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André L. Galdino1,2

Grupo de Teoria da Computação, Departamento de Matemática, Universidade de Braśılia
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Abstract

A theory, called trs, for Term Rewriting Systems in the theorem Prover PVS is described. This theory is
built on the PVS libraries for finite sequences and sets and a previously developed PVS theory named ars
for Abstract Reduction Systems which was built on the PVS libraries for sets. Theories for dealing with
the structure of terms, for replacements and substitutions jointly with ars allow for adequate specifications
of notions of term rewriting such as critical pairs and formalization of elaborated criteria from the theory of
Term Rewriting Systems such as the Knuth-Bendix Critical Pair Theorem. On the other hand, ars specifies
definitions and notions such as reduction, confluence and normal forms as well as non basic concepts such
as Noetherianity.
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1 Introduction

The Prototype Verification System (PVS), developed at the SRI and widely used
by industrial and academic parties, consists of a specification language built on
higher-order logic, which supports modularity by means of parameterized theories,
with a rich type-system and a prover which uses the sequent-style. A PVS theory,
ars, built on the PVS prelude libraries for sets and binary relations that is useful
for the treatment of properties of Abstract Reduction Systems (ARS) was reported
in [14]. In ars notions such as reduction, derivation, normal form, confluence, local
confluence, joinability, noetherianity, etc., were adequately specified in such a way
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that proofs by noetherian induction are possible. The usefulness of ars was made
evident by formalizing proofs of the well-known Church-Rosser criterion, Newman’s
and Yokouchi’s Lemmas, among others [15].

In this work we present trs, a PVS theory for Term Rewriting Systems (TRS).
To the best of our knowledge there is no other PVS theory for TRS. The theory
trs is built on the PVS libraries for finite sequences and the theory ars. The de-
velopment includes theories for dealing with the structure of terms, replacements
and substitution. It includes specifications of elaborated notions of term rewriting
such as critical pairs which makes possible mechanical proofs of non trivial criteria
such as the Knuth-Bendix Critical Pair Theorem [19].

The novelty of this work in not to present mechanical proofs of theorems of
the theory of TRS in PVS, which were done previously in other proof assistants.
In fact, formalization of equational reasoning by rewriting started almost twenty
five years ago with the development of the Rewrite Rule Laboratory RRL, the first
successful tool for equational deduction via rewriting [18]. Also, specifications of
λ-calculus, abstract reduction and term rewriting systems with formalizations of
the Church-Rosser Theorem and Newman’s Lemma have been presented in several
proof assistants; eg, Coq [17], Isabelle [26], Isabelle/HOL [23], Boyer-Moore [29],
Otter [7], among others. In particular, the first complete formalization of the Knuth-
Bendix Critical Pair Theorem was presented in [27]; this formalization was given in
a first-order language and developed in the prover ACL2. Instead presenting trs
as “another collection of mechanical proofs of rewriting theorems”, we would like
to present trs as an adequate formalization of term rewriting theory in general
and as the basis for the formal manipulation of (equational) specifications based on
rewriting systems in PVS.

We believe trs enriches the power of PVS by allowing rewriting proof tech-
niques inside this proof assistant. The motivation for doing this formalization is
that rewriting systems have been applied to the specification and synthesis of re-
configurable hardware [4, 22] and that the correction of these specifications can be
carried out by translating these rewriting specifications into the language of PVS
as logical theories (in [5] it is introduced a proved correct translation from ELAN
rewriting specifications into PVS theories). In general, except for techniques for
the treatment of termination, trs provides proof rewriting based techniques that
are necessary in order to formalize the correctness of rewriting specifications in the
proof assistant PVS.

The distinguishing features of trs are listed below.

• Abstractness is one of the relevant characteristics of trs; in fact, based on the
PVS theory for binary relations, confluence properties of ARSs are formalized
in an “almost geometric style”, which allows for a “diagrammatic” treatment
of reduction and rewriting properties as it is usual in the standard rewriting
literature (eg [15]) as it was done in [23] for proof-checking the Church-Rosser
theorem of the λ-calculus in Isabelle/HOL.

