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Abstract. Recent works point out the application of rewriting-logic environ-
ments for the specification of hardware. When these specification are proved to
be correct one can additionally apply them for the simulation, testing and even
analysis of the conceived specified hardware. But theorem proving mechanisms
are not included as basic/natural components of rewriting-logic environments
(such as ELAN, CafeObj and Maude). Even worst, they are not able to handle
proofs guided by basic methods of rewriting theory. Consequently, the correct-
ness of these specifications have been done by hand. In this work we present a
new practical methodology, which is based on a semantically intelligent trans-
lation of rewriting-logic specifications in ELAN to theories in the specification
language PVS(a well-known proof assistant). This translation includes gener-
ation of lemmas to be checked for guaranteeing the joinability of critical pairs
of the rewriting rules of the original specification.

Resumo. Trabalhos recentes mostram como usar ambientes de reescrita lógica
na especificação de hardware. As especificações, uma vez demonstradas corre-
tas, podem ser simuladas, testadas e até analisadas no ambiente de reescrita.
Entretanto sistemas de reescrita lógica (como ELAN, CafeObj e Maude) não
incluem mecanismos naturais/básicos de prova de teoremas. Pior ainda, eles
são incapazes de tratar provas orientadas pelos métodos básicos da teoria de
reescrita. Por isto as provas de correção devem ser feitas de forma manual.
Neste trabalho propomos uma metodologia prática, baseada da tradução se-
manticamente inteligente de especificações em reescrita lógica em ELAN para
teorias na linguagem de especificação do PVS(um assistente de prova bem con-
hecido). Esta tradução inclui a geração de lemas a serem provados que garan-
tem a juntabilidade dos pares crı́ticos da especificação original em reescrita.

1. Introduction

In [Ayala-Rincón et al., 2002] the correctness proof of the specification of a speculative
processor, presented as a term rewriting system (TRS), was obtained showing that this
processor imitates a basic RISC processor and vice-versa. The ELAN specification of this
processor was given by a term rewriting system which consists of four sets of specialized
rewriting rules: for issuing instructions to the buffer, load/store in memory instructions,
branch prediction rules and arithmetic and propagation rules. These subset of rules coin-
cide with the ones in [Arvind and Shen, 1999] except that in this rewriting-logical setting
logical strategies were applied for obtaining a clean discrimination between parts of the
processor as well as for implementing different speculative strategies. For proving that
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each processor imitates the other, it was necessary to verify the convergence of all rules
except the issuing instruction rules of the speculative processor. This was done by prov-
ing Noetherianity of this set of rules and applying the Knuth-Bendix-Huet Critical Pair
Lemma by hand. This involved exhaustive computation of critical pairs between rewriting
rules and subsequent verification of their joinability.

The proposed methodology allows us to mechanically complete this task during
the translation to the language of the proof assistant PVS. It is important to stress that
the intelligence involved in this translation is not redundant, because no strategies for
handling proof based in rewriting basic theory are available in PVS (as well as in most
of the known practical proof assistants). Further proofs of integrity constraints of the
target specifications are then done in PVS and in the case these proofs are not possible a
dynamically reformulation of the rewriting based specification and continuous translation
to the language of PVS is possible. In this way verification of complex specifications can
be done quickly and safely.

The applicability of the proposed methodology is not restricted to the case of
hardware specification, but it works for any rewrite based specification (as the example
in the appendix illustrates). Specification via rewriting-logic has been showed of practi-
cal interest for the modeling and simulation of non standard hardware technologies (for
which no commercial tool of correct synthesis is available) such as the innovative re-
configurable systems used in compact and portable systems [Ayala-Rincón et al., 2003,
Ayala-Rincón et al., 2004]. Because of this we believe the proposed methodology will be
of practical interest in the correct development of reconfigurable technologies.

The remainder of this section briefly discusses the required theoretical basis. Sec-
tion 2 discusses the goals and outline of the methodology being proposed. Section 3
discusses the translation techniques and choices, it describes why certain routes where
used. Section 4 presents one example of application for a large ELAN specification of a
basic AX RISC processor. The last section concludes and presents future work. For the
benefit of the review process we include an appendix with a small example together with
full listings of the input ELAN specification and its translation to PVS.

1.1. Theoretical Basis

We include the minimal needed notions on rewriting. For detailed presentations see
[Brader and Nipkow, 1998, van Rijsbergen, 2003].

Rewriting theory has been successfully applied into different areas of computer
science as an abstract formalism for assisting the simulation, verification and deduction
of complex computational objects and processes. In the context of computer architec-
tures, rewriting theory has been applied as a tool for reasoning about hardware design. To
review only a reduced set of different approaches in this direction, we mention the work
of Kapur who has used his well-known Rewriting Rule Laboratory - RRL for verify-
ing arithmetic circuits [Kapur and Subramaniam, 1997, Kapur and Subramaniam, 2000]
as well as Arvind’s group at MIT that treated the specification of processors over simple
architectures, the rewrite-based description and synthesis of simple logical digital circuits
and the description of cache protocols over memory systems [Arvind and Shen, 1999,
Hoe and Arvind, 2004]. Rewriting-logic, that extends the pure rewriting paradigm allow-
ing for logical control of the application of the rules by logic strategies, has been showed
of greater flexibility than purely rewriting for discriminating between fixed and reconfig-
urable elements of the innovative reconfigurable architectures used in modern, portable
and compact technologies. This allows for a natural and quick conception and simulation
of implementations of emerging computing paradigms such as configware and morphware
[Becker and Hartenstein, 2003] over the conceived reconfigurable architectures which in-



cludes the sophisticated case of dynamically reconfiguration. In particular, we have ap-
plied this specification methodology to the design and modeling of systems for efficient al-
gebraic computations [Ayala-Rincón et al., 2003] and for reconfigurable systems for gen-
eral dynamic programming based implementations of sequence processing methods such
as sequence alignment and approximate pattern matching [Ayala-Rincón et al., 2004].

