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Abstract. Matching is a basic operation extensively used in computa-
tion. Second-order matching, in particular, provides an adequate envi-
ronment for expressing program transformations and pattern recognition
for automated deduction. The past few years have established the ben-
efit of using explicit substitutions for theorem proving and higher-order
unification. In this paper, we will make use of explicit substitutions to
facilitate matching: we develop a second-order matching algorithm via
the λσ-style of explicit substitutions. We introduce a convenient nota-
tion for matching in the λσ-calculus. This notation keeps the matching
equations separated from the incremental graftings. We characterise an
important class of second-order matching problems which is essential to
prove termination of the algorithm. In addition, we illustrate how the
algorithm works through some examples.

Keywords: Higher-Order Unification, Second-Order Matching, Explicit
Substitutions.

1 Introduction

Matching is an important mechanism extensively used in automated deduction
and programming languages. For instance, second-order matching has been used
in program transformation [HL78,Vis04] and theorem proving [dlTC87,dlTC88].

First-order matching, as well as first-order unification, is decidable and uni-
tary, i.e., when a unifier exists it is unique in the sense that the most general
unifier (mgu) exists [Rob65]. Second-order matching is still decidable [Hue76],
but the solutions are not necessarily unique and the notion of an mgu no longer
exists. In fact, the second-order matching problem1 λx.(X a) <<? λx.(c(b a)),
where a, b and c are constants and X is a meta-variable, has two solutions given
by X/λy.(c(b a)) and X/λy.(c(b y)) and, none of them is an instance of the
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other, and hence there is no mgu. Third and fourth order matching are decid-
able [Dow94,Pad00], but for higher orders, it remains unknown (for almost thirty
years) whether this problem is decidable [Hue76]. In [Loa03], the undecidability
of fifth-order β-matching is given, but the proof does not deal with the general
case that includes η-conversion.

In [DHK00], Dowek, Hardin and Kirchner gave a general method for higher-
order unification for the λσ-calculus of explicit substitutions. In that paper they
prove that the unification problem P has a solution in the simply typed λ-
calculus if and only if the translation of this problem in the language of the λσ-
calculus, written PF has a solution. However, this general unification method,
which has been proved adaptable for other explicit substitutions calculi [ARK01],
does not decide second-order matching in the λσ-calculus as we show by a non-
terminating counter-example. In addition, [Bur89] shows that matching may be-
have differently from unification depending on the considered equational theory
and, therefore it is of interest to study matching via explicit substitutions.

In this paper we develop a second-order matching algorithm that decides a
special subset of λσ-terms. The contributions of this work are as follows:

1. We characterise an important subset of second-order λσ-terms which the
general method of Dowek, Hardin and Kirchner can decide. This subset contains
all the λσ-terms that can appear in a second-order matching problem derived
from another matching problem originated in the simply typed λ-calculus.

2. Since the notation used by Dowek, Hardin and Kirchner is not adequate for
matching because it may introduce flexible-flexible equations whose right-hand
sides need to be instantiated, we present an adequate notation for dealing with
matching in the λσ-calculus. This notation keeps graftings (first-order substitu-
tions) separated from the matching equations to be unified. This separation will
be important during the matching because no variable, which can be instanti-
ated, is included in the right-hand side of a matching equation and, therefore
each matching rule will necessarily generate another matching problem.

3. We present a second-order matching algorithm that decides the subset of
λσ-terms characterised in item 1.

Using the λσ-style of explicit substitutions has the well known advantage of
reducing higher-order unification problems into equivalent first-order equational
unification problems, and in this way, the variable instantiation mechanism of
the λ-calculus is implemented by first-order substitution (grafting). Advantages
of this HOU approach include, among others: being closer to implementations
which is inherent to explicit substitutions; avoidance of functional encoding of
scoping constraints by separating substitutions from reductions and substitu-
tions from unification variables; conceiving HOU as equational unification mod-
ulo βη-conversion, which allows for natural mixing of higher order specifications
with equational ones as explained in [DHK00]. Nevertheless, since higher-order
unification is undecidable [Gol81], it is important to study decidable subprob-
lems over specific λ-terms as well as of its extensions, such as the λσ-calculus.
In this way, this work is worthwhile because the presented algorithm decides the
subset of second-order λσ-terms characterised in item 1.
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In the next section we give a brief presentation of the simply typed version
of the λ- and λσ-calculi. In section 3 we start with the characterisation of a
subset of λσ-terms. Afterwards, we define an adequate notation for dealing with
matching problems and then, we present a second-order matching algorithm for
the λσ-calculus. Finally, we conclude and give directions for future work.

2 Background

We start this section with a brief presentation of the simply typed λ- and λσ-
calculus and some basic definitions used throughout the paper. The notation
used in this presentation uses de Bruijn indexes [dB72] instead of variables with
names. This is because de Bruijn’s notation is more adequate for implementa-
tions of the λ-calculus since α-conversion is no longer needed.