• Difficulties with the use of variable names such as the necessity of considering
terms modulo α-conversion are eliminated in [23] by using de Bruijn notation. But
since it is inconvenient to represent TRSs with indices instead variable names,
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trs includes elaborated sub-theories for dealing with variables, terms, replace-
ments and substitutions in the standard way: with variable names and renaming
substitutions.

• Other distinctive feature of trs is the use of the elaborated theory of types of PVS
to represent TRS objects such as binary relations (functions in an abstract type T:
[T->T]), substitutions (the subtype of functions from variables to terms: [V ->
term], whose domain is finite), etc. In this way, the specification of higher-order
theorems is straightforward. In fact, as we will illustrate, in contrast to the first-
order formalization of the Critical Pair Theorem in ACL2 presented in [27], trs
brings formalizations of higher-order rewriting theorems in a natural and clear
manner over the higher-order specification language of PVS.

Initially, Section 2 gives the necessary background on PVS and specification of
basic abstract reduction notions. Afterwards, Section 3 describes the elements used
in the specification of the theory trs and Section 4 illustrates the usefulness of trs
by showing how the Knuth-Bendix Critical Pair Theorem was formalized. Finally,
before concluding, Section 5 presents related work.

The theory trs is available at www.mat.unb.br/∼ayala/publications.html.

2 Specification of basic reduction notions in PVS

We suppose the reader is familiar with rewriting theory and its standard notations
as presented in well-known textbooks (eg [6, 8]).

2.1 PVS

PVS consists of a specification language integrated with support tools and a the-
orem prover, that provides an integrated environment for the development and
analysis of formal specifications. Only the relevant aspects of PVS are explained
here. For more details about this system, refer to the documentation available at
http://pvs.csl.sri.com.

The specification language of PVS is built on higher-order logic, which supports
modularity by means of parameterized theories, with a rich type-system, including
the notions of subtypes and dependent types. It provides a large set of built-in
constructs for expressing a variety of notions. The PVS specifications are organized
as a collection of theories, from which the most relevant ones are collectively referred
as the prelude. Each theory is composed essentially of declarations, which are
used to introduce names for types, constants, variables, axioms and formulas, and
IMPORTINGs, which allow to import the visible names of another theories. Notice
that parameterized theories are very convenient since the use of parameters allows
more generic specifications, as we can see with the ars PVS theory below:

ars[T : TYPE] : THEORY
BEGIN
IMPORTING results_commutation[T], modulo_equivalence[T],

results_normal_form[T], newman_yokouchi[T]
END ars
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Within the ars theory, T is treated as a fixed uninterpreted type. So, when ars
is used by another theory it must be instantiated. For example, the theory of ars
of real numbers is just ars[real].

A important step in PVS specifications is type-checking the theory that builds
type-correctness conditions TCCs which are proof obligations that must be discharged
before the theory can be considered type-checked. TCCs proofs may be postponed
indefinitely, but the theory is considered complete only when all TCCs and formulas
upon which the proofs are dependent have been completed.

The PVS Prover provides a variety of commands to construct the proofs of
the different theorems. It is used interactively and it uses the sequent-style proof
representation to display the current proof goal for the proof in progress. The prover
maintains a proof tree for the current theorem being proved being the aim of the
user to construct a proof tree that is complete, in the sense that all the leaves are
recognized as true. Each node of the tree is a proof goal that results from the
application of a prover command (rule or strategy) to its parent node.

2.2 Specification of basic abstract reduction notions

Figures 1 and 2 illustrate the hierarchy of sub-theories of the theories ars and trs
respectively. Notice that ars makes part of trs and the Figure 1 is given separately
for improving presentation only.

The complete trs development runs in PVS 4.2 and consists of 350 lemmas
specified in 2745 lines (82K) and 50489 lines (3.4M) of proofs. PVS builds 124
TCCs whose proofs are included in the latter number. The number of lemmas
corresponding to the theory ars is 65 from which 5 are TCCs only.