A Term Rewriting System (TRS) is defined as a triple 〈R, S, S0〉, where S and R

are respectively sets of terms and of rewrite rules of the form l → r if p(l) being l and
r terms and p a predicate and where S0 is the subset of allowed initial terms of S. l and
r are called the left-hand and right-hand sides of the rule and p(l) its condition. In the
architectural context, terms and rules represent states and state transitions, respectively.
A term s can be rewritten or reduced to the term t, denoted by s → t, whenever there
exists a subterm s′ of s that can be transformed according to some rewrite rule into the
term s′′ such that replacing the occurrence of s′ in s with s′′ gives t. A term that cannot be
rewritten is said to be in normal form. The relation over S given by the previous rewrite
mechanism is called the rewrite relation of R and is denoted by→R. Its inverse is denoted
by R ← and its reflexive-transitive closure by→∗

R
and its equivalence closure by↔∗

R
. The

important notions of terminating and confluence properties are defined as usual. These
notions correspond to the practical computational aspects as the determinism of processes
and their finiteness. A TRS is said to be terminating if there are no infinite sequences of
the form s0 → s1 → · · · . a TRS is said to be confluent if for all divergence of the form
s→ t1, s→ t2, there exists a term u such that t1 →

∗ u∗ ← t2.

The use of the subset of initial terms S0, representing possible initial states in
the architectural context (which is not standard in rewriting theory), is simply to de-
fine what is a ”legal” state according to the set of rewrite rules R; i.e., t is a legal
term (or state) whenever there exists an initial state s ∈ S0 such that s →∗ t. Us-
ing these notions one can model the operational semantics of algebraic operators and
functions. Although in the pure rewriting context rules are applied in a truly non de-
terministic manner, in the practice it is necessary to have the control of the ordering in
which rules are applied. Thus, rewriting jointly with logic, that is known as rewriting-
logic [Martı́-Oliet and Meseguer, 2002], has been showed of practical applicability in
this context of specification of processors since they may be adapted for discriminat-
ingly representing in the necessary detail many hardware elements involved in processors
[Ayala-Rincón et al., 2002, Ayala-Rincón et al., 2003, Ayala-Rincón et al., 2004].

Efforts in the implementation of computational environments and programming
languages based on rewriting (matching and substitution) and logic include well-known
tools such as ELAN, CafeObj and Maude (see [Martı́-Oliet and Meseguer, 2002] for re-
cent descriptions of these systems). These systems are useful for implementing and run-
ning specifications, but except for the treatment of types they don’t include elaborated
and natural tools for proving correctness of these specifications, correction that is based
on rewriting basic theory. In particular, when specifying hardware systems one need to
prove their confluence by applying highly used criteria such as the Knuth-Bendix-Huet
Critical Pair Lemma. This lemma states that for a terminating rewriting systems one can
check confluence whenever all divergences generated by overlapping of left-hand sides
of the rules are joinable. Which states a local and effective criterion for verifying conver-
gence of rewriting systems and is the basis of the well-known Knuth-Bendix completion
procedure [Brader and Nipkow, 1998, van Rijsbergen, 2003].

The proposed methodology translates rewriting based specifications (in ELAN) to
the language of the proof assistant PVS, which is the proof assistant used in our experi-
ments. Advantages of PVS include the power of dependent types and higher order logic



strategies [Owre et al., 1998, Rushby et al., 1998] as well as a lot of accumulated expe-
rience in its application in hardware verification [Owre et al., 1994], [Cyrluk et al., 1994],
[R. Hosabettu and G. Gopalakrishnan and M. Srivas, 2003] and [Miller and Srivas, 1995].
Since PVS does not include strategies for rewriting theory, during the translation, critical
pairs are generated and the corresponding (joinability) lemmas written in the language of
PVS for further verification.

In conditional rewriting systems, critical pairs whose conditions are unsatisfiable
are considered trivially joinable or simply omitted [Ohlebusch, 2002]. But our translation
does not includes built-in decision algorithms for deciding whether these conditions are
or not satisfiable. Consequently, trivial critical pairs are maintained and their omission
is let for the PVS phase, where one can apply built-in decision procedures of this proof
assistant.

In PVS type-checking makes part of the theorem proving framework, which makes
it possible to prove type conditions that are central for correctness proofs of the specifi-
cations. Predicate subtypes express mathematical ideas such as naturals are contained in
integers, constraints which determine whether a number is even, odd, prime, etc. Pred-
icate subtypes generate a series of Type Correctness Conditions, called TCC in PVS,
whose demonstrations depend on the extra logic embedded in these predicates instead on
conventional type-checking.

PVS tries to prove all TCCs automatically and whenever it cannot do so, it gener-
ates a proof obligation for the user. Any lemma or theorem that depends on that obligation
will be considered incomplete until that TCC is proved. This can assist users in detecting
errors and problems. For example, consider the following lemma:

div cancel : LEMMA ∀x, y ∈ Z :
x× y

x
= x

This is not valid because of the possible division by zero. PVS checks all condition
required for the lemma and proposes the following TCC:

div cancel TCC1 : OBLIGATION ∀(x) : x 6= 0;

This TCC cannot be proved, so any proof that uses the div cancel lemma will be in-
complete. The following alternative definition does not produce such a TCC solving the
problem..

div cancel2 : LEMMA ∀x ∈ Z− {0}, y ∈ Z :
x× y

x
= x

PVS includes a large collection of conditions which are check against the user supplied
specification. And many of these will appear when the specification has flaws.

2. Methodology Description and Goals

The main goal is to provide a methodology to transform term rewrite specification in
ELAN to the language of the proof assistant PVS where one can prove correctness and
integrity properties. The transferring and work with PVS allows formal verification of the
ELAN specification, including checking types, generating and checking the joinability of
critical pairs, CPs for short, and checking of other properties and general correctness of
the original TRS specification. For the methodology to be practical, the translation has to
take in account several aspects of both ELAN and PVS.