We define types and simply typed λ-terms in de Bruijn notation as usual:

types A ::= K | A → B, where K is an atomic type.
contexts Γ ::= nil | A.Γ
terms a ::= n | X | (a a) | λA.a, where n ∈ N = {1, 2, . . .}

and X ∈ X , the set of meta-variables.
The set of λ-terms built with this grammar is usually denoted by ΛdB(X )

and the typing rules are as follows:

(var)
A.Γ ` 1 : A

(var n)
Γ ` n : B

A.Γ ` n + 1 : B

(app)
Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B
(lambda)

A.Γ ` a : B

Γ ` λA.a : A → B

The type judgement Γ ` a : A can also be written as aΓ
A.

To each meta-variable X we associate a unique type A and a unique context
Γ . We assume that for each type there exists an infinite set of meta-variables
with that type. We add the following typing rule for meta-variables:

(Metavar) Γ ` X : A, where Γ is any context.

β- and η-contraction are defined as usual and =βη denotes βη-conversion.

Definition 1 (Order of types and terms). The order of a term is the order
of its type and the order of a type A, written as |A|, is defined by:

1. If A is atomic then |A| = 1;
2. If A = B → C then |A| = max{1 + |B|, |C|}.

Unification problems deal with unification equations which are defined by:

Definition 2 (Unification equation). A unification equation is an equation
of the form a =? b where a and b are λ-terms of the same type which are well-
typed under the same context. The order of a unification equation is the high-
est order of the meta-variables occurring in it. A unification equation is called
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flexible-flexible or rigid-rigid if the left and right-hand sides of the equation are
both flexible or rigid terms, respectively. If one term is rigid and the other is flexi-
ble (independently of the order) the equation is called flexible-rigid. A unification
equation is called trivial if it has the form a =? a.

Example 3. Let Γ = A.A → A.A → B.B.nil and X and Y meta-variables such
that Γ ` X : A → A and Γ ` Y : (A → A) → B. The unification equation
(3(2(X1))) =? 4 has order 2 (since X has order 2), while Y X =? 4 has order 3.

Definition 4 (Unifier). A unifier for a given unification equation, say a =? b,
is a substitution σ such that aσ =βη bσ.

Definition 5 (Unification problem). A unification problem is a finite set of
unification equations. The order of a unification problem is given by the highest
order amongst its unification equations. A solution of a unification problem P
is a substitution which is a unifier for all equations in P . In other words, a
solution for P is a substitution σ such that Pσ is the trivial unification problem
(i.e., formed only by trivial equations).

Definition 6 (Matching equation2). A higher-order matching equation is an
equation of the form a <<? b, where a and b are λ-terms of the same type which
are well typed under the same context and, such that the right hand side does
not contain meta-variables.

Definition 7 (Matcher). A matcher for a given matching equation, say
a <<? b, is a substitution σ such that aσ =βη b.

This definition corresponds to the notion of “filtering”, which becomes from
the assumption that the term to be matched have disjoint variable sets or they
can be renamed as usual in rewriting systems and pattern matching. The alter-
native notion of “semi-unification” (∃σ, aσ =βη bσ =βη b) is not treated here
[Bur89].

Definition 8 (Matching problem). A higher-order matching problem is a
finite set of matching equations. The order of a matching problem is given by the
highest order of its meta-variables.

The λσ-calculus of explicit substitutions extends the λ-calculus with explicit
operators to simulate the substitution (meta-)operation of the λ-calculus.

The syntax of the typed λσ-calculus is given by

Types A ::= K | A → B
Contexts Γ ::= nil | A.Γ
Terms a ::= 1 | X | (a b) | λA.a | a[s] where X ∈ X
Substitutions s ::= id | ↑ | a.s | s ◦ s

The set of λσ-terms is written as Λλσ(X ).

2 Adapted from [Dow01]
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The λσ-typing rules are given by:

(var) A.Γ ` 1 : A (lambda)
A.Γ ` a : B

Γ ` λA.a : A → B

(app)
Γ ` a : A → B Γ ` b : A

Γ ` (a b) : B
(clos)

Γ ` s . Γ ′ Γ ′ ` a : A

Γ ` a[s] : A

(id) Γ ` id . Γ (shift) A.Γ `↑ .Γ

(cons)
Γ ` a : A Γ ` s . Γ ′

Γ ` a.s . A.Γ ′
(comp)

Γ ` s′′ . Γ ′′ Γ ′′ ` s′ . Γ ′

Γ ` s′ ◦ s′′ . Γ ′

In addition, to each meta-variable X we associate a unique type TX and a
unique context ΓX . We assume that for each pair (Γ, A) there is an infinite set
of meta-variables X such that ΓX = Γ and TX = A. We add the following type
rule for meta-variables:

(Metavar) ΓX ` X : TX

We use the λσ-rules and the unification rules (named Dec-λ, Dec-App,
Dec-Fail, Exp-λ, Exp-App, Normalise and Replace) for the λσ-calculus as
presented in [DHK00].