The theory ars imports the PVS library for sets (sets lemmas) and over this
it builds the closure of binary relations that are necessary for formalizing ARS
theorems. Let consider a binary relation R over T, specified in PVS as R: VAR
pred[[T, T]]. Its reflexive transitive closure, RTC(R), is specified using the iterate
function which allows us to obtain inductive proofs on the length of derivations:

RTC(R): reflexive_transitive = IUnion(LAMBDA n: iterate(R, n))

Formalizations of properties of the reflexive transitive closure are given as

R_subset_RTC: LEMMA subset?(R, RTC(R))

iterate_RTC: LEMMA FORALL n : subset?(iterate(R, n), RTC(R))

RTC_idempotent : LEMMA RTC(RTC(R)) = RTC(R)

RTC_characterization : LEMMA reflexive_transitive?(R) <=>
(R = RTC(R))

In the previous lemmas R is universally quantified. This applies for all unquan-
tified variables in the lemmas and theorems to be presented in the remaining of the
paper.

Other closure operators and their properties are formalized similarly: equiva-
lence EC, symmetric SC, transitive TC, etc.
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Fig. 1. Hierarchy of the ars theory

Basic abstract reduction notions such as joinability, Church-Rosser and conflu-
ence are defined in the PVS sub-theory ars terminology as

ars_terminology[T : TYPE] : THEORY
BEGIN
IMPORTING relations_closure[T]

R : VAR PRED[[T, T]]
x, y, z : VAR T

...
joinable?(R)(x,y): bool = EXISTS z: RTC(R)(x,z) & RTC(R)(y, z)

church_rosser?(R): bool = FORALL x, y:
EC(R)(x,y) =>
joinable?(R)(x,y)

confluent?(R): bool = FORALL x, y, z:
RTC(R)(x,y) & RTC(R)(x,z) =>
joinable?(R)(y,z)

...
END ars_terminology

Basic abstract reduction results on confluence, for instance, are formalized
(proved) in the PVS sub-theory results confluence. The equivalence between
Church-Rosser and confluence is specified as

CR_iff_Confluent: THEOREM church_rosser?(R) <=> confluent?(R)

In the sub-theory noetherian noetherian relations are specified based on the no-
tion of well-founded relations and the principle of Noetherian induction is formalized
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Fig. 2. Hierarchy of the trs theory

(proved).

noetherian[T : TYPE] : THEORY
BEGIN

IMPORTING ars_terminology[T],
sets_aux@well_foundedness[T]

P : VAR PRED[T]
R : VAR PRED[[T, T]]

x, y : VAR T
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noetherian?(R): bool = well_founded?(converse(R))
...
noetherian_induction: LEMMA

(FORALL (R: noetherian, P):
(FORALL x:

(FORALL y: TC(R)(x, y) IMPLIES P(y))
IMPLIES P(x))

IMPLIES
(FORALL x: P(x)))

END noetherian

Using this formalization of noetherianity, the Newman’s Lemma can be formal-
ized (proved) elegantly as described in [15].

Newman_lemma: THEOREM FORALL R:
noetherian?(R) =>

(confluent?(R) <=> local_confluent?(R))

3 Specification of term rewriting notions

The theory trs imports finite sequences and finite sets from the PVS libraries.
Finite sequences are used to specify well-formed terms which are built from variables
and function symbols with their associated arities. This is done by application of
the PVS DATATYPE mechanism which is used to define recursive types.

term[variable: TYPE+, symbol: TYPE+] : DATATYPE
BEGIN

IMPORTING arity[symbol]

vars(v: variable): vars?
app(f:symbol,

args:{args:finite_sequence[term] | args‘length=arity(f)}): app?