The translation process involves several different components and files. There
is one key central component responsible for the translation, but other components are
required to make it effective and usable. Figure 1 shows these components and how they



interact. Files and software are shown as rectangles and boxes with rounded corners,
respectively. They have the following functions and contents:

Translator

ELAN

REF File Theory

PVS

PVS

Mapping

EPM

ELAN

Proof

PVS
Specification

ELAN

Figure 1: General flow

ELAN Specification: represents the set of files of a given ELAN specification. Most
specification will have at least two files: top level logic description and module files.
Some specification will have additional files called specification files. All these files are
required to use the ELAN interpreter with that specification.

ELAN: This is the ELAN interpreter. It can be used to run specifications. Its role in the
translation process is to export the specification into a ELAN REF file.

ELAN REF File: is used by the ELAN Compiler to generate C code for the given spec-
ification. This allows ELAN to create executable programs that run a specification. The
content is very suitable for computer analysis, and hold all elements necessary for the gen-
eration of the specification in other languages. However the specification does not include
any variable names (using something similar to De Bruin’s notation for λ−calculus). This
file includes many rules that are not visible in the module files. These rules come from
imported types and modules, as well as rules generated by properties such as associativity
and commutativity.

EPM Mapping: Are used to control the translation process and behavior. EPM stands
for ELAN to PVS mapping. It provides naming for variables, translation for operators
and function symbols as well as naming for the rules. ELAN does not have naming for
rules, but PVS requires names for declarations such as the ones that will represent the
rules. Having meaningful names is important when trying to use rules in proofs. As
stated above ELAN will generate internal rules and import rules for modules and types
that may be irrelevant to the verification of the specification. To handle this the EPM file
can define rules as irrelevant or ignorable.

Translator: is the key component. It will read the ELAN REF file and the EPM mapping
files to load the rules into structures that can easily be manipulated. Then, it export the
rules to a PVS file, generate the CPs and provide means to check the CPs (without taking
in account the feasibility of their conditions). The translation process will be described in
greater detail in section 3.

PVS Theory: PVS files contain the theory declarations. Those generated by the transla-
tor will have axioms for the rules of the term rewrite specification, lemmas for the CPs,
and function and type declarations, all derived from the original specification.

PVS: represents the PVS runtime that can read theory files, do type checking and allow
users to prove the theory declaration.

PVS Proof: once the user has proved a theory element or declaration, the proof is saved
in a proof file. This allows them to be run in batch to re-validate a theory even if some
aspects of the theory have changed.

One may question why the translation does not handle the conditions of the CPs



eliminating all CPs with unfeasible conditions, that will trivially proved in PVS. The
main reason for not doing so it that PVS has these logical capabilities and introducing
decision procedures could produce a very complex translator giving yet another proof
engine evaluator which is not the goal in our methodology.

3. Translation from ELAN to PVS

The translation from ELAN specifications to PVS theories is the cornerstone of our
methodology. The key idea is that using a semantically intelligent translation, one can
emulate the rewriting based specifications and use the proof assistant to check both term
rewrite properties as well as non rewrite properties such as logical correctness and in-
tegrity. The translation mechanism should respect the semantics of the given input speci-
fications and preserve typing information. PVS and ELAN have a somewhat compatible
expression power, but the translation has to deal with differences between them.

Within any ELAN specification there are three key elements: Types called sorts in
ELAN; Function Symbols called operators that represent operator and function symbols
and Rules that represent the rewrite rules of TRSs. All these elements are listed in the
ELAN REF file and must be transported into the PVS theory. Once all of these are loaded,
it is possible to generate CPs, which should be included in the PVS theory.

3.1. Types and Function Definitions

ELAN and PVS are strongly typed system. Both also have parametric types (such as
list[int] for list of integers). However PVS has a much more powerful typing system,
including dependent and recursive types. A naı̈ve approach is to translate a type from one
system to the other directly name per name. So an ELAN sort of mytype become a PVS
type declaration: mytype: TYPE .

This approach will generate syntacticly and semantically correct PVS theories,
however with complex types such as lists and arrays, this strategy may produce unprov-
able TCCs. These complex types can be translated into DATATYPE types. These type
declarations include means to declare constructors and nil elements, and will normally
eliminate TCC regarding constructed types.

In ELAN a list can be declared as follows:

sort mylist; end
operators global

mynil: mylist;
@.@: (int mylist) mylist;

end

In the operators block each statement defines a function or operator symbol. ‘@’ is
a placeholder for a variable of a specific type. The domain of the function is listed within
the parenthesis and the range is the name after the parenthesis. So the mynil operator
defines a constant of type mylist and ‘.’ defines and operator of type int × mylyst →
mylist. The type mylist shown above can be translated into the PVS type declaration
mylist : DATATYPE. Below, the last identifiers after the colon (mynil? and mylist cons?)
are predicates that can be used in other places to determine whether a variable of that
DATATYPE is constructed by that constructor or not.

mylist: DATATYPE BEGIN
mynil: mynil?
o(v:int, l:mylist): mylist cons?

END mylist



In ELAN predicates like mylist cons? can be expressed with the following rule:
[] isMylist cons( v . l ) => true end. PVS requires that a predicate be specified for each con-
structor although names can be generated in many cases. These predicates are used in the
construction of recursive functions, and can be used as rule triggers. More elaborate types
may require creating the type declarations manually and turn off type translation.

Another important element of ELAN specifications that must be translated is the
type description of the operator and function symbols. This should be done carefully
because both ELAN and PVS allow different type descriptions for the same symbol.

