σ. Thus,
calculating the Cayley distance between two permutationsπ

andσ is equivalent to decompose the permutationπ−1σ as a
minimum product of transpositions.

Theorem 2.4 ( [Mac95]):A permutation inSn cannot be
written as the product of fewer thann−r transpositions, where
r is the number of disjoint cycles in the permutation.

For example, consider the permutationπ = (12)(345) ∈ S5;
it consists of two disjoint cycles. Thus, by Theorem 2.4,
at least three transpositions are necessary to represent this
permutation. Namely,π = (12)(34)(35).

Proposition 2.5:Given a cycle(π1 . . . πt), one always can
write it as the product oft− 1 transpositions.

In fact, observe that(π1 . . . πt) = (π1π2)(π1π3) . . . (π1πt).

Consider a permutationπ ∈ Sn consisting ofk disjoint
cycles; this is a permutationπ = π1 . . . πk, where each
πi, 1 ≤ i ≤ k, corresponds to a cycle inπ, and whenever
l ∈ {1, . . . , n} is in cycleπi, this element is not in cycleπj ,
for j 6= i. Denote asni, 1 ≤ i ≤ k, the length of cycleπi.
Note thatn1 + . . .+ nk = n. By Proposition 2.5, each cycle
πi of π can be decomposed as the product ofni − 1 distinct
transpositions. Thus, the permutationπ can be decomposed in
n1 − 1 + . . . + nk − 1 = n − k transpositions. By Theorem
2.4, this is the minimum number of transpositions in whichπ

can be written.

Now, consider a permutationπ ∈ Sn, a set of generators of
a subgroupH of Sn and an integerk. Non deterministically,
choose a permutationσ ∈ H . Decompose the permutation
π−1σ as it is done in the Proposition 2.5. This polynomial
procedure checks whether the Cayley distance betweenπ and
the choosed permutation is smaller or equal thank. Repeatedly
application of this non-deterministic polynomial verification
procedure is applied for computing the Cayley distance. This
concludes the proof thatSDP restricted to Cayley distance is
in NP .



III. R ELATED WORK

Although Pinch’s proof was available since 1992, it was
published only in 2007 and subsequently referenced by Buch-
heim et al. [BCW09] without any mention to the flaws reported
in this paper and detailed in Subsection III-A. Even, more
recently, after the publication of the elegant proof developed
by Buchheim et al., that will be detailed in Subsection
III-B, other authors have referenced Pinch’s proof without
mentioning these flaws. Among the papers that referenced
Pinch’s proof attempt, one can mention [CW07] and [CW10],
whose main subject is theNP-completeness of theWeight
Problem restricted to several distances overSn, where the
Weight Problem, with respect to the distanced, consists in,
given generators for a groupG and an integerk, find an
element g ∈ G such thatd(g, e) = k, where e is the
identity permutation. In these two papers, as in [BCW09],
the Hamming, Cayley,lp, l∞, Lee, Kendall’s tau and Ulam
distances are considered.

Also, in Bogaerts’ Thesis [Bog09], Pinch’s work is refer-
enced. One of the main objectives of this work is, given a fixed
numbern and a distanced, to study the maximum length of a
permutation code. Bogaerts asserts that several problems are
related with decoding a permutation code, among them, the
SDPproblem.

A. Flaws in Pinch’s proof attempt

In Pinch’s proof that3SATpolynomially reduces toWidth6-
Valency2-Routing, it is incorrectly stated that the switching
circuit F ′(a, b) in Fig. 8 has 2 cycles whenevera 6= b, 3 if
a = b = 1 and 1 if a = b = 0. This switching circuit is given
without edge labels and the following proposition establishes
that this is in fact impossible.

a b

ba

Fig. 8. Switching circuitF ′(a, b)

Proposition 3.1:There is no possible labeling for the edges
of the switching circuitF ′(a, b) satisfying: the number of
cycles in a routing forF ′(a, b) is 2 if a 6= b, 3 if a = b = 1
and1 if a = b = 0.
Proof: In first place notice that for the routinga = b = 1
if F ′(a, b) admits in fact a decompositions into three cycles,
then, necessarily, one, and only one, of the red sub cycles
illustrated in Fig. 9 should be in the decomposition. In second
place, observe that for each case the other two cycles in the
decomposition in three cycles is univocally determined.

In third place, for each of these three possibilities, by case
analysis, one can prove that for the routingsa 6= b anda = b =
0 the decomposition into2 and1 cycles, resp., is impossible.
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Fig. 9. Possible decompositions in three cycles ofF ′(a, b) for the routing
a = b = 1

Changing the routing froma = b = 1 to a = b = 0 in each
of these cases gives the decomposition in cycles depicted in
Fig. 10, from which the cases(i) and (ii), for which this
routing gives three cycles, are proved impossible. The sole
case that remains to be analysis is the third one.
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Fig. 10. Cycle decompositions ofF ′(a, b) for the routinga = b = 0

Finally, one observes that the decomposition in cycles for
the routingsa 6= b for the third case gives in both cases a
unique cycle.