END term

Notice that the well-formedness of terms, that is, the fact that function symbols
are applied to the right number of arguments, is guaranteed by typing the arguments
of each function symbol f as a finite sequence of length arity(f). Also, finite sets
and sequences are used to specify sets of subterms and sets of term positions. For
instance, the (finite) set of positions of t where the variable x occurs is the finite
set of finite sequences given as

Pos_var(t, x): set[positions?(t)] =
{p: positions?(t) | subtermOF(t,p)=x}

The sub-theory replacement formalizes the algebra of replacement of subterms
of terms. replaceTerm(t, s, p) is the term which results from s replacing its
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subterm at position p by the term t. In standard rewriting notation this is written
as s[p← t]. Properties of this algebra of terms are easily proved. For instance,

Lemma 3.1 Let s, t and r be terms, p be a position of s and q a position of t. Then

s[p← t][p.q ← r] = s[p← t[q ← r]]

is formalized as

lemmaR4: LEMMA positionsOF(s)(p) &
positionsOF(t)(q) =>

replaceTerm(r,replaceTerm(t,s,p),p o q) =
replaceTerm(replaceTerm(r,t,q),s,p)

The sub-theory compatibility formalizes the notion of a binary relation R that
is compatible with the structure of terms, that is R(r, s)⇒ R(t[p← r], t[p← s]):

comp_cont?(R): bool =
(FORALL r, s:

R(r,s) =>
R(replaceTerm(r, t, p), replaceTerm(s, t, p)))

Lemmas that state that the reflexive, transitive and equivalence closures of com-
patible relations are compatible as well are formalized too.

The sub-theory substitution specifies the algebra of substitutions. In this sub-
theory notions such as domain, range, domain restriction, homeomorphic extension
of substitutions and renaming substitutions are specified. The type of substitutions
is built as functions from variables to terms sig : [V -> term], whose domain
is finite: Sub?(sig): bool = is finite(Dom(sig)) and Sub: TYPE = (Sub?).
The homeomorphic extension ext(sig) of a substitution sig is specified inductively
over the structure of terms. In standard rewriting notation, the homeomorphic
extension of a substitution σ from its domain of variables to the domain of terms is
denoted as σ̂, but to simplify notation, usually textbooks do not distinguish between
a substitution σ and its extension σ̂. In the formalization this distinction should be
maintained carefully. For instance,

Lemma 3.2 Let s and t be terms, p a position of s and σ a substitution. Then

σ(s[p← t]) = σ(s)[p← σ(t)]

is formalized as

lemma6: ext(sigma)(replaceTerm(t,s,p)) =
replaceTerm(ext(sigma)(t), ext(sigma)(s),p)

The theory trs does not include a sub-theory for first-order unification and the
existence of most general unifiers is axiomatized.

In the sub-theory rewrite rules term rewriting rules follow the usual restric-
tions:

rewrite_rule?(l,r): bool = (NOT vars?(l)) &
subset?(Vars(r), Vars(l))
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The sub-theory reduction specifies the notion of reduction relation given as
reduction?(E) and built from a term rewriting system, which is a set of rewriting
rules E. Reduction relations are then proved to be closed under substitutions and
compatible with operators (structure of terms):

subs_op: LEMMA close_subs?(reduction?(E)) &
comp_op?(reduction?(E))

where a binary relation R closed under substitutions is specified as

close_subs?(R): bool = FORALL s, t, sigma:
R(s,t) =>
R(ext(sigma)(s),ext(sigma)(t))

4 Formalizations (proofs) of term rewriting results

As illustration of formalizations of elaborated results from term rewriting theory we
explain how the Knuth-Bendix Critical Pair Theorem was proved. We assume the
reader familiar with the proof of this theorem (as presented in [16] or in well-known
textbooks such as [6, 8]). This theorem states that

Theorem 4.1 (Knuth-Bendix Critical Pair Theorem) The reduction rela-
tion built from a term rewriting system is local confluent if, and only if all its
critical pairs are joinable.