One of the key challenges in the translation of the ELAN operators comes from the
fact that ELAN has a more powerful lexical engine. For this reason some operators cannot
be translated directly to PVS operators. For example r1 7→ Load(r2) can be written in
ELAN as r1|−Load(r2) which cannot be translated directly to the language of PVS. To solve
this issue, operator symbols that are not supported in PVS must be translated to different
symbols. For instance, the ELAN operator @|−Load(@): (int int) instruction can be declared
in PVS as Load: [int,int−>instruction]. The general PVS type description is in the form
t1, t2, . . . , tn → i. Notice that the example above can also be considered a constructor for
a DATATYPE.

3.2. Rules

ELAN rules are translated to PVS axioms. This design decision was taken since trans-
lating the rules to functional definitions would not necessarily yield adequate functional
definitions, and because PVS can emulate TRS rewriting with axioms during proofs.

Within the axiom definition the rewriting operator → has to be replaced by the
equality operator =. Equality in PVS can be used in any direction potentially causing
problems. However most proof commands that refer to equalities will do so from left to
right by default. This is the expected direction for a TRS. However the use of equality
requires special care in the proof to avoid using the equality in the wrong direction.

The emulation of a rewrite step within a proof is done by a command called
REWRITE. This command uses lemmas or axioms and a term or set of terms as ar-
guments. It will attempt to find unifiers between any subterm of terms being rewritten
and the left side of the equality in the lemma or axiom. If it can match them, it replaces

the subterm in the term by the right side of the axiom or lemma. So t
axiom
−−−→ t′. This is

similar to the semantic of applying a rule in a TRS, t
R
−→ t′. One caveat of the REWRITE

command is that it can be used from right to left, although the default is left to right.

A unconditional rule written in ELAN as [] a −> b end, where the empty braces []
(for unlabeled rules) tells ELAN that this rule is not used by any specific strategy. ELAN
can use strategies to control the application of rules. This simple rule is translated to the
PVS statement r0: AXIOM a=b.

Every axiom and lemma in PVS must have an unique name. These names could
be generated automatically, but this is bad for usability since rules have no mnemonic
meaning to the user. Another important aspect of naming axioms and lemmas is that
proofs and TCCs refer to these names. If a name changes the proofs may be lost, requiring
the user to prove them again. So having good names is important to make the user more
productive.

ELAN is a conditional rewriting framework. The ELAN statement [] a −> b if c end

means that a will be rewritten to b if the condition c can be evaluated as true and since
there is no label (i.e., any strategy identification) it can be used anywhere. The statement
above can be translates to the PVS term: r1: AXIOM c IMPLIES a=b. This imitates the



way rules work in ELAN, since the axiom can only be applied if PVS can determine
that the condition c holds. Strategies are not dealt by the translation, although this could
potentially change the results of the translations.

ELAN and PVS use where constructions to simplify rules and make them more
readable. These constructions assign values to variables that appear on the right side of
the rules. There are however some differences between the two languages. In ELAN
the where constructions refer to any variable and condition, in PVS the variable used in
conditions or on the left side of a axiom or lemma declaration must be defined before they
are used in the statement. This is done with a LET ... IN expression, which has a similar
semantics to a regular where construction.

The following example illustrates the way a simple where construction is trans-
lated. Consider the ELAN rule [] a −> c where c:=()op(a) end. The ELAN assignment op-
erators are in the form :=() or :=[], where the parenthesis or braces can contain the name
of a strategy that should be used to evaluate the right side of the assignment. This rule
translates to the PVS declaration: r2: AXIOM a=c WHERE c=op(a). However if the ELAN
where construction affects a variable in a condition, like in the following rule:
[] a −> b where c:=()op(a), if c

it must be translated slightly differently. Since the condition has to come before the rule’s
equality, and the variable of the condition has to be defined in the where construction,
these must be transformed into the LET ... IN expression such as:
r3: AXIOM LET c=op(a) IN c IMPLIES a = b

Variables in both languages can be declared prior to their use in the rules. In
TRSs right side variables have to occur also in left side of the rules or be determined by
left-side variables in a where construction. However PVS allows variables to be declared
and typed per theory declaration (lemma or axiom). This is done with a FORALL(v1 :
t1, .., vn : tn) : ... construction (where the vi’s are variables and ti’s their types). This is an
alternative to the use of global variables and ensures that translation is done correctly since
undeclared variables will cause errors during the type checking of the theory. To illustrate
how the variable are declared,assuming a of type int and c is a boolean variables and b is
a constant declared previously, the previous rule would actually be translated as:
r4: AXIOM FORALL(a:int): LET c:boolean=op(a) IN c IMPLIES a = b.

Additionally, the ELAN rule construction block choose try ... end should be handled.
Theses blocks allow different assignment to variables depending on conditions provided
within the block. Each group started by a try represents a set of variable assignments and
condition that must be meet. If the condition hold, that set of assignments is accepted and
no additional blocks are evaluated. Observe the following block.

[] f(x) −> g(y,z) choose try where y:=()h(1,x) where z:=()g(y,x) if x < 0
try where y:=()h(x,1) where z:=()g(x,y) if x > 0
try where y:=()0 where z:=()1 end

PVS provides the COND or condition expression that has a very similar semantics to that
of the ELAN choose try ... end blocks. However each expression returns a single value
of a specific type, and is used to assign a value to a single variable. In ELAN, several
variables can be affected by the same condition expression. To handle this, translation
must de-multiplex the variables into different PVS COND expressions. Assuming all the
variables are of type int, the rule shown above can be translated to the following PVS
declaration.

rcond: AXIOM FORALL(x:int): f(x)=g(y,z)
WHERE

y=COND x<0 −> h(1,x), x>0 −> h(x,1), ELSE −> 0 ENDCOND,



z=COND x<0 −>g(y,x), x>0 −>g(x,y), ELSE −> 1 ENDCOND

Each condition in the COND expression is expressed in the form ci → vi, which means
that if ci holds vi is the value of the expression. The condition ELSE → velse is used if
none of the previous conditions is true. Notice that in this example the conditions are the
same in both COND expressions, just the values returned change. This translation allows
PVS to emulate the general semantics of the ELAN choose try ... end blocks.