3 Second-order Matching via Explicit Substitutions

The language of the λσ-calculus is a non-trivial extension of the language of the
λ-calculus, and hence, the decidability of second-order matching arises naturally
in the λσ-calculus. An obvious step to solve second-order matching problems in
the λσ-calculus would be to adapt the higher-order procedure for the λσ-calculus
of [DHK00] to solve second-order matching problems. As we will see in the next
section, the procedure given in [DHK00] does not terminate for all second-order
matching problems in the λσ-calculus. Nevertheless, we characterise a sub-set of
λσ-terms for which we can decide second-order matching problems.

3.1 An Important Class of λσ-terms

In this section we characterise an important class of λσ-terms, and in the next
section, we design a second-order matching algorithm that decides this class.
The necessity to define this class is due to the fact that the unification method
[DHK00] does not terminate for all second-order matching problems written in
the λσ-style. Hence this method does not decide second-order matching in the
λσ-calculus. The counter-example is the following:

XA→A.Γ
A [(λA.1A.Γ

A )Γ
A→A.idΓ

Γ ]ΓA =?
λσ bΓ

A

where b is a given closed term, i.e. a term without occurrences of meta-variables,
and Γ is a given context.

We can build the following derivation:

XA→A.Γ
A [(λA.1A.Γ

A )Γ
A→A.idΓ

Γ ]ΓA =?
λσ bΓ

A →Exp−App



6 F.L.C. de Moura and F. Kamareddine and M. Ayala-Rincón

XA→A.Γ
A [(λA.1A.Γ

A )Γ
A→A.idΓ

Γ ] =?
λσ bΓ

A ∧

XA→A.Γ
A =?

λσ (1A→A.Γ
A→A Y A→A.Γ

A )A→A.Γ
A →Replace

(1A→A.Γ
A→A Y A→A.Γ

A )A→A.Γ
A [(λA.1A.Γ

A )Γ
A→A.idΓ

Γ ] =?
λσ bΓ

A ∧

XA→A.Γ
A =?

λσ (1A→A.Γ
A→A Y A→A.Γ

A )A→A.Γ
A →Normalise

Y A→A.Γ
A [(λA.1A.Γ

A )Γ
A→A.idΓ

Γ ] =?
λσ bΓ

A ∧

XA→A.Γ
A =?

λσ (1A→A.Γ
A→A Y A→A.Γ

A )A→A.Γ
A

At this point we can repeat the strategy Exp-App, Replace and Nor-
malise since the last problem generated (see the last two lines) is composed
by two flexible-rigid equations, the first of which is equivalent to the original
problem up to renaming of meta-variables.

The class of λσ-matching problems that we are going to characterise is
strongly based on second-order matching problems that are generated in the
simply typed λ-calculus. Let M be a matching problem in the simply typed λ-
calculus. In order to solve M in the λσ-calculus, we need first to rewrite M in
the λσ-language. This translation is given by the following precooking function:

Definition 9 (Precooking [DHK00]). Let a ∈ ΛdB(X ) such that Γ ` a : A.
To every meta-variable X of type B in the term a, we associate the type B and
the context Γ in the λσ-calculus. The precooking of a from ΛdB(X ) to the set
Λλσ(X ) of λσ-terms is given by aF = F (a, 0), where F (a, n) is defined by:

1. F ((λB .a), n) = λB(F (a, n + 1)).

2. F (k, n) = 1[↑k−1].

3. F ((a b), n) = (F (a, n) F (b, n)).

4. F (X, n) = X [↑n].

Notice that F (1, n) and F (X, 0) are resp. 1 and X since ↑0= id. The precook-
ing translation is a function that takes a term from the simply typed λ-calculus
and returns an equivalent term in the language of the simply typed λσ-calculus.
This translation is essential to avoid variable capture since the HOU procedure
in the λσ-calculus uses first-order substitution (grafting).

There are two important points that should be emphasised during the pre-
cooking translation: first, the unique context associated to each meta-variable
in the simply typed λ-calculus in de Bruijn notation is the same unique context
associated to the translated meta-variable in the λσ-calculus, i.e., if Γ ` X : A
then Γ ` XF : A; second, only meta-variables have their structure changed
(in order to avoid variable capture when performing graftings) which means
that λσ-terms without occurrences of meta-variables are always in the image of
the precooking translation. This last remark will be particularly important for
matching. Although the precooking translation replaces the de Bruijn index n by
its codification 1[↑n−1], here, we avoid using this codification for clarity. To give
a better intuition of what happens during the precooking translation, consider
a (general) simply typed λ-term a. Suppose that a contains a meta-variable X
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which is under the scope of n abstractors:

λA1
. . . λAn

. · · · ( XA1.··· .An.∆
B ) · · ·

After the precooking translation we get:

λA1
. . . λAn

. · · · ( X∆
B [(↑n)A1.··· .An.∆

∆ ]A1.··· .An.∆
B ) · · ·

which is a shorthand for the simultaneous substitution:

λA1
. . . λAn

. · · · ( X∆
B [(n + 1.n + 2. · · · )A1.··· .An.∆

∆ ]A1.··· .An.∆
B ) · · ·

Since in λσ one uses grafting, the precooking translation is the correct way
to ‘protect’ the meta-variables and to avoid possible variable capture. The sub-
stitution ↑n applied to the meta-variable X , i.e., X [↑n] means, on one hand,
that every free de Bruijn index occurring in the term to be substituted by X
must be updated by n and, on the other hand, that the first n terms of any
substitution applied to X [↑n] will be ignored. That is, X [↑n][s] will be reduced
to X [s>n], for any substitution s, where s>n represents the elements in the list
s which are in positions greater than n. This means that the redexes related to
the abstractors appearing in the initial problem cannot introduce terms in the
substitution list applied to meta-variables. Hence, terms to be included in this
list should be arguments of β-redexes generated by new abstractors which are
created only by the rule Exp-λ.