As mentioned in the introduction, in the theory trs the use of variable names
improves readability (in contrast to use of de Bruijn indices), but this implies addi-
tional work. In particular, this happens when specifying rewriting notions such as
the one of critical pairs as presented in standard notation below.

Definition 4.2 [Critical Pair] Let li → ri, i = 1, 2 be rewriting rules whose vari-
ables have been renamed such that Vars(l1)∩Vars(l2) = ∅. Let p ∈ positions?(l1)
be such that l1 |p is not a variable and let σ = mgu(l1 |p, l2). Then one says that
overlapping l2 over l1 at position p determines the critical pair

〈 σ(r1), σ(l1)[p← σ(r2)] 〉

In the rewriting literature there is no explicit distinction between a set of rewrit-
ing rules (E) and the reduction relation (reduction?(E)). Informally, and only when
necessary, as in the previous definition, some assumptions such as “suppose there
are no variable names in common”, “suppose it is a renaming with different variable
names”, etc. are given to avoid these problems. In trs this should be done explic-
itly by using renamings as in the formalization of critical pairs presented below.
The set of critical pairs CP?(E) of a set of rewriting rules E is specified as:

CP?(E)(t1, t2): bool =
EXISTS (sigma,

rho,
((l1,r1) | member((l1,r1), E)),
((l2p,r2p) | member((l2p,r2p), E)),
(p: positions?(l1))):
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LET (l2,r2) = (ext(rho)(l2p), ext(rho)(r2p)) IN
disjoint?(Vars(l1),Vars(l2)) &
NOT vars?(subtermOF(l1, p)) &
mgu(sigma)(subtermOF(l1, p), l2) &
t1 = ext(sigma)(r1) &
t2 = replaceTerm(ext(sigma)(r2), ext(sigma)(l1), p)

In this specification rho is a renaming substitution that guarantees that (l1,
r1) and (l2, r2) are variants of rewriting rules without variables in common.

In the sub-theory critical pairs (see Figure 2) the Knuth-Bendix Critical Pair
Theorem is specified as:

CP_lemma: THEOREM FORALL E:
LET RRE = reduction?(E) IN

local_confluent?(RRE)
<=>

(FORALL t1, t2: CP?(E)(t1, t2) => joinable?(RRE)(t1,t2))

The sub-theory critical pairs fully formalizes the proof of the Critical Pair
Theorem (following the structure of the proof presented in [16]).

In the remaining of this section→ denotes the reduction relation induced by the
set of rules E, that is reduction?(E).

Necessity (=>): this is proved easily since all critical pairs are local divergences
of the form

σ(l1)

zzvvv
vv

v

((QQQQQQQQQ

σ(r1) σ(l1)[p← σ(r2)]

Then one concludes, by applying the hypothesis that the reduction relation is
locally confluent.

Sufficiency (<=): for the formalization of this part of the proof, let s be a term
of divergence such that

s
l1→r1
~~}}

}}
} l2→r2

  A
AA

AA

s1 s2

that is, there are positions pi ∈ positions?(s), rules li → ri ∈ E, and substitutions
σi, such that s|pi= σi(li) and si = s[pi ← σi(ri)], for i = 1, 2.

One should prove that s1 and s2 are joinable. The proof is divided in three
cases according to the manner in which the local divergence is generated: the case
of divergence by reduction of terms at separate or parallel positions, that is, p1 ‖ p2

in standard notations; and the two cases of divergence by reduction of overlapping
terms, the first, in which one has an instance of a critical pair, called a critical
overlap and, the second, in which σ2(l2) does not overlap with l1 itself, called non-
critical overlap.

Case 1 Suppose p1 ‖ p2. The formalization is obtained according to the following
steps: firstly, by a lemma of persistence one obtains that s1 |p2= σ2(l2) and
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that s2 |p1= σ1(l1); secondly, by a lemma of commutativity, one obtains that
s1[p2 ← σ2(r2)] = s2[p1 ← σ1(r1)]. Consequently, s1 and s2 are joinable.