The options taken in the translation of rules were carefully analyzed and tested to
ensure the preservation of the TRS semantics as well as the usability of the PVS gener-
ated theories. Although the translation can produce quite large PVS declarations, a user
familiar with the ELAN specifications can easily identify which rule he is observing and
determine if it translation matches the original rule. This knowledge is essential during
verification, since users will be choosing which axioms (i.e. ELAN rule) to apply as they
issued proof commands.

ELAN strategies were not translated to the PVS theory. In ELAN they are used to
suggest to the interpreter ways in which the rules should be used. If rules where applied
in a non deterministic form, recursion and other looping structures could cause the large
consumption of resources that could render computing a result unfeasible. The strategies
where ignored (for the time being) because it is assumed that an intelligent user will be
making the decision on which rules to apply and this will avoid the problems of random
rule selection.

3.3. Critical Pairs

Once all the mandatory elements of an ELAN specification have been handled, it is pos-
sible to generate CPs. These have no ELAN equivalent, though one could attempt to
see how ELAN would handle all of them as queries to the ELAN engine. However this
approach is not very practical for testing the joinability.

CPs are generated by overlapping left-hand sides of rules and then applying one
rule to get the first element of the pair and the other rule to obtain its second. So lets say
the following rules have left-sides such that one non variable subterm of the one unifies
the other:

R1 : l1 → r1 and R2 : l2 → r2

Assuming this unification produces the term u and that:

s
R1←− u

R2−→ t so the pair is 〈s, t〉

CPs are generated to determine whether they are joinable or not, in order to apply rewrit-
ing theory to deduce (local-)confluence of the whole TRS. CPs are translated to the PVS
theory as conditional equational lemmas that need to be proved. The joinability of CPs
is determined by proving these lemmas. So for the critical pair 〈s, t〉 one has to prove
by rewriting that s and t can be made equal. The corresponding PVS declaration is the
lemma: cp1: LEMMA s = t.

Many of the rules that create CPs will have conditions associated to them, and will
likely have where constructions. Both of them must be considered when creating lemmas
corresponding to the CPs. These constructions can be joined, assuming they are properly
instantiated for variable renaming and unification.

To illustrate this lets take a somewhat complex set of rules:

[] f(x,y) => f(v,z) where v:=()g(x,y) where z:=()g(y,x) if x<y end
[] f(x,h(y)) => g(h(z),h(z)) where z:=()x+y if x>=h(z) end



The left-hand side of both rules can be unified to f(x, h(y)) (once renaming the
variables in the first rule). Applying the first rule the following term will appear:

f(v,u) where v:=()g(x,h(y)) where u:=()g(h(y),x) if x<h(y)

And applying the second rule the following term will appear:

g(h(z),h(z)) where z:=()x+y if x>=h(z)

So the resulting PVS lemma must have the pair’s terms and all their condition.
The general consideration used for rules must be followed in the CPS. Conditions for rule
usage, must be translated into IMPLIES. The critical pair from the example rules above
should be expressed in PVS as follows:

1 cp2: LEMMA FORALL(x,y:int): LET z=x+y IN x<h(y) AND x>=h(z) IMPLIES
2 f(v,u) = g(h(z),h(z))
3 WHERE u=g(h(y),x), v=g(x,h(y))

The equality in line 2 is the key test for joinability. The where construction from
the second rule has to be placed before the main equality because it is needed in the
IMPLIES clause (first line). Line 3 is the where construction from the first rule.

On a properly constructed rewrite based specification most of the CPs will have
inconsistent conditions, eliminating the CPs altogether. This is a consequence of the fact
that the specifier tries to define rewrite rules (for defining each function involved in the
specification) whose conditions are exclusive. However, in verifying CPs, even these
trivially dispensable, it can appear several problems within the specification as will be
discussed in the next session.

4. Practical experiences

This section explores some of the practical experiences in using the methodology and
the translator. It explores the verification of a simple processor, a basic non speculative
processor, from the work described in [Ayala-Rincón et al., 2002]. During this verifica-
tion several lessons on translation strategies and actual errors where found in the original
specification.

4.1. Validating an AX Basic Processor Specification

Before introducing the experiences it is important to describe the AX processor. It is a
simple RISC processor with 7 instructions: Load loads a register with a value from the
memory, Store saves register contents to memory, Op adds two register, OpE compares
two registers and store the result on another register, Jz branches the program if a register
is zero, Loadc loads a register with a constant value, and Loadpc saves the program
counter to a register. The System has a random access memory (implemented as a list of
cells) and a Processor. The processor is defined as a program counter, a program memory
(which is read only), and a register file (list of registers).

During this verification several interesting aspects of the implementation where
revealed. These points came from proving both type checking constraints (TCC) and the
critical pair joinability. Several of the CPs where unjoinable, one of them revealed a bug
in the implementation. All of the issues had limited impact on the actual use of the spec-
ification because ELAN evaluates rules in order. However they could cause problems if
the order were to be changed or on actual hardware. Some of the difficulties in prov-
ing lemmas and obligations derived from options in the translation. Different strategies
produced better results.



4.1.1. Bug: Bad Operation Definition

One of the first interesting problems found in the specification had to do with overlapping
comparison operations. The valueofOpE(m, r1, r2) is used by the OpE instruction and
is defined as: r1 and r2 are registers to be compared, and m is the type of comparison to
be made. When m = 3, (≤) the specification had a flaw, as show by the rules below.

[] valueofOpE(3,x,y) => 1 if x <= y end
[] valueofOpE(3,x,y) => 0 if x >= y end

These rules can be overlapped producing a critical pair, which is unprovable be-
cause x = y =⇒ 1 = 0 which is clearly an error. The critical pair generated by the
translator is shown below (in PVS).