Definition 10 (Unification Path/Matching Path). Let P be a unification
(resp. matching) problem. We say that P ′ is in the unification (resp. matching)
path of P if P →∗ P ′, where the relation →∗ means n ≥ 0 applications of any
unification (resp. matching) rules.

The next proposition characterises second-order problems in the language of
the λσ-calculus that can be decided by the method given by [DHK00].

Proposition 11 (Characterisation of a special subclass of λσ-terms).
Let P Γ

A be a second-order unification problem which is in the image of the pre-
cooking translation. Then every flexible term occurring in P ′Γ

A which is in the
unification path of P Γ

A using the unification rules of [DHK00], and of the form
X [s], with X of atomic type and s in σ-normal form, is such that every element
in the list s with functional type is a de Bruijn index.

Proof. The proof is by induction on the size of the derivation that generated the
term that contains X [s] as sub-term. Without loss of generality we may assume
that P Γ

A is in λσ-normal form (otherwise we can apply one step of Normalise).
We use IH for the induction hypothesis.

If the considered equation belongs to P Γ
A then by the definition of precooking,

the substitution s is of the form ↑n, for some n ≥ 0 and, hence the proposition
holds since every term in the substitution ↑n is a de Bruijn index.

Now suppose that the proposition holds for P ′Γ
A which by hypothesis is in

the unification path of P Γ
A . Let P ′′Γ

A be such that P ′Γ
A →r P ′′Γ

A and r is any
unification rule as given in [DHK00] except Dec-Fail since it does not generate
a new unification problem. We have the following cases:
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– If r is Dec-λ or Replace then X [s] was already in P ′Γ
A since these rules do

not change the structure of substitutions. The proposition follows by IH.
– If r is Dec-App then either X [s] corresponds to one of the arguments ai of

n a1 . . . ap or the equation was already in P ′Γ
A . In both cases, s satisfies the

proposition by IH.
– If r is Exp-λ then either X [s] is a sub-term of the new equation or it was

already in P ′Γ
A . In the former case, the sole new meta-variable that is intro-

duced has the form Y , that should be seen as Y [id] and then the proposition
holds. In the latter case the proposition holds by IH.

– If r is Exp-App then either X [s] is a sub-term of one of the terms occur-
ring among the new equations or it was already in P ′Γ

A . In the former case,
all the new meta-variables H1, . . . , Hk have the form Hi[id] and then the
proposition holds. In the latter case the proposition holds by IH.

– If r is Normalise then there are two cases that we need to consider:
1. The application of Normalise is preceded by an application of Exp-λ:

In this case, the newly introduced λ’s will generate new β-redexes and
the steps are as follows. The selected equation before the application of
Exp-λ had a sub-term of the form:

X∆
B1→···→Bk→B [(↑n)A1.··· .An.∆

∆ ]A1.··· .An.∆
B1→···→Bk→B

where B1,. . . , Bk and B are atomic types since X is second order.
After an application of Exp-λ followed by Replace we have:

(λB1
· · ·λBk

.Y B1.··· .Bk.∆
B )∆

B [(↑n)A1.··· .An.∆
∆ ]A1.··· .An.∆

B

The normalisation step consists in pushing the substitution inside the
new λ’s and then performing β-reductions. After pushing the substitu-
tion inside these new abstractors we have a sub-term of the form:
λB1

· · ·λBk
.Y B1.··· .Bk.∆

B [1B1.··· .Bk .A1.··· .An.∆
B1

. · · · .kB1.··· .Bk .A1.··· .An.∆
Bk

.

(↑k+n)B1.··· .Bk.A1.··· .An.∆
∆ ]B1.··· .Bk.A1.··· .An.∆

B

The β-reductions that can be performed now will replace arbitrary ele-
ments by the first k de Bruijn indexes in the above substitution list, but
since all of these λ’s have atomic type the proposition holds. The other
terms in the substitution list remain unchanged.