Case 2 Suppose that p1 and p2 overlap, that is p1 6 ‖ p2. Then, either p1 ≤ p2 or
p2 ≤ p1. Without lost of generality, one assumes that p2 ≤ p1, that is p2 = p1p,
for some p possibly empty. The other case is proved symmetrically.

One starts by establishing the following properties:
(i) σ1(l1|p) = σ2(l2); and
(ii) by distributivity, s2|p1= σ1(l1)[p← σ2(r2)].
In the sequel, one proves that there exists a term s3 such that σ1(r1)→∗ s3 and
s2|p1→∗ s3, where→∗ denotes RTC(→). Then, by the compatibility of the relation
→, one concludes that s1 and s2 are joinable. For doing this, the following two
sub-cases are considered.

Case 2a Critical overlap: p ∈ positions?(l1), l1 |p is not a variable and σ1(l1 |p)
= σ2(l2). The proof is obtained by application of the lemma CP lemma aux1
presented below, which states that the divergence σ1(r1) and s2 |p1 corresponds
to an instance of a critical pair 〈t1, t2〉.
CP_lemma_aux1: LEMMA
FORALL E, ((l1, r1) | member((l1, r1), E)),

((l2, r2) | member((l2, r2), E)), (p: position):
( positionsOF(l1)(p) &

NOT vars?(subtermOF(l1, p)) &
ext(sg1)(subtermOF(l1, p)) = ext(sg2)(l2) )
=>
EXISTS t1, t2, delta:
CP?(E)(t1, t2) &
ext(delta)(t1) = ext(sg1)(r1) &
ext(delta)(t2) = replaceTerm(ext(sg2)(r2), ext(sg1)(l1), p)

Since by hypothesis 〈t1, t2〉 is joinable, there exists a term t3 such that t1 →∗ t3
and t2 →∗ t3. Consequently, by the lemma, there exists δ such that δ(t1) = σ1(r1)
and δ(t2) = s2|p1 and defining s3 as δ(t3), the result follows because → is closed
under substitutions.

In general the critical overlap case is proved in textbooks (eg [6]) by assuming
that the rewriting rules li → ri are renamed such that Vars(l1) ∩ Vars(l2) = ∅.
This assumption implicitly suggests the supposition that Dom(σ1)∩Dom(σ2) = ∅
holds and that, consequently, the substitution σ3 = σ1 ∪σ2 is well-defined. Thus,
σ3 is a unifier of the terms l1 |p and l2. From these implicit assumptions, it is
possible to conclude that the terms of the divergence are an instance of a critical
pair. Although, for obtaining a mechanical proof these implicit assumptions are
not possible. In the presented proof it was necessary to formalize the additional
lemma CP lemma aux1a that states that such renaming exists. Observe that the
condition Vars(l1) ∩ Vars(l2) = ∅ is obtained renaming a unique rule.

CP_lemma_aux1a: LEMMA
FORALL E, ((l1, r1) | member((l1, r1), E)),

((l2, r2) | member((l2, r2), E)), (p: position):
( positionsOF(l1)(p) &
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NOT vars?(subtermOF(l1, p)) &
ext(sg1)(subtermOF(l1, p)) = ext(sg2)(l2) )

=>
EXISTS alpha, rho:
disjoint?(Vars(l1), Vars(ext(rho)(l2))) &
ext(sg1)(subtermOF(l1, p)) = ext(comp(alpha, rho))(l2)

Case 2b Non-critical overlap: p = q1q2, for q2 possibly empty, such that q1 is a
position of variable in l1 and σ2(l2) = σ1(l1|q1)|q2 .

Although this is the more difficult case of the proof, in textbooks it is presented
diagrammatically without the necessary analytical details. The difficulties arise
because the rewriting rules are not necessarily linear. Thus, several occurrences
of the variable l1 |q1 are possible in both sides of the rule l1 → r1, which makes
difficult the proof of joinability. The formalization of this case uses thirteen
auxiliary lemmas specified in the sub-theory critical pairs aux. The following
lemma as presented in [16] has a central role.