OpE3 lteXOpE3 gte: FORALL(x:int,y:int): x >= y AND x <=y IMPLIES 1=0

This error does not produce problem when using the specification in ELAN because the
rules are applied in order. However if the order where to be changed the specification
would produce erroneous results since when x = y both valueofOpE(3, x, y) → 0 and
valueofOpE(3, x, y)→ 1 are valid reductions.

4.1.2. Register File Critical Pairs

In the AX implementation register files are implemented as lists of registers. The register
is constructed by a function Reg(i, v) where i is the index number of the register and v is
it’s value. The rules for the update of the register file are shown below.

1 [] insertRF(nilr,r,v) => Reg(r,v).nilr end
2 [] insertRF(Reg(i,j).rf,r,v) => Reg(r,v).rf if r == i end
3 [] insertRF(Reg(i,j).rf,r,v) => Reg(i,j).insertRF(rf,r,v) end

The first rule is used to add a register to an empty register file or to the end of the file.
The second rule is used to replace a register value in the register file, while the third
rule advances through the register file. When CPs are analyzed the following critical pair
appears from overlapping the second and third rules.

irf foundXirf adv: LEMMA FORALL(v:int,r:int,rf0:RF,j:int,i:int):
r=i IMPLIES (Reg(i,j) o insertRF(rf0,r,v))=(Reg(r,v) o rf0)

The critical pair has a satisfiable condition and can not be trivially joined. Adding a
condition of r 6= i to the third rule changes the conditions of the critical pair turning
them unsatisfiable and allowing this way the elimination of the CP. Again the ELAN
specification works properly because the rules are executed in order. However, if the
second and third rules are swapped the register file specification does not work at all.
Adding the condition may seem redundant, but makes the specification clearer and ensures
that order will not affect the result of the system.

4.1.3. Instructions Critical Pairs

In the construction of the AX processors a set of operators construct the instructions
for the processor. Instructions are constructed using operators like Jz(r, jaddr) and
Load(r, addr). The main processing rule has the following format, where Instruction
represents one of the AX instructions (for example isinstJz):

[Instruction] Sys(m, Proc(ia, rf, prog)) =>

Sys(m, Proc(ia+1, insertRF(rf,r,v), prog))



where instIa :=() selectinst(prog,ia)
if isinst<Instruction>(instIa)
...

The key condition for selecting one of these rules is the isinst〈Instruction〉 (like isinstJz,
and so on). Each of these functions takes an instruction to a boolean and indicates if the
instruction is constructed by a Load, Jz and so on. When two of these rules are checked
for CPs, their left-hand sides are identical and will produce a critical pair. There are
however conditions on each of these CPs which comes down to something like:

... isinstJz(instIa) AND isinstLoad(instIa) IMPLIES ....

It is obvious that since different constructor create each instruction, no instruction
can be both a Jz and Load at the same time (or any two instruction constructor for that
matter). However PVS does not have that information and the CPs cannot be dismissed
or proven joinable. Since isinst〈Instruction〉 is not reducible in this form there is no
way to get around this problem without some changes in the translation or PVS file.

Several approaches were used to solve this issue. The first approach involve telling
PVS that if a instruction is of one type it cannot be of other types. This is done by
introducing axioms like:

exJz: FORALL(instIa:instruction): isinstJz(instIa) IMPLIES
NOT isinstLoad(instIa) AND NOT ....

These inform PVS that the constructors are different and allow the CPs to be proven
unfeasible due to false conditions.

Another alternative involves changing the isinst〈Instruction〉 to an expandable
construction such as the following:

[] decode(Load(r,addr)) => 2 end
[] decode(Jz(r,jaddr)) => 3 end
[] isinstLoad(instIa) => decode(instIa) == 2 end
[] isinstJz(instIa) => decode(instIa) == 3 end

This construction means that the critical condition:

... isinstJz(instIa) AND isinstLoad(instIa) IMPLIES ....

can be rewritten to the following:

... decode(instIa) = 2 AND decode(instIa) = 3 IMPLIES ....

which PVS can easily assert as being false thus discarding the critical pair altogether.

However the most elegant solution to this problem comes from simply changing
the type declaration for instruction from a simple type to a constructed DATATYPE. In
addition to this, the predicate for each constructor must match those used in the condition
of the rules, that is the isinst〈Instruction〉. Thus the instruction type in constructed in
the following manner (shown in PVS):

instruction: DATATYPE BEGIN
...
Load(r:int, addr:int) : isinstLoad
Jz(r:int, jaddr:int) : isinstJz
...

END instruction

This construction yields the best results, since PVS can determine that only one construc-
tor can be used at each time. This makes the CPs formed from the instruction processing
rules all trivially unsatisfiable.



4.1.4. Jz Condition Clause TCC

The rule for the Jz instruction provided another proof challenge. In it’s original construc-
tion (partially shown below) it has a choose try .. end block. As stated in the translation
(section 3) this can be converted to a COND block. However in doing so this rule and any
critical pair that uses it produces a TCC.

choose
try where nia:=()ia+1 if valueofReg(r1,rf) != 0
try where nia:=()valueofReg(r2,rf) if valueofReg(r1,rf) == 0

The reason for this is that PVS requires that all conditions in a COND block be
pairwise disjoint. Since this block has no else condition, proving this TCC requires that
valueofReg(r1, rf) = 0 and valueofReg(r1, rf) 6= 0 cannot hold at the same time.
This is trivially true, but PVS cannot determine this immediately when type checking.
One way to solve this is to eliminate the if expression from the second try block. This
forces the translation to use a ELSE condition in the COND block which eliminates the
TCC.

5. Conclusions and Future Work
The proposed methodology is easily applicable for general term rewriting based specifi-
cations and generating the target lemmas corresponding to (joinability of) CPs and using
the power of a proof assistant such as PVS simplifies the verification of correctness. And
the most important, it allows for dynamic and quick execution of changes in the speci-
fication without losing advances in proving its correctness: in PVS proved lemmas not
involved in these changes can be reused in new proofs. PVS proved to be very suitable
for this task since it can emulate the rewriting semantics involved in conditional rewriting
rules and conditional critical pairs very well.