This concludes the proof. �

B. A general proof ofNP-completeness for SDP

A simpler and more general proof of theNP-completeness
of the SDP which applies also to the Cayley distance was
given in [BCW09]. Here, it is important to stress that although
this proof is simpler it relates SDP only with satisfiabilityand



because of this it is relevant the result presented in this work
establishing a correct relation of SDP with routing problems.

To prove that the SDP restricted to the Cayley distance is
NP-complete one reduces the problem of maximum SAT with
clauses of length two,MAX-2-SATto it. MAX-2-SATis well-
known to beNP-complete. Below the reduction from this
problem to SDP for the Cayley distance is sketched.

Consider an instance ofMAX-2-SAT: given an integerK
and a formulaϕ, in conjunctive normal form, consisting ofp
variables,u1, . . . , up andq clauses,c1, . . . , cq, each clause of
length two. The problem is to decide whether there exists a
truth assignment for the variables such that, at least,K clauses
are satisfied.

Firstly, one constructs a permutationπ on a domainX =
∪i=1..pXi ∪ ∪j=1..qYj , where: for each variableui, we as-
sociate a set of size6q + 2, Xi = {xi,1, . . . , xi,6q+2}. The
elements ofXi are swapped pairwise byπ. Thus, the factor
Πi,j,k(xi,j xi,k), where 1 ≤ i ≤ p; j, k ∈ {1, . . . 6q + 2}
and eachxi,j appears exactly once in the multiplicand, is
in the cycle structure ofπ. Additionally, for each clause
j = 1..q, Yj = {aj,1, . . . , aj,6}, such thatπ acts onYj as
the permutation(aj,1 aj,2)(aj,3 aj,4)(aj,5 aj,6). Observe that
the size ofX , p(6q + 2) + 6q, it is polynomial on the length
of ϕ.

Secondly, one defines the generators of groupH as follows:
for each variableui, consider two permutationsπi(t) and
πi(f). Both, πi(t) and πi(f), agree with permutationπ on
Xi. If ui appears positively in the first position of a clause
cj , then πi(t) exchangeaj,1 with aj,2 and aj,3 with aj,4;
if ui appears positively in the second position, thenpii(t)
exchangeaj,1 with aj,2 and aj,5 with aj,6. If a variableui

appears negated, the same is done byπi(f) instead ofπi(t).
The remaining elements ofX are fixed byπi(t) andπi(f).
Let H = 〈πi(t), πi(f)|i = 1..p〉 be the group generated by
πi(t) andπi(f) and letK ′ = 3q − 2K.

Finally, to conclude, one proves thatd(π,H) ≤ K‘ if,
and only if, at leastK clauses are satisfiable. Consider
t : {u1, . . . , up} → {0, 1}, a truth assignment satisfying,
at least,K clauses. Letτ = Πt(ui)=1πi(t)Πt(ui)=0πi(f) ∈
H, 1 ≤ i ≤ p. Note that, the permutationτ acts on each
Xi as the permutationπ. Furthermore, one can verify, by
analysis of the behavior ofτ on each setYj , that the distance
between π and τ is 1 if the clause cj is satisfied and
3, otherwise. Since, at least,K clauses are satisfied, thus
d(π, τ) ≤ 3(q − K) + 1K = 3q − 2K = K ′. Conversely,
supposed(π,H) ≤ K ′. Thus, there isτ ∈ H such that
d(π, τ) ≤ K ′. Note that, if, for any variableui, both
generators,πi(t) and πi(f) simultaneously either appear or
not in the cycle structure ofτ , then the distance betweenτ
andπ on Xi would be6q + 2 > K ′. Therefore, exactly one
of πi(t) or πi(f) appear inτ , for each variableui. Define
t : {u1, . . . , up} → {0, 1}, wheret(ui) = 1 if, and only if,
πi(t) is in the composition ofτ . In this way,τ agree withπ
on each setXi. Thus,d(π, τ) ≤ K ′ = 3q − 2K in case that
at leastK clauses were satisfied.

This elegant proof was introduced in [BCW09] for the

Hamming distance. For that distance one defineK ′ = 6q−4K.
Let,K ′ = bq−(b−a)K and one can obtain, only by changing
the parametersa and b, proofs ofNP-completeness of SDP
for lp, Lee, Kendall’s tau and Ulam distances. The proof
presented in this section for the Cayley distance, is obtained
setting these parameters asa = 1 andb = 3.

IV. CONCLUSION

A proof is presented of the fact that the problem of
computing the general distance of a given permutation from a
subgroupH of the symmetry groupSn is NP-complete. This
proof is based on two time-polynomial reductions: firstly, from
3SAT to Width4-Valency2-Routing and then, from the latter
problem to IDS4-Subgroup-Distance. The proof follows the
approach originally proposed by Pinch in [Pin07], but after
detecting an error in the first reduction, that was originally
proposed for the problemWidth6-Valency2-Routing, in this
paper it is presented a reduction from3SAT to the simpler
case ofWidth4-Valency2-Routingproblems.

The general subgroup distance problem is closely related
with distances in other metrics as the one associated with
the case of distance by reversion or other transformations of
biological interest. We believe that the formal study of these
properties from the algebraic point of view will provide a very
strong insight in order to deal with open questions such as
whether the reversion distance for unsigned permutations,that
is known to beNP-hard, is or notNP-complete.
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