Lemma 4.3 Let → be a relation compatible with the structure of terms, x be a
variable, and σ1 and σ2 be substitutions such that:

σ1(x) → σ2(x) and

σ1(y) = σ2(y), for all y 6= x.

Let t be an arbitrary term, and p1, . . . , pn ∈ positions?(t) be all the occurrences
of x in t. Define t0 = σ1(t) and ti = ti−1[pi ← σ2(x)], for 1 ≤ i ≤ n. Then
ti →n−i σ2(t), for 0 ≤ i ≤ n. In particular, σ1(t)→n σ2(t).

The formalization of this lemma requires two additional constructors called
replace pos and RSigma that are specified as presented below. replace pos
receives three arguments: two terms t and s and fssp, that is a sequence of
parallel positions (SSP) of s. Recursively, it substitutes all subterms at these
positions of s by t.

replace_pos(t, s, (fssp:SPP(s)) ): RECURSIVE term =
IF length(fssp) = 0 THEN s
ELSE replace_pos(t,replaceTerm(t, s, fssp(0)), rest(fssp))
ENDIF

MEASURE length(fssp)

RSigma is a boolean operator that holds for relations R, substitutions sg1 and
sg2 and variable x, whenever the hypothesis of Lemma 4.3 holds, that is, except
for x, sg1 and sg2 have identical images and sg1(x) reduces via R into sg2(x).

RSigma(R, sg1, sg2, x): bool =
FORALL (y: (V)): IF y /= x THEN sg1(y) = sg2(y)
ELSE R(sg1(x), sg2(x))
ENDIF

Then, Lemma 4.3 can be formalized as

CP_lemma_aux2: LEMMA
FORALL R, t, x, sg1, sg2:
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LET Posv = Pos_var(t, x), seqv = set2seq(Posv) IN
comp_cont?(R) & RSigma(R, sg1, sg2, x)
=>
(FORALL (i: below[length(seqv)]):

RTC(R)(replace_pos(ext(sg2)(x),ext(sg1)(t), #(seqv(i))),
ext(sg2)(t))) &

RTC(R)(ext(sg1)(t), ext(sg2)(t))

In the specification of CP lemma aux2, Pos var(t,x) is the set of all different
positions of the variable x occurring in the term t, as given in the Section 3. This
set is transformed into a sequence of positions with the operator set2seq. The
operator #( ) constructs a unitary sequence with its argument.

The proof of the Knuth-Bendix Critical Pair Theorem required the formalization
of sixteen specific auxiliary lemmas without taking into account general lemmas of
the theory trs. The formalization of the theorem required 933 proof commands
without taking into account commands used in the proof of the sixteen auxiliary
lemmas.

Finally, it is important to remark that parts of the formalization of the Critical
Pair Theorem are useful for mechanical proofs of other relevant non trivial TRS
results such as confluence of orthogonal rewriting systems.

5 Related work

This section complements the discussion on related work started in the introduction.
In [17] Huet formalized properties involving confluence for the λ-calculus in Coq,

in particular, for β-reduction. The main result is a formalization of the Prism The-
orem (see theorem 5 in [30]). In [26], Rasmussen presented a translation to Isabelle
of the treatment developed by Huet in Coq. In [24], Nipkow treated concepts such
as confluence and commutation, and formalized in Isabelle/HOL [26] some results
such as the theorems of the commutative union and the Church-Rosser theorems for
β-, η- and β ∪ η-reduction in the λ-calculus free of types. In [29], Shankar using the
Boyer-Moore prover [10], formalized the Church-Rosser theorem for the λ-calculus.
This formalization uses de Bruijn indices and the proof of the theorem is based on
the approach of Tait-Martin-Löf, that is, in the notion of parallel reduction. In [25],
Pfenning presented a formalization in LCF of the λ-calculus free of types, in which
the Church-Rosser property is proved. Also, a formalization in PVS of the Church-
Rosser theorem for a version of the λ-calculus call-by-value is presented by Ford
and Mason in [13].