The experience with the basic AX specification showed various important options
concerning the translation process. The initial naı̈ve approach produced many unprovable
TCCs and had some critical pairs that could not be discarded. With different translation
strategies and minor adjustments to the specification, it was possible to create a PVS
theory with no TCCs and whose CPs where all discarded. Even with all the care taken
in the translation the fact that PVS does not have an order when applying lemmas and
axioms, and that types can be handled in different forms can play an important role in the
number of TCCs and the complexity of proving properties.

Larger specifications are being converted and tested after the initial success of the
methodology. Future work includes creating proof strategies to assist proving the CPs
between PVS, and making the translation aware of the ELAN strategies.

Finally, we believe the proposed methodology is a step forward in the direction
of describing a verification mechanism for innovative new hardware technologies such as
reconfigurable systems. Current work in this setting point out the translation of rewrit-
ing based specifications of algebraic operations to alternative equivalent expressions via
different logical strategies in ELAN, which are then translated to the language of the ALE-
X compiler of the Xputer reconfigurable architecture and subsequently mapped into the
PACT XPP commercial architectures [Morra et al., 2005].
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A. A Simple Example

We would like to remark that this appendix is included for the benefit of the review process
and that it will be dropped in a final version of the paper.

This examples involves a simple ELAN specification with few rules, and then an
exercise of the translation and working with the specification. The PVS theory result-
ing from the translation includes four CPs and is complemented with some lemmas that
should be proved to obtain the correctness of the specification. This provides the reader
with an example of the potential benefits of using this methodology to verify the ELAN
specifications.

The ELAN specification used in this example provides two sets of rules:

• Rules affecting agp(s, n, i) function, creates a list of elements where each element
is the i−th elements of an arithmetic progression. The list will have n elements,
with initial value of i and a increment of s between elements. The rules are shown
below (with the actual line number for each rules).

21 [] apg(s,n,i) => nililist if n<=0 end
22 [] apg(s,n,i) => i.apg(s, nc,ni) where nc:=() n−1 where ni:=()i+s if n>0 end

• Rules affecting listsum(l) and listsum r(l, s) that take a list l of elements and
adds them up, providing the sum s of all the values in the list.

29 [] listsum(nililist) => 0 end
30 [] listsum(l) => listsum r(l,0) end
31 [] listsum r(nililist,s) => s end
32 [] listsum r(h.l,s) => listsum r(l,ns) where ns:=() h+s end

The ELAN specification also define the list of integer with the type ilist, which is
constructed using the ◦ operator and the nililist for an empty list. The agp rules are both
conditional, insuring that the list can be assembled even with n < 0.

Once the basic specification has been tested using ELAN, the translation process
is done. Beside the translated elements the PVS theory includes several lemmas design
to test the correctness of the specification.

• The listing includes the conversion of the rules to PVS. Notice that the “@.@”
operator had to be replaced by “@ ◦ @”. Besides that the rules in PVS follow
much the same appearance of the ELAN rules.

15 apg end: AXIOM FORALL(i:int,n:int,s:int): n<=0
16 IMPLIES apg(s,n,i)=nililist
17 apg cons: AXIOM FORALL(i:int,n:int,s:int): n>0
18 IMPLIES apg(s,n,i)=i o apg(s,nc,ni)
19 WHERE nc:int=n−1, ni:int=i+s
20

21 listsum nil: AXIOM listsum(nililist)=0
22 listsum: AXIOM FORALL(l:ilist): listsum(l)=listsum r(l,0)
23 listsum r end: AXIOM FORALL(h:int): listsum r(nililist,h)=h
24 listsum r adv: AXIOM FORALL(s:int,l:ilist,h:int):
25 listsum r(h o l,s)=listsum r(l,ns) WHERE ns:int=h+s

• During the translation four CPs were found. Notice that the names where given
using the rules names, and that two of them are just the reverse evaluation of the
rules.

28 apg endXapg cons: LEMMA FORALL(n:int,s:int,i:int):
29 n<=0 AND n>0 IMPLIES
30 LET nc0:int=n−1,ni1:int=i+s IN i o apg(s,nc0,ni1)=nililist
31 apg consXapg end: LEMMA FORALL(n:int,s:int,i:int):



32 n>−1 AND n<=0 IMPLIES
33 nililist=i o apg(s,nc0,ni1)
34 WHERE nc0:int=n−1, ni1:int=i+s
35 listsum nilXlistsum: LEMMA listsum r(nililist,0)=0
36 listsumXlistsum nil: LEMMA 0=listsum r(nililist,0)

All these critical pair have unsatisfiable conditions and can be trivially discarded.

In addition to the elements form the ELAN specification, the PVS definitions
include three lemmas and a function definition. These declarations are used to prove the
operation correctness of the specification as follows:

1. ilist length(l) is a recursive function that determines the size of a ilist. This is a
pure PVS definition, as shown below.

39 ilist length(l:ilist): RECURSIVE int = CASES l OF
40 nililist : 0,
41 o(h, t) : 1 + ilist length(t)
42 ENDCASES MEASURE l BY <<

The MEASURE ... BY is required by PVS to indicate that this recursion is well
defined.

2. The apg len lemma states that a list generated by the apg rules with argument n

has length of n. This is a very simple lemma and seems fairly obvious, never the
less it’s an example of proving that the rules really do what was intended. It’s
defined in PVS as follows:

45 apg len: LEMMA FORALL(n:nat,i,s:int): ilist length(apg(s,n,i))=n

3. The listsum val ext lemma is used in the proof of the next lemma. It was re-
quired because the way the listsum is defined in the rules, storing the sum s

within the functional symbol. (See line 32 of the ELAN specification).