2. Normalise was not preceded by an application of Exp-λ: Then, an ap-
plication of Normalise is a consequence of an application of Exp-App
since the rules Dec-λ, Dec-App, Dec-Fail and Replace, do not change
the structure of the current terms which, by IH are in normal form. Ap-
plications of Exp-App do not introduce new abstractions and hence the
rule Beta3 does not apply. Application of Abs introduces a new de Bruijn
index in the substitution list, and hence the proposition still holds. None
of the others λσ-rules introduce new terms in the substitution lists of
the current unification problem and the proposition holds by IH. �

3 See the λσ-rules in [DHK00] or [ACCL91]
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In other words, the substitution s in Proposition 11, has the form a1.· · ·.ap.↑
n

(ap 6= n), such that all the elements a1, . . . , ap are of atomic type, and the other
part of the substitution, i.e., ↑n which is a short hand for n + 1.n + 2. · · · , is
formed by an infinite number of different de Bruijn indexes and is the only part
which may have elements of functional type. This result is illustrated as:

X [ a1. · · · .ap.
︸ ︷︷ ︸

n + 1.n + 2. · · ·
︸ ︷︷ ︸

]

atomic at most
types 2nd-order types

In section 3.3 we present a second-order matching algorithm for λσ-problems
whose terms belong to the class characterised by Proposition 11. Although this
class forms a proper subset of all λσ-terms, this restriction is not important since
this class includes all λσ-terms that occur in a second-order matching problem
which is in the matching path of another matching problem that is in the image
of the precooking translation. Thus, this class includes all the terms that can be
generated by the unification procedure from a second-order matching problem
originated in the simply typed λ-calculus (after the precooking translation).

3.2 The Unification by Transformation Notation

Matching problems are characterised by the fact that terms in the right-hand
side of equations cannot be instantiated. Therefore, the first difficulty to use the
general rules of [DHK00] is related to applications of the rule Exp-λ because
it introduces a flexible-flexible equation whose right-hand side needs to be in-
stantiated. As an example, let a <<?

λσ b be a second-order matching problem
such that the term a has an occurrence of the meta-variable X of type A → A.
An application of a rule like Exp-λ would generate a new problem of the form
a <?

λσb∧X <<?
λσ λA.Y , and of course the meta-variable Y needs to be instanti-

ated. To solve this problem we use a notation based on the so called “unification
by transformation” approach [Nip93]. According to this approach, a matching
problem will be represented by a pair of the form 〈σ, M〉, where σ is a grafting,
and M is a matching problem. The advantage of this notation is that we can
define matching rules that do not introduce terms that need to be instantiated in
the right-hand side of matching equations because graftings and matching equa-
tions are kept in different places. For the above example, an application of a rule
with the same behaviour of Exp-λ should generate from the matching problem
〈{}, a <<?

λσ b〉 the equivalent matching problem 〈{X 7→ λA.Y }, {a <<?
λσ b}〉.

This notation is independent of the matching rules and, hence we can char-
acterise solved forms without knowing explicitly the matching rules.

Definition 12 (Solved form). A solved form is a pair of the form 〈θ, M〉,
where the first element of the pair is a grafting and the second element is either
the empty set or a finite set of trivial matching equations, i.e., equations of the
form a <<?

λσ a.

Now we are ready to define the matching rules.
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3.3 The Second-Order Matching Algorithm

The second-order matching rules are given in Table 1. The rules Dec-m-λ, Dec-

m-App, Dec-m-Fail and Normalisem correspond respectively to Dec-λ, Dec-
App, Dec-Fail and Normalise of [DHK00] written in the unification by trans-
formation notation. The rule Expm-λ is the matching version of Exp-λ. The
difference between them, in addition to the notation, is that Expm-λ always
replaces a meta-variable of functional type by an abstraction whose body is a
fresh meta-variable of atomic type and also applies the generated grafting to the
current matching problem. This sole step corresponds to several applications
of Exp-λ and Replace. Note that, if no replacement is done, the rule Exp-λ
can be applied ad infinitum. To avoid such infinite reductions, [DHK00] defined
fair strategies. The definition of Expm-λ avoids the necessity of defining any
strategy because the rules in Table 1 cannot be applied to a given second-order
matching problem forever. In fact, for a given equation each rule can be applied
only once. The rules Imit and Proj generate grafting for flexible-rigid equations
when the head of the flexible term is a meta-variable of atomic type. The main
difference between Imit and Proj is that the latter does not introduce fresh
meta-variables. In addition, while Proj may generate several different graftings,
for Imit we have at most one grafting. Moreover, in the rule Imit, the head of
the term which replaces X is a de Bruijn index of at most third order. This is
because the newly introduced meta-variables have at most second-order.

To prove that the rules of Table 1 always terminate for second-order matching
problems whose terms belong to the class characterised by Proposition 11, we
need to define an adequate measure. We start by giving the length of a λσ-term:

Definition 13 (Length of a λσ-term). Let a ∈ Λλσ(X ). We inductively de-
fine |a|, the length of a, by:

– if a = X or a = 1 then |a| = 1

– if a = (b c) then |a| = |b| + |c|

– if a = λ.b then |a| = 1 + |b|

– if a = b[s] then |a| = |b|+ ||s||, where the size of a substitution s, written as
||s||, is inductively defined as:

• if s =↑ or s = id then ||s|| = 0

• if s = c.d then ||s|| = |c| + ||d||

• if s = u ◦ v then ||s|| = ||u|| + ||v||

Definition 14. Let M = {a1 <<?
λσ b1, . . . , an <<?