In [21] McKinna and Pollack presented a survey about concepts and results of
the λ-calculus with pure types formalized in LEGO. Also, in [1] it was formalized
in LEGO, by Altenkirch, the system F of Girard with the principal objective of
verifying that such system is strongly normalizing. Another calculi formalized in
Coq, with main objective to verify that they are strongly normalizing, are: the
calculus of construction [11, 2], the λ-calculus typed with co-products [3] and the
simple typed λ-calculus à la Church with constants [20].

The libraries CoLoR [9] and Coccinelle [12] developed in Coq, by Blanqui et al
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and Contejean et al, respectively, focused on formalizations of termination criteria
by reduction orders, that was not considered in trs.

In [28], Säıbi presented specifications in Coq of concepts of the theory of rewrit-
ing, such as closure of relations and local confluence, and formalizations of some
rewriting properties such as Newman’s and Yokouchi’s Lemmas. In addition, with-
out proving the Knuth-Bendix theorem, critical pairs were analyzed for the calculus
of explicit substitutions λσ⇑. The Critical Pair Theorem is axiomatically assumed
and applied in order to verify that this calculus is locally confluent.

Differently from the previously mentioned works, the theories ars and trs pre-
tend to be more general trying to include all the elements that are necessary to
formalize any property and result of the theory of rewriting, without focusing any
rewriting system or rewriting calculus in particular.

In [27], Ruiz-Reina et al presented a first-order formalization in ACL2 of con-
cepts and results from the theories of ARS and TRS. The work in [27] pretends,
as the one presented here, to be a general formalization of the theory of rewriting.
But in contrast to this work, ars and trs were developed in a natural manner using
the higher-order language of PVS to represent the higher-order objects of the the-
ory of rewriting. In particular, this straightforward and elegant representation of
second-order objects such as reduction relations makes it possible the diagrammatic
treatment of properties such as confluence and commutativity as it is desirable and
usual in the treatment of the theory of abstract reduction relations.

Also, in [27], Ruiz-Reina et al reported the first known complete formalization
of the Knuth-Bendix Critical Pair Theorem. To the best of our knowledge, after
Ruiz-Reina et al work no other formalization of this theorem was reported. Thus,
the formalization of the Knuth-Bendix Critical Pair Theorem presented here should
be the first one specified in higher-order language.

One of the main characteristics of the development presented in this work is
the use of variable names instead variables as indices. Some of the works cited
previously such as [29] and [17] used de Bruijn indices avoiding in this way the
necessity of variable renamings. Other works such as [21] and [13] used variable
names in their formalizations. Although, the use of indices is considered highly
elegant and convenient, in particular de Bruijn notation is considered to be very
adequate for implementations of the λ-calculus, its use results inconvenient for rep-
resenting rewriting systems in general. The variable names approach adopted in
the theories trs and ars allows representation of mathematical elements as they
are presented in papers and textbooks.

6 Conclusions and Future Work

The PVS theory trs specifies adequately basic notions of the theory of TRSs. The
theory trs is built on a theory for ARSs, ars, that was built on the PVS library
for binary relations. The main distinctive features of trs are to give easy, almost
geometrical, representations of abstract reduction properties and to present higher-
order theorems in a natural way in the higher-order specification language of PVS.

Our intention specifying the trs theory was not to include exhaustively all well-
known results of term rewriting theory, but instead to give the essential mecha-
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nisms for expressing and mechanically proving all these results. Adequability of
our specification is made evident by presenting elegant formal proofs of well-known
properties of ARSs such as Newman’s and Yokouchi’s Lemmas and of TRSs such
as the Knuth-Bendix Critical Pair Theorem.

As future work trs should be used to check properties of concrete computational
objects which are specified and synthesized by term rewriting systems by method-
ologies as the ones presented in [4] and [22], respectively. Also, formalizations of
termination criteria will be proposed to enlarge the power of the development.
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