47 listsum val ext: LEMMA FORALL(v,c:int, l:ilist):
48 listsum r(v o l,c)=listsum(l)+v+c

4. The last lemma listsum val shows that the listsum(agp(s, n, i)) with s the in-
crement, i the initial value and n has the values of the closed form of the sum of
elements in an arithmetic progression (where ai is the i−th element of the arith-
metic progression:

listsum(agp(s, n, i)) =
(a0 + an)× n

2
where a0 = i and an = i + (n− 1)× s

=
(i + (i + (n− 1)× s))× n

2
=

(2i + (n− 1)× s)× n

2

In PVS this is expressed as follows:

51 listsum val: LEMMA FORALL(n:nat,i,s:int):
52 listsum(apg(s,n,i))= ((2 ∗ i + s ∗ l −s)∗l)/2
53 WHERE l:int=ilist length(apg(s,n,i))

The proof of the first lemma can be done with a simple induction on n. However
the ELAN specification specifies n as n ∈ Z, which is not suitable for an induction. The
solution is to change n to a n ∈ N in the definition of the lemma. Since agp is defined for
Z and N ∈ Z, the definition will work properly.

The next lemma, listsum val ext, is also proved by an induction, but this time it
is done on the l (an ilist). This is an interesting feature of PVS, where any well-founded
type can be used for an induction. This lemma is required for the next lemma since the
sum of the list is store within the listsum r(l, s) function as the s value. However for



the next induction it is important to have the value of the accumulated sum outside of the
function symbols. This is what this lemma proves, that on each step of the listsum:

∀v, c ∈ Z, l ∈ ilist : listsum r(v ◦ l, c) = listsum(l) + c + v

The last lemma listsum val, is proved by induction using the previous lemmas
to assist in the proof. Again in order to have an induction it is necessary to restrict n to
n ∈ N.

As shown above using PVS we can check more than the basic properties of a
rewrite logic specification. One other interesting aspect of using PVS is that the ELAN
specifications goes through a comprehensive type checking. In this simple example there
are no type checking constrains with the basic ELAN specification. However in more
complex specification this checking helps users detect potential problems.

Listing 1: ELAN specification simple.eln

1 module simple
2 import global int;
3 end
4
5 sort
6 ilist;
7 end
8
9 operators global

10 apg(@,@,@) : (int int int) ilist;
11 listsum(@) : (ilist) int;
12 listsum r(@,@) : (ilist int) int;
13 @.@ : (int ilist) ilist;
14 nililist : ilist;
15 end
16
17 rules for ilist
18 s,n,i,nc,ni: int;
19 global
20 // apg ( step, count, increment)
21 [] apg(s,n,i) => nililist if n<=0 end
22 [] apg(s,n,i) => i.apg(s, nc,ni) where nc:=() n−1 where ni:=()i+s if n>0 end
23 end
24
25 rules for int
26 l:ilist;
27 h,s,ns:int;
28 global
29 [] listsum(nililist) => 0 end
30 [] listsum(l) => listsum r(l,0) end
31 [] listsum r(nililist,s) => s end
32 [] listsum r(h.l,s) => listsum r(l,ns) where ns:=() h+s end
33 end
34 end

Listing 2: PVS theory simple.pvs

1 simple: THEORY



2 BEGIN
3
4 % ilist constructor
5 ilist: DATATYPE BEGIN
6 o(v:int,l:ilist): ilist oh?
7 nililist: nililist?
8 END ilist
9

10 apg : [int,int,int−>ilist]
11 listsum : [ilist−>int]
12 listsum r : [ilist,int−>int]
13
14 % Rules
15 apg end: AXIOM FORALL(i:int,n:int,s:int): n<=0
16 IMPLIES apg(s,n,i)=nililist
17 apg cons: AXIOM FORALL(i:int,n:int,s:int): n>0
18 IMPLIES apg(s,n,i)=i o apg(s,nc,ni)
19 WHERE nc:int=n−1, ni:int=i+s
20
21 listsum nil: AXIOM listsum(nililist)=0
22 listsum: AXIOM FORALL(l:ilist): listsum(l)=listsum r(l,0)
23 listsum r end: AXIOM FORALL(h:int): listsum r(nililist,h)=h
24 listsum r adv: AXIOM FORALL(s:int,l:ilist,h:int):
25 listsum r(h o l,s)=listsum r(l,ns) WHERE ns:int=h+s
26
27 % Critical Pairs
28 apg endXapg cons: LEMMA FORALL(n:int,s:int,i:int):
29 n<=0 AND n>0 IMPLIES
30 LET nc0:int=n−1,ni1:int=i+s IN i o apg(s,nc0,ni1)=nililist
31 apg consXapg end: LEMMA FORALL(n:int,s:int,i:int):
32 n>−1 AND n<=0 IMPLIES
33 nililist=i o apg(s,nc0,ni1)
34 WHERE nc0:int=n−1, ni1:int=i+s
35 listsum nilXlistsum: LEMMA listsum r(nililist,0)=0
36 listsumXlistsum nil: LEMMA 0=listsum r(nililist,0)
37
38 %PVS Elements used to prove
39 ilist length(l:ilist): RECURSIVE int = CASES l OF
40 nililist : 0,
41 o(h, t) : 1 + ilist length(t)
42 ENDCASES MEASURE l BY <<

43
44
45 apg len: LEMMA FORALL(n:nat,i,s:int): ilist length(apg(s,n,i))=n
46
47 listsum val ext: LEMMA FORALL(v,c:int, l:ilist):
48 listsum r(v o l,c)=listsum(l)+v+c
49
50 % Sum is of pg is ((e 0 + e n)∗n)/2
51 listsum val: LEMMA FORALL(n:nat,i,s:int):
52 listsum(apg(s,n,i))= ((2 ∗ i + s ∗ l −s)∗l)/2
53 WHERE l:int=ilist length(apg(s,n,i))
54
55 END simple