λσ bn} be a matching problem.
Define µ(M) = (ξ, ξ′, ξ′′) in the following way:

• ξ = Σn
i=1|bi|

• ξ′ = the number of meta-variables occurring in M

• ξ′′ = the sum of the order of the type of all meta-variables occurring in M .

Now denote by < the usual lexicographic order over triples.
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Decm-λ
〈σ, P ∪ {λA.a <<?

λσ λA.b}〉

〈σ, P ∪ {a <<?

λσ b}〉

Decm-App
〈σ, P ∪ {(n a1 . . . ap) <<?

λσ (n b1 . . . bp)}〉

〈σ, P ∪ {a1 <<?

λσ b1, . . . , ap <<?

λσ bp}〉

Decm-Fail
〈σ, P ∪ {(n a1 . . . ap) <<?

λσ (m b1 . . . bq)}〉

Fail
, if m 6= n.

Expm-λ
〈σ, P 〉

∃Y : (A1. · · · .Ak.Γ ` Y : B), 〈σ′, P{X 7→ λA1
. . . λAk

.Y }〉
if (Γ ` X : A1 → · · · → Ak → B) ∈ T Var(P ), Y 6∈ T Var(P ),
and X is not a solved variable.
where σ′ = σ{X 7→ λA1

. . . λAk
.Y }

Imit
〈σ, P ∪ {X[a1. · · · .ap. ↑n] <<?

λσ (m b1 . . . bq)}〉

〈σ′, Pσ′ ∪ {(m−n+p H1 . . . Hq)[a1σ′. · · · .apσ′. ↑n] <<?

λσ (m b1 . . . bq)}〉

if X has atomic type and m > n.
where σ′ = σ{X 7→ (m−n+p H1 . . . Hq)}, H1, . . . , Hq are meta

variables with appropriate type and with contexts
ΓHi

= ΓX(∀1 ≤ i ≤ q), and m-n+p is at most third order.

Proj
〈σ, P ∪ {X[a1. · · · .ap. ↑n] <<?

λσ (m b1 . . . bq)}〉

〈σ{X 7→j}, {P{X 7→j} ∪ {aj{X 7→j} <<?

λσ (m b1 . . . bq)}〉

if X has atomic type, and the j-th element (1 ≤ j ≤ p)
of the list a1. · · · .ap has the same type of X.

Normalisem
〈σ, P ∪ {a <<?

λσ b}〉

〈σ′, P ∪ {a′ <<?

λσ b′}〉
if a or b is not in Eta-long form.

where a′ (resp. b′) is the Eta-long form of a (resp. b),
and σ′ is obtained from σ by normalising all its terms.
if a (resp. b) is not a solved variable and a (resp. b) otherwise.

Table 1. Second-Order Matching Rules

Proposition 15. Applications of the rules of Table 1 to second-order matching
problems whose terms belong to the class characterised by Proposition 11 always
terminate.

Proof. It is enough to show that µ(M) decreases after the application of any of
the rules in Table 1. We write M →r M ′ to denote one step reduction by one
application of rule r. Application of Decm-λ decreases the size of both sides of
the selected equation (see definition 13), therefore µ(M ′) < µ(M). Application
of Decm-App replaces one equation by a finite number of new equations formed
by sub-terms of the previous problem, therefore ξ decreases and we have that
µ(M ′) < µ(M). Application of Decm-Fail always stops. Application of Expm-
λ replaces a meta-variable of functional type by a metavariable of atomic type,
therefore ξ′′ decreases and the first two components of the current triple remain
unchanged, therefore µ(M ′) < µ(M). Application of Imit introduces q ≥ 0
fresh meta-variables to the new matching problem, where q is the number of
arguments of the head m of the rigid term in the current equation. If q = 0
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then no new meta-variable is introduced and, hence ξ′ decreases. Otherwise, the
new equation (m−n+p H1 . . . Hq)[a1σ

′. · · · .apσ
′. ↑n] <<?

λσ (m b1 . . . bq), which is
rigid-rigid must be followed by an application of Decm-App which decreases
µ(M). Application of Proj decreases ξ′ since it does not introduce new meta-
variables. Application of Normalisem cannot be applied successively because
the λσ-calculus is weakly terminating. In this case, even if it is not the case
that µ(M) < µ(M ′) and M ′ is not trivial, one of the other rules must apply.
Therefore the reduction terminates. �

Since we are dealing with matching problems, we have that the image of
the graftings corresponding to solved forms are λσ-terms that are always in
the image of the precooking translation. In fact, note that the grafting of a
solvable matching problem is always of the form {X1 7→ a1, . . . , Xk 7→ ak},
where a1, . . . , ak are closed λσ-terms, i.e., terms without any occurrences of
meta-variables. This fact is formalised by the following proposition:

Proposition 16. Every solved form of a second-order matching problem, ob-
tained by application of the rules in Table 1, is in the image of the precooking
translation.

Proof. Every closed term is in the image of the precooking translation since we
only need to rewrite the λσ-codification of de Bruijn indexes, say 1[↑n] (n ≥ 0),
into the usual form n. Recall that, for clarity, in all the examples and even in
the rules, we write n instead of 1[↑n], although this is not the notation used
internally by the λσ-calculus. �

According to Proposition 16, the solved forms are translated back to the
simply typed λ-calculus by rewriting the codification of de Bruijn indexes used
by the λσ-calculus by the corresponding de Bruijn index in the λ-calculus. The
whole matching process can be represented by the following scheme:

M
Precooking

// MF

Matching Algorithm
// M ′

F

Precooking−1

// M ′

Example 17. Let M be the second-order matching problem given by the equation
Γ ` λA.(X 3) <<? λA.(2(43)) : A → B, whose context is given by Γ = A →
B.A.A → A.nil, where A and B are atomic types and Γ ` X : A → B. After the
precooking translation, we have λA.(X [↑] 3) <<?

λσ λA.(2(43)). The algorithm
generates the following reduction:
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〈{}, {λA.(X [↑] 3) <<?
λσ λA.(2(4 3))}〉

Decm-λ
��

〈{}, {(X [↑] 3) <<?
λσ (2(4 3))}〉

Exp
m

-λ
��

〈{X 7→ λA.Y }, {((λA.Y )[↑] 3) <<?
λσ (2(4 3))}〉

Normalisem

��

〈{X 7→ λA.Y }, {Y [3. ↑] <<?
λσ (2(4 3))}〉

Imit

��

〈{Y 7→ (2H1), X 7→ (λA.(2H1))}, {(2H1)[3. ↑] <<?
λσ (2(4 3))}〉

Normalisem

��

〈{Y 7→ (2H1), X 7→ (λA.(2H1))}, {H1[3. ↑] =?
λσ (4 3)}〉

Imit

����
��

��
�

Proj

  
@@

@@
@@

@

T T ′

where T ′ is given by:

〈{H1 7→ 1, Y 7→ (2 1), X 7→ λA.(2 1)}, {3 <<?
λσ (4 3)}〉

Decm−Fail

��

Fail

and T is given by:

〈{H1 7→(4H2), Y 7→(2(4H2)), X 7→λA.(2(4H2))},{(4H2)[3.↑]<<
?
λσ (4 3)}〉

Normalisem

��

〈{H1 7→(4H2), Y 7→(2(4H2)), X 7→λA.(2(4H2))},{(4H2[3.↑])<<
?
λσ (4 3)}〉

Decm-App

��

〈{H1 7→ (4H2), Y 7→ (2(4H2)), X 7→ λA.(2(4H2))}, {H2[3. ↑] <<?
λσ 3}〉

Imit

~~}}
}}

}}
}}

Proj

!!B
BB

BB
BB

B

T ′′ T ′′′

where T ′′ and T ′′′ are, respectively, given by:
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〈{H2 7→ 3, H1 7→ (4 3), Y 7→ (2(4 3)), X 7→ λA.(2(4 3))}, {3 <<?
λσ 3}〉

and

〈{H2 7→ 1, H1 7→ (4 1), Y 7→ (2(4 1)), X 7→ λA.(2(4 1))}, {3 <<?
λσ 3}〉

To prove completeness and correctness of the matching rules of Table 1, we
need to consider only the rules Expm-λ, Imit and Proj because for all the other
rules the proof is the same as in [DHK00]. As usual, let us call Uλσ(M) the set
of all λσ-unifiers (or matchers) of M .

Proposition 18 (Correctness). Let S = {Expm-λ, Imit, Proj}. The rules
in S are correct, i.e., if M →r M ′ then Uλσ(M ′) ⊆ Uλσ(M), where r ∈ S.

Proof. 1. Expm-λ: Suppose that γ is a matcher of P{X 7→ λA1
. . . λAk

.Y }.
This means that the λσ-normal form of P{X 7→ λA1

. . . λAk
.Y }γ is the trivial

problem, i.e, γ ∈ Uλσ(P{X 7→ λA1
. . . λAk

.Y }) and {X 7→ λA1
. . . λAk

.Y }γ ∈
Uλσ(P ) which shows that Uλσ(P{X 7→ λA1

. . . λAk
.Y }) ⊆ Uλσ(P ).

2. Imit: Let γ be a matcher of Pσ′ ∪ {(m−n+p H1 . . .Hq)[a1σ
′.· · ·.apσ

′.↑n]

<<?
λσ (m b1 . . . bq)}, where σ′ = σ{X 7→ m− n + p H1 . . . Hq}. This means

that the λσ-normal form of

Pσ′γ ∪ {(m−n+p H1 . . . Hq)[a1σ
′.· · ·.apσ

′. ↑n]γ <<?
λσ (m b1 . . . bq)}

is the trivial problem. Therefore, σ′γ ∈ Uλσ(P ∪ {X [a1. · · · .ap. ↑n] <<?
λσ

(m b1 . . . bq)}), and hence Uλσ(Pσ′ ∪ {(m−n+p H1 . . . Hq)[a1σ
′.· · ·.apσ

′.↑n]

<<?
λσ (m b1 . . . bq)}) ⊆ Uλσ(P ∪ {X [a1. · · · .ap. ↑

n] <<?
λσ (m b1 . . . bq)}).

3. Proj: Let γ be a matcher of P{X 7→j}∪{aj{X 7→j} <<?
λσ (m b1 . . . bq)}, i.e.,

the λσ-normal form of P{X 7→j}γ ∪ {aj{X 7→j}γ <<?
λσ (m b1 . . . bq)} is the

trivial problem. Hence, {X 7→ j}γ is a matcher of P ∪ {X [a1.· · ·.ap. ↑
n]

<<?
λσ (m b1 . . . bq)}, i.e., {X 7→ j}γ ∈ Uλσ(P ∪ {X [a1. · · · .ap. ↑n] <<?

λσ

(m b1 . . . bq)}), and since {X 7→j}γ ∈ Uλσ(P{X 7→j}∪{aj <<?
λσ (m b1 . . . bq)}),

we have that Uλσ(P{X 7→j} ∪ {aj <<?
λσ (m b1 . . . bq)}) ⊆

Uλσ(P ∪ {X [a1. · · · .ap. ↑
n] <<?

λσ (m b1 . . . bq)}). �

Proposition 19 (Completeness). Let S = {Expm-λ, Imit, Proj}. The rules
in S are complete, i.e., if M →r M ′ then Uλσ(M) ⊆ Uλσ(M ′), where r ∈ S.

Proof. 1. Expm-λ: Let θ be a λσ-unifier of 〈σ, P 〉 and X ∈ T var(P ) such that
Γ ` X : A1 → . . . → Ak → B. Thus Xθ = a : A1 → . . . → Ak → B and we
can assume that a is of the form λA1

. . . λAk
.b with b : B. Define θ′ such that

for all Z ∈ Dom(θ), θ′(Z) = θ(Z) and Y θ = b for a new variable Y 6∈ Dom(θ)
of type B. Then θ′ is a λσ-unifier of 〈{X 7→ λA1

. . . λAk
.Y }, P 〉. Consequently

θ is a λσ-unifier of ∃(Y : A1. · · · .Ak.Γ ` B), 〈{X 7→ λA1
. . . λAk

.Y }, P 〉.

2. Imit and Proj: Let γ be a matcher of P∪{X [a1. · · · .ap. ↑
n] <<?

λσ m b1 . . . bq},
where X has atomic type and m > n. Let X 7→ k c1 . . . cr ∈ γ. Then, we
have P{X 7→ k c1 . . . cr} ∪ {(k c1 . . . cr)[a1. · · · .ap. ↑

n] <<?
λσ m b1 . . . bq} →∗

λσ
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P{X 7→ k c1 . . . cr} ∪ {k[a1. · · · .ap. ↑
n]c1[a1. · · · .ap. ↑

n] . . . cr[a1. · · · .ap.↑
n]

<<?
λσ m b1 . . . bq}.

Now we have two options: k ≤ p or k > p. In the first case, the previous prob-
lem reduces to P{X 7→ k c1 . . . cr}∪{ak c1[a1. · · · .ap. ↑

n] . . . cr[a1. · · · .ap.↑
n]

<<?
λσ m b1 . . . bq} and γ is certainly a unifier of it. If k > p then the problem re-

duces to P{X 7→ k c1 . . . cr}∪{k−p+n c1[a1. · · · .ap. ↑
n] . . . cr[a1. · · · .ap.↑

n]

<<?
λσ m b1 . . . bq} and it has a solution if and only if k − p + n = m and thus

k = m−n+p at the condition that k > p ⇔ m−n+p > p ⇔ m > n, which
gives the condition asserted in the rule Imit. �

4 Conclusions and Future Work

We presented a second-order matching algorithm that decides an important sub-
set of λσ-terms. This subset is important because it contains all the second-order
λσ-terms that can occur in a second-order matching problem which is originated
from a matching problem in the simply typed λ-calculus. The algorithm uses an
adequate notation for dealing with matching problems since it keeps graftings
and matching equations as different entities. This separation is important to
avoid the possible introduction of flexible terms that need to be instantiated in
the right-hand side of a matching equation.

The study of the possible adaptation of this method to other calculi of explicit
substitutions, such as the λse-calculus (for which HOU was already adapted
[ARK01]) and the suspension calculus, can be helpful to identify advantages
and disadvantages of these calculi in practical applications [AMK05]. Moreover,
this work can be extended for matching via explicit substitutions using a richer
type theory, such as dependent types [Ree03,Muñ01].

There exist different definitions of matching in the literature such as “filter-
ing” and “semi-unification”, and in certain cases, matching cannot be seen as
a sub-case of higher-order unification[Bur89,Dow01]. As future work, we intend
to study how these definitions are related in a higher-order framework and, how
they interfere with explicit substitutions environments. In addition, another in-
teresting problem concerns to the existence of a second-order matching algorithm
that decides the whole λσ-calculus and not a sub-class of it, as well as possible
extensions of the current algorithm to matching problems of higher orders.
Acknowledgments. We would like to thank Claude Kirchner for the comments
that motivated this work and the referees for their suggestions and constructive
criticisms.